
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 5, 77-84, May 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I5P108 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

 Original Article

3D Bounding Box Estimation Using Deep Learning and

Geometry Based on Yolov7 Output on Single-Board

Computer

Tuan Muhammad Naeem Bin Tuan Rashid1, Lokman Mohd Fadzil1*, Mohd Adib Haji Omar2

1National Advanced IPv6 Centre (NAv6), University Sains Malaysia (USM), Penang, Malaysia.
2School of Computer Science, University Sains Malaysia (USM), Penang, Malaysia.

*Corresponding Author : lokman.mohd.fadzil@usm.my

Received: 06 March 2024 Revised: 06 April 2024 Accepted: 04 May 2024 Published: 29 May 2024

Abstract - This study investigates the enhancement of 3D bounding box estimation techniques for object localization on Single-

Board Computers (SBCs), focusing on the Jetson Nano platform. The adaptation and optimization of deep learning models,

specifically transitioning from VGG networks and YOLOv3 to more efficient alternatives like MobileNetV3 and YOLOv7, within
the constraints of SBCs. The implementation leverages the advanced capabilities of MobileNetV3 for 3D bounding box

generation, coupled with the superior detection accuracy and speed of YOLOv7 for object detection. The research employs an

innovative loss function to improve 3D orientation predictions and utilizes geometric constraints from 2D bounding boxes for

precise object localization. A comparative analysis of MobileNet V3, VGG-19, and MobileNet V2 models on the Jetson Nano

inference speed and consistency reveals that MobileNet V3, optimized using TensorRT, significantly outperforms others, a

preferable candidate for solutions in real-time environments. The study concludes that the strategic optimization of deep

learning models on SBCs, like the Jetson Nano, markedly enhances the performance and applicability of 3D bounding box

estimation in edge computing environments, offering valuable insights for deploying advanced object detection technologies in

resource-constrained scenarios.

Keywords - 3D bounding box, Computer vision, Embedded system, IoT applications, Performance benchmarking.

1. Introduction
Of late, deep learning and computer vision domains have

seen substantial advancements, especially in object detection

and localization. The use of 3D bounding boxes for object

estimation has emerged as crucial for applications in

autonomous driving, robotic vision, and augmented reality.

However, implementing these advanced techniques on

resource-limited platforms like Single-Board Computers
(SBCs), which serve to offload some processing tasks from

central servers for edge processing, presents significant

hurdles.

While SBCs are cost-effective and compact, their

computational capabilities often lag behind those of more

powerful systems, necessitating the need for deep learning

models to be tailored to their constraints. This study aims to

advance the work of Mousavian et al. (2017) by exploring the
practicality and improving single-board computer

performance in terms of sophisticated object localization

methods. The original research predominantly used VGG

networks for 3D bounding box generation and You Only Look

Once version 3 (YOLOv3) for object detection [1]. VGG is

noted for its deep convolutional layers [2], and YOLOv3 for
its rapid detection speed and accuracy [3], setting a benchmark

in the field. Nevertheless, the advent of new models and

architectures opens up possibilities for refining this

framework to achieve better efficiency and effectiveness.

Accordingly, this research introduces two major updates.

Firstly, the YOLOv7 adoption. Being the advanced

component of the YOLO algorithm family, acclaimed for its

superior detection accuracy and speed. YOLOv7's architecture

includes numerous enhancements over its predecessors [4],

making it the prime selection for real-time computing services

on bare-bone devices.

Secondly, replacing the VGG backbone with a more
efficient model like MobileNetV3, which is designed

specifically for mobile and edge computing environments [5].

MobileNetV3 optimally balances latency and accuracy [5],

which is vital for applications on single-board computers.

Additionally, further model performance enhancement can be

achieved via TensorRT optimization. As for the SBC, Jetson

Nano [6] is chosen, given its standing as a representative

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lokman.mohd.fadzil@usm.my

Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024

78

example of current SBC technology. This research not only

aims to validate the feasibility of leveraging deep learning and

geometric principles for 3D bounding box estimation on

single-board computers but also seeks to elevate its efficiency,

making it more applicable for real-life scenarios that require

portable and low-power solutions. The findings of this study
will shed light on adapting cutting-edge deep learning models

for use within ecosystems with constrained resources,

extending the range and applicability of advanced object

detection technologies.

The paper will commence with a thorough review of the

relevant literature, followed by a presentation of the

implementation, which will include the modifications made

for SBC compatibility. Subsequent sections will outline the
results, and a detailed discussion of the outcomes, culminating

in repercussions for emerging research and real-world

applications.

2. Literature Review
This literature review critically examines the evolution

and existing status of Deep Learning (DL) algorithms in object

detection and existing 3D bounding box generation research.

The review delves into the progression of the object detection

model, which is YOLO, from the earliest version to the one of

the latest, YOLOv7 and onto related research on 3D bounding

box generation.

Before delving into the YOLO families, let us take a look

at the initial breakthrough of object detection, which was the

Region-based Convolutional Neural Networks (R-CNN) that
offered a novel approach to object detection. R-CNN

combined high-capacity CNNs with region proposal methods

to localize and classify in-image objects [7]. However, the R-

CNN framework was computationally expensive due to the

independent processing of multiple region proposals per

image.

As a result, improvements seen in Fast R-CNN [8] paved

the way for shared convolutional feature maps for all region

proposals, significantly improving efficiency. The subsequent

iteration, Faster R-CNN, integrated a Region Proposal

Network (RPN), allowing the network to spawn the region

proposals, thus speeding up the process [9].

2.1. YOLO Algorithms and Its Evolution

In contrast to the region proposal-based approaches,

Redmon et al. pitched the YOLOv1 algorithm in 2016 [10],

revolutionising object detection with its unique approach.

YOLO realigned object detection primarily as a sole

regression problem, straightforwardly calculating class

probabilities and bounding boxes from whole images in a

single pass [10]. This unified method enabled the YOLO

algorithm to achieve remarkable speeds, significantly

outpacing its contemporaries like R-CNN. YOLO's initial

version, while fast, lagged in terms of accuracy, particularly

with small objects and objects in groups [10]. This led to the

development of YOLOv2 (or YOLO9000) by Redmon and

Farhadi in 2017, which improved the input image resolution

and incorporated anchor boxes, enabling the model to detect

miniature-sized objects [11].

Redmon and Farhadi achieved another breakthrough in
YOLOv3 iteration by introducing multi-scale predictions and

a deeper architecture, further improving the detection

accuracy across varied object sizes [3]. YOLOv3’s

architecture, with 106 convolutional layers, was a significant

leap, enabling the detection of objects at three different scales,

thereby capturing a wider range of object sizes more

effectively [3].

The evolution of the YOLO series did not stop there.

Subsequent versions, such as YOLOv4 [12], YOLOv5 [13],

and YOLOv6 [14] and culminating in one of the latest such as

YOLOv7, have continuously refined the balance between

speed and accuracy [4]. YOLOv7, in particular, incorporates
advancements in network design, loss functions, and training

techniques, setting new benchmarks in object detection tasks.

These improvements make YOLOv7 a prime candidate for

real-time object detection applications, even in environments

with computational limitations [4].

2.2. 3D Bounding Box Estimation

The evolution from two-dimensional to three-

dimensional bounding box detection signifies a pivotal

development in computer vision, profoundly impacting fields

such as autonomous driving [17], robotics [18], and

augmented reality [19]. This evolution entails the complex
task of deducing an object's precise location and orientation in

three-dimensional space from mere two-dimensional images

[20].

This advancement not only enhances the accuracy and

reliability of object detection systems but also broadens their

applicability across various technological domains, paving the

way for more sophisticated and immersive applications [20].

Highlighted below are some of the seminal research efforts in

this area, showcasing the diverse methodologies and

innovations that have propelled this field forward.

2.2.1. Deep Learning Assisted Approach

An exemplary technique within this domain cited recent

work involving deep learning and geometric methods in 3D

bounding box estimation by employing a deep learning

framework to deduce stable attributes of 3D objects [1]. These

attributes are then merged with geometric constraints derived

from the object’s two-dimensional bounding box to construct
a comprehensive three-dimensional bounding box [1]. This

method capitalizes on established 2D object detection

methodologies to infer the 3D bounding box dimensions,

ensuring the three-dimensional bounding box's perspective

projection accurately fits within the 2D detection frame [1]. It

Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024

79

effectively minimizes the reprojection error by calculating the

optimal translation based on the constraints of the initial 2D

detection box, thereby enhancing computational efficiency

and facilitating real-time application scenarios [1].

Another groundbreaking technique is DETR3D [21],

which utilizes deep learning to detect 3D objects from images
captured from multiple viewpoints, creating a LiDAR-esque

effect using purely camera-based data. This system processes

RGB images from several cameras to deduce the parameters

of 3D bounding boxes. DETR3D is noteworthy for its set

prediction module that seamlessly transitions between 2D and

3D processing, bridging the gap between 2D feature extraction

and 3D bounding box prediction through a geometry-

conscious framework.

The model employs a common ResNet architecture and

an optional Feature Pyramid Network (FPN) for feature

extraction, subsequently projecting 3D reference points into

image planes to refine object queries. This approach mitigates
common drawbacks of traditional methods, such as the need

for dense 3D geometry reconstructions and extensive post-

processing, like Non-Maximum Suppression (NMS), thereby

streamlining its suitability for real-time applications.

2.2.2. Deep Learning and LiDAR Assisted Approach

A novel deep learning architecture, termed RoIFusion, is

designed to effectively integrate features from multiple

modalities for 3D object detection, capitalizing on the

strengths of both LIDAR and camera technologies. Unlike

traditional methods that densely merge point-wise features

from point clouds with corresponding pixel features from
images, RoIFusion innovatively combines a limited number of

3D Regions of Interest (RoIs) from point clouds with

matching 2D RoIs from images. This approach not only

minimizes computational demands but also addresses the

issue of misalignment between different sensor perspectives

during feature combinations. Comprehensive testing on the

KITTI 3D object detection benchmark has been conducted to

validate the efficacy of this fusion technique, with results

indicating that RoIFusion sets a new benchmark in

performance [22].

While the research highlighted above demonstrates

promising results, a common limitation is their reliance on
supplementary hardware, such as LiDAR, or the need for

high-end GPU resources, which can be prohibitive for

widespread adoption. In response to these challenges, this

paper seeks to advance the deep learning-assisted

methodology presented in a study using deep learning and

geometry [1], which will be discussed more in the

implementation section. The focus is on refining crucial

elements, including the object detection process and the

foundational architecture for generating 3D bounding boxes.

By optimizing these aspects before engaging in complex

mathematical calculations, the processing efficiency is

significantly enhanced, and the computational demands of the

model are diminished. This strategic improvement will

facilitate the deployment of the enhanced model on SBD,

which is Jetson Nano for edge computing, making it more

accessible and practical for real-time applications in diverse

environments. This initiative underscores a commitment to
pushing the boundaries of computer vision technology,

making it more adaptable and efficient for a range of

applications.

3. Materials and Methods
The core concept of the paper presented by Mousavian et

al. (2017) revolves around identifying objects within a 3D

environment and determining their poses-both orientation and
position using a singular image through a synthesis of various

techniques. A Convolutional Neural Network (CNN) is

utilized to predict specific, stable attributes of 3D objects, such

as their dimensions and orientation.

To enhance the 3D orientation prediction accuracy, the

approach introduces an innovative loss function that melds

discrete and continuous aspects, offering a notable

improvement over the conventional L2 loss typically

employed in deep learning regression tasks. Additionally, the

network is designed to approximate the dimensions of the 3D

object namely height, width, and length which tend to be more
consistent and thus more reliably predicted across different

object categories.

The approach also capitalizes on the geometric

constraints imposed by the 2D bounding box visible within the

image, which serves to limit the potential 3D positions of the

object. By integrating the CNN's orientation and dimension

predictions with the spatial constraints provided by the 2D

bounding box, the method is capable of assembling a

comprehensive 3D bounding box that encapsulates the entire

pose of the object within the 3D space [1]. This research will

focus on improving the pretrained model for regressing the 3D

parameter and the object detection model used in the paper.

3.1. Object Detection Replacement

In the paper [1], Mousavian et al. utilized YOLOv3 as the

foundational object detection model to pinpoint objects and

extract 2D bounding boxes for subsequent 3D regression

analysis. Redmon and Farhadi introduced YOLOv3 in 2018;

YOLOv3 marked a significant advancement from its

predecessor, YOLOv2, by incorporating multi-scale

prediction capabilities through feature pyramids. This

enhancement improved the model's ability to detect objects at

varying scales and aspect ratios accurately. YOLOv3

calculates 4 coordinates using logistic regression for each
bounding box objectness score, designating an anchor box for

each object detected. If an anchor box is not assigned, it only

influences the classification loss, leaving the localization and

confidence loss unaffected.

Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024

80

Additionally, YOLOv3 uses binary cross-entropy for

classifying objects, enabling it to assign multiple labels to a

single bounding box-a useful trait for complex categorizations

such as an object being both a “Person” and a “Man.”

YOLOv3 maintains its predecessors’ real-time processing

proficiencies while delivering better mean Average Precision
(mAP) scores and more accurate localization. Despite being

celebrated for its speed in object detection, YOLOv3 has been

overtaken by a variety of newer algorithms.

To push the performance of object detection, the existing

YOLOv3 from the paper was replaced with one of the latest

entries from the YOLO family, YOLOv7. YOLOv7, created

by Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan

Mark Liao in 2022, introduced significant improvements to

the YOLO object detection series. The model features a new

layer design called E-ELAN, which helps it learn more

efficiently by better managing how it processes information,

even when dealing with complex models. This design also
mixes and matches features from different parts of the model

to improve learning without disrupting the flow of important

information. Another major advancement in YOLOv7 is its

unique way of adjusting the model's size to maintain its

effectiveness, unlike previous methods that could reduce the

model's performance.

The model also uses a revised approach to convolution,

called RepConvN, which removes certain connections that

were found to hinder performance in previous versions like

YOLOv6. YOLOv7 makes a clear distinction in how it assigns

labels for training, which helps in achieving more accurate
results. It also incorporates some smart tweaks during the final

stages of model inference, such as integrating batch

normalization directly into the convolutional layers and using

an exponential moving average, drawing inspiration from the

YOLO strategy to enhance its detection capabilities. These

updates collectively make YOLOv7 a more efficient and

accurate object detection model compared to YOLOv3, as

demonstrated in Table 1.

Table 1. YOLOV3 and YOLOV7 performance

R
e
fe

r
e
n

ce

M
o
d

el
s

T
e
st

 S
e
t

In
p

u
t

S
iz

e

M
a
p

 (
%

)

F
P

S

[3] YOLOv3 COCO 320x320 51.5 38

[3] YOLOv3 COCO 416x416 55.3 31

[3] YOLOv3 COCO 608x608 57.9 23

[4] YOLOv7 COCO 640x640 69.7 161

3.2. 3D Bounding Box Estimation Backbone Replacement

The understanding related to the paper [1] for 3D

bounding box estimation led to a strategic decision to use
MobileNetV3 as the backbone architecture, replacing the

traditionally used VGG network. This choice is grounded in

the architectural advantages and suitability of MobileNetV3

for environments with computational constraints, such as

Single-Board Computers (SBCs) (Figure 1).

Howard et al. developed MobileNetV3 as part of the

MobileNet family, specifically designed for low-power edge
and mobile devices due to efficiency and compactness [23],

uniquely balanced between computational efficiency and

model performance. Key MobileNetV3 features include

lightweight depthwise separable convolutions, network

pruning and optimization, the use of advanced non-linearities

like the h-swish activation function, and hardware-aware

optimization using AutoML and Neural Architecture Search

(NAS).

Fig. 1 Performance comparison on small and large mobile models [5]

Contrastingly, the VGG network, known for its deep

architecture [15], faces challenges in deployment on SBCs

(Figure 2). VGG's high computational complexity, substantial

number of parameters, and large model size make it less

practical for environments where processing power and

memory are limited [23]. Its design, focusing on performance

without particular consideration for efficiency, lacks

architectural optimizations like those in MobileNetV3,

leading to lower energy efficiency. This is a significant

drawback for SBCs, where energy efficiency is often a critical

factor.

By integrating MobileNetV3 as the backbone for 3D

bounding box estimation, this research aims to leverage its

lightweight and computationally efficient nature. The

streamlined architecture of MobileNetV3 significantly

reduces computational demands while maintaining high

accuracy, aligning with the goal of developing efficient deep-

learning solutions for resource-constrained environments.

This makes MobileNetV3 a more appropriate choice

compared to the heavier and less efficient VGG network for

application in SBCs.

65.4

67.5

70.4

66.0
64.9 65.4

60.3
MobileNetV3 Small

MnasNet-Small

MobileNetV2

54

56

58

60

62

64

66

68

70

72
Small Mobile Models, 20-40ms CPU Latency

15 20 25 30 35
Latency, Pixel 1, ms

A
cc

u
ra

cy
,
T

o
p

 1
,
%

74.6

75.2

76.6

75.2 75.6
76.7

70.0 MobileNetV3 Large

MnasNet-A

MobileNetV2
66

68

70

72

74

76

78
Large Mobile Models, 40-100ms CPU Latency

40 50 60 70 80 90 100 110
Latency, Pixel 1, ms

A
cc

u
ra

cy
,
T

o
p

 1
,
%

71.9

ProxylessNAS

Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024

81

Fig. 2 VGG-19 architecture illustrations [17]

3.3. Model Optimization Using TensorRT

NVIDIA developed a superior-performance DL runtime

library and inference optimizer called TensorRT [16]. It offers

several key benefits for deep learning inference, particularly

in production environments:

3.3.1. Performance Optimization

Performance Optimization: TensorRT can significantly

increase the inference speed of deep learning models by

optimizing the network structure and layer operations. This

includes techniques like layer fusion, precision calibration
(e.g., using FP16 or INT8 instead of FP32), and kernel auto-

tuning to make the best use of the underlying hardware [16].

3.3.2. Reduced Resource Footprint

By optimizing models, TensorRT reduces both the

computational footprint and memory usage, which is crucial

for deploying models on edge devices with limited resources,

such as embedded systems and IoT devices [16].

3.3.3. Cross-Platform Consistency

TensorRT ensures that models perform consistently

across different platforms, from data centers with powerful

GPUs to edge devices, making it easier to deploy and maintain
AI applications across diverse environments [16].

3.3.4. Support for Major Frameworks

TensorRT provides support for importing models from

major deep learning frameworks like TensorFlow, PyTorch,

and Open Neural Network Exchange (ONNX), making it

versatile and accessible for a wide range of applications and

development workflows [16].

4. Results and Discussion
For this section, object detection will not be discussed, as

it has already been demonstrated in Table 1. The result and

analysis of 3D bounding box generation also consisted of two

sections. The first section would be an analysis where three

models in Pytorch format were run. The second section would

be the best model from the previous analysis against the

comparable TensorRT version.

4.1. Pytorch Models

The following analysis presents a comparative evaluation

of the inference time metrics for the MobileNet V3, VGG-19,

and MobileNet V2 architectures implemented on a Jetson
Nano device. This examination includes MobileNet V2 to

ascertain performance variations relative to its successor. Key

findings are delineated below:

4.1.1. MobileNet V3 Performance on Jetson Nano (Figure 3)

 The mean inference duration across various batch sizes is

noted to be approximately 0.095 seconds, indicating

efficient processing capabilities.

 Inference time variability remains minimal for batch sizes

ranging from 1 to 6, evidenced by a standard deviation of

0.086 seconds, underscoring consistent performance.

 Anomalously, batch size 1 exhibits a markedly elevated
mean inference time of 0.265 seconds, diverging

significantly from the trend observed in subsequent batch

sizes.

 Batch sizes 2 through 6 demonstrate homogenous

performance metrics, with inference times confined within

the 0.047 to 0.049 seconds range, indicative of model

stability.

 A discernible escalation in inference time to 0.162 seconds

is observed at batch size 7, hinting at a decrement in

performance with increasing batch size.

 The model's standard deviation is notably high at 4.067
seconds, largely impacted by the outlier at batch size 7,

suggesting potential model or hardware limitations at

increased batch sizes.

Fig. 3 Mobilenet V3 performance, inference time against batch sizes

4.1.2. VGG-19 Performance on Jetson Nano (Figure 4)

 Disregarding the outlier at batch size 7, a gradual

increment in inference times is observed from batch size 1

to 6, ranging between 0.053 to 0.566 seconds.

Maxpool

Maxpool Maxpool Maxpool

Depth 64
3x3 conv
Conv1_1
Conv1_2

Depth 128
3x3 conv
Conv2_1
Conv2_2

Depth 256
3x3 conv
Conv3_1
Conv3_2
Conv3_3
Conv3_4

Depth 512
3x3 conv
Conv4_1
Conv4_2
Conv4_3
Conv4_4

Depth 512
3x3 conv
Conv5_1
Conv5_2
Conv5_3
Conv5_4

FC1 FC2
Softmax

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7

Batch Size

Total

In
fe

re
n

ce
 T

im
e

Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024

82

 A substantial standard deviation of 1.620 seconds is

observed, primarily attributed to the pronounced

variability in inference times at batch sizes 1 and 4, which

are notably high at 3.278 and 2.385 seconds, respectively.

 Noteworthy is the performance at batch sizes 2 and 3,

where inference times are markedly lower (0.145 and
0.052 seconds, respectively). However, the model's

efficacy diminishes beyond batch size 4, indicating

scalability constraints on the Jetson Nano.

 The average inference time for VGG-19 is significantly

higher at 1.465 seconds, reflecting its greater

computational complexity in comparison to the MobileNet

series.

 A substantial standard deviation of 1.620 seconds is

observed, primarily attributed to the pronounced

variability in inference times at batch sizes 1 and 4, which

are notably high at 3.278 and 2.385 seconds, respectively.

 Noteworthy is the performance at batch sizes 2 and 3,

where inference times are markedly lower (0.145 and

0.052 seconds, respectively). However, the model's

efficacy diminishes beyond batch size 4, indicating

scalability constraints on the Jetson Nano.

Fig. 4 VGG-19 performance, inference time against batch sizes

4.1.3. MobileNet V2 Performance on Jetson Nano (Figure 5)

 MobileNet V2 exhibits the highest average inference time

among the evaluated models at 1.720 seconds, with the

inference time at batch size 7 (10.934 seconds)

significantly influencing this average.

 The model's standard deviation is notably high at 4.067

seconds, largely impacted by the outlier at batch size 7,

suggesting potential model or hardware limitations at

increased batch sizes.

From the results, MobileNet V3 emerges as the most

consistent and efficient model, displaying stable inference

times across varied batch sizes, making it well-suited for real-

time or near-real-time inference applications on the Jetson

Nano. VGG-19's performance is marred by significant

variability, especially at higher batch sizes, indicating its

suboptimal suitability for low-power devices like the Jetson

Nano. While MobileNet V2 shows efficiency at lower batch

sizes, its performance at higher batch sizes raises concerns

regarding scalability and potential performance degradation.

Fig. 5 Mobilenet V2 performance, inference time against batch sizes

4.2. Running MobileNet V3 as TensorRT Engine

Upon applying TensorRT optimization to the MobileNet

V3 model on an SBD, a noteworthy enhancement in

performance metrics is observed when juxtaposed with its

PyTorch-based counterpart.

4.2.1. Optimization Effects Of Tensorrt On Mobilenet V3 in

(Figure 6)

 The inference latency for the model post-TensorRT

optimization remains commendably low across varying

batch sizes, with an average duration of approximately

0.112 seconds.

 The observed standard deviation is minimal, at 0.010

seconds, reflecting a high degree of temporal consistency

in model inference, a critical factor for time-sensitive

applications.

 Remarkably, even at an increased batch size of 15, the
model sustains a low inference time of about 0.097

seconds, outpacing the PyTorch version's average latency.

 The peak latency recorded for the TensorRT-optimized

variant is around 0.127 seconds at batch size 21, a metric

that aligns well with the requirements of real-time

processing tasks.

The comparative analysis underscores the TensorRT

optimization's efficacy in enhancing model performance,

particularly in terms of consistency and resource optimization

on the Jetson Nano. This improvement is manifested in the

reduced variance of inference times and the model's ability to

retain low latency across expanded batch sizes.

TensorRT's optimization mechanisms, such as layer

fusion, efficient data format selection, and hardware-specific

enhancements, play a pivotal role in this performance uplift.

0

0.5

1

1.5

2

2.5

1 2 3 4
Batch Size

Total

In
fe

re
n

ce
 T

im
e

3

3.5

0

2

4

6

8

1 2 3 4 5 6 7
Batch Size

Total

In
fe

re
n

ce
 T

im
e

10

12

Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024

83

These optimizations contribute to markedly reduced inference

times, thereby ensuring more stable and predictable model

behavior across a spectrum of batch sizes.

Fig. 6 MobileNet V3 (TensorRT) performance, inference time against

batch sizes

5. Conclusion
In concluding this comprehensive analysis, it becomes

evident that the optimization of the MobileNet V3 model

using TensorRT substantially advances Jetson Nano platform

capability in 3D bounding box generation performance. This

optimized model showcases remarkable consistency and

efficiency, rendering it exceptionally well-suited for

deployment in real-time applications where rapid and

predictable processing is paramount. The enhanced

performance of MobileNet V3, when juxtaposed with the
VGG-19 model, highlights a stark contrast. VGG-19, while

robust in its capabilities, encounters significant challenges on

the Jetson Nano, particularly with extended inference

durations and increased variability in processing times. Such

characteristics may hinder its applicability in circumstances

timely response is req required.

On the other hand, the MobileNet V2 model demonstrates

commendable functionality at lower batch sizes. However, it

reveals discernible constraints as the batch size escalates,

suggesting a potential compromise in performance under

heightened operational demands. This observation

underscores a pivotal consideration in edge computing

environments, where computational resources are inherently

limited. The selection of inherently lightweight models,

coupled with the strategic application of optimization
techniques like TensorRT, emerges as a critical strategy. This

approach not only enhances the operational efficiency of the

models but also ensures their resilience and reliability under

varying workloads.

Drawing from real-world insights, the implications of

such optimizations extend far beyond mere academic interest.

In practical scenarios, such as autonomous vehicles,

surveillance systems, and interactive AI applications, the

ability to process information swiftly and reliably can be the

difference between success and failure. In these contexts, the

latency and predictability of model inference times are not just

metrics but are integral to the safety, effectiveness, and user
experience. Hence, the findings from this analysis not only

contribute to the theoretical understanding of model

optimization but also offer tangible guidelines for

practitioners in the field of edge computing. They highlight

the importance of model selection and optimization in

achieving high-performance, real-time processing

capabilities, essential for the burgeoning array of applications

reliant on edge computing technologies.

Acknowledgments
The authors would like to acknowledge all Universiti

Sains Malaysia (USM) staff and students, especially National

Advanced IPv6 Center (NAv6), RCMO and BJIM staff, and

those working under the Intelligent Connected Streetlights

(ICS) research project for their full support, resulting in the

publication of this paper.

Funding Statement
This paper is the outcome of the Intelligent Connected

Streetlights (ICS) research project work supported by

Renesas-Universiti Sains Malaysia (USM) industry matching

grant as per MoA#A2021098 agreement with grant account no

[7304.PNAV.6501256.R128].

References
[1] Arsalan Mousavian et al., “3D Bounding Box Estimation Using Deep Learning And Geometry,” 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 5632-5640, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[2] Karen Simonyan, and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv, pp. 1-14,

2014. [CrossRef] [Google Scholar] [Publisher Link]

[3] Joseph Redmon, and Ali Farhadi, “Yolov3: An Incremental Improvement,” arXiv, pp. 1-6, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[4] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao, “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for

Real-Time Object Detectors,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada,

pp. 7464-7475, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Andrew Howard et al., “Searching For Mobilenetv3,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,

Korea (South), pp. 1314-1324, 2019. [CrossRef] [Google Scholar] [Publisher Link]

0

0.02

0.04

0.06

0.08

3 6 9 12 15 18 21
Batch Size

Total In
fe

re
n

ce
 T

im
e 0.1

0.12

0.14

https://doi.org/10.1109/CVPR.2017.597
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=3D+Bounding+Box+Estimation+Using+Deep+Learning+And+Geometry&btnG=
https://ieeexplore.ieee.org/document/8100080
https://doi.org/10.48550/arXiv.1409.1556
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Very+Deep+Convolutional+Networks+For+Large-Scale+Image+Recognition&btnG=
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/arXiv.1804.02767
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yolov3%3A+An+incremental+Improvement%2C%E2%80%9D+Computer+Vision+And+Pattern+Recognition&btnG=
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/CVPR52729.2023.00721
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=YOLOv7%3A+Trainable+Bag-Of-Freebies+Sets+New+State-Of-The-Art+For+Real-Time+Object+Detectors&btnG=
https://ieeexplore.ieee.org/document/10204762
https://ieeexplore.ieee.org/xpl/conhome/8972782/proceeding
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M.+Sandler%2C+G.+Chu%2C+L.+C.%2C+Chen%2C+B.+Chen%2C+M.+Tan%2C...+and+H.+Adam&btnG=
https://ieeexplore.ieee.org/document/9008835

Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024

84

[6] NVIDIA, Jetson Nano Developer Kit, NVIDIA Jetson Nano. [Online]. Available: https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-nano/product-development/

[7] Ross Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,” 2014 IEEE Conference on

Computer Vision and Pattern Recognition, Columbus, USA, pp. 580-587, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[8] Ross Girshick, “Fast R-CNN,” 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1440-1448, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[9] Shaoqing Ren et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[10] Joseph Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, USA, pp. 779-788, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[11] Joseph Redmon, and Ali Farhadi, “YOLO9000: Better, Faster, Stronger,” 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, USA, pp. 6517-6525, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[12] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao, “Yolov4: Optimal Speed and Accuracy of Object Detection,” arXiv,

pp. 1-17, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[13] Glenn Jocher et al., “Ultralytics/Yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation,” Zenodo, 2022. [CrossRef] [Publisher

Link]

[14] Chuyi Li et al., “YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications,” arXiv, pp. 1-17, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[15] Dr. Info Sec, VGG-19 Convolutional Neural Network, Machine Learning, 2021. [Online]. Available: https://blog.techcraft.org/vgg-19-

convolutional-neural-network/

[16] NVIDIA TensorRT, NVIDIA Developer, [Online]. Available: https://developer.nvidia.com/tensorrt

[17] Sampurna Mandal et al., “Lyft 3D Object Detection for Autonomous Vehicles,” Artificial Intelligence for Future Generation Robotics,

pp. 119-136, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[18] Tan Zhang et al., “Sim2real Learning of Obstacle Avoidance for Robotic Manipulators in Uncertain Environments,” IEEE Robotics and

Automation Letters, vol. 7, no. 1, pp. 65-72, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Linh Kästner, Vlad Catalin Frasineanu, and Jens Lambrecht, “A 3D-Deep-Learning-Based Augmented Reality Calibration Method for

Robotic Environments Using Depth Sensor Data,” 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,

France, pp. 1135-1141, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[20] Yutian Wu et al., “Deep 3D Object Detection Networks Using Lidar Data: A Review,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1152-

1171, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Yue Wang et al., “DETR3D: 3D Object Detection from Multi-View Images via 3D-to-2D Queries,” arXiv, pp. 1-12, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[22] Pytorch, Models and Pre-Trained Weights. [Online]. Available: https://pytorch.org/vision/stable/models.html

[23] Laith Alzubaidi et al., “Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions,” Journal

of Big Data, vol. 8, pp. 1-74, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/CVPR.2014.81
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Girshick%2C+Rich+Feature+Hierarchies+For+Accurate+Object+Detection+And+Semantic+Segmentation&btnG=
https://ieeexplore.ieee.org/document/6909475
https://doi.org/10.1109/ICCV.2015.169
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Girshick%2C+Fast+R-CNN%2C%E2%80%9D+2015+Proceedings+Of+The+IEEE+International+Conference+On+Computer&btnG=
https://ieeexplore.ieee.org/document/7410526
https://doi.org/10.1109/TPAMI.2016.2577031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Faster+R-CNN%2C+Towards+Real-Time+Object+Detection+With+Region+Proposal+Networks.+Advances+In+Neural+Information+Processing+Systems&btnG=
https://ieeexplore.ieee.org/document/7485869
https://doi.org/10.1109/CVPR.2016.91
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Redmon%2C+You+Only+Look+Once%3A+Unified%2C+Real-Time+Object+Detection&btnG=
https://ieeexplore.ieee.org/document/7780460
https://doi.org/10.1109/CVPR.2017.690
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Redmon%2C+YOLO9000%3A+Better%2C+Faster%2C+Stronger&btnG=
https://ieeexplore.ieee.org/document/8100173
https://doi.org/10.48550/arXiv.2004.10934
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Redmon%2C+YOLO9000%3A+Better%2C+Faster%2C+Stronger&btnG=
https://arxiv.org/abs/2004.10934
https://doi.org/10.5281/zenodo.7347926
https://zenodo.org/records/7347926
https://zenodo.org/records/7347926
https://doi.org/10.48550/arXiv.2209.02976
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=YOLOv6%3A+A+Single-Stage+Object+Detection+Framework+For+Industrial+Applications&btnG=
https://arxiv.org/abs/2209.02976
https://doi.org/10.1016/B978-0-323-85498-6.00003-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lyft+3D+Object+Detection+For+Autonomous+Vehicles&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780323854986000034
https://doi.org/10.1109/LRA.2021.3116700
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sim2real+Learning+Of+Obstacle+Avoidance+For+Robotic+Manipulators+In+Uncertain+Environments&btnG=
https://ieeexplore.ieee.org/document/9555228
https://doi.org/10.1109/ICRA40945.2020.9197155
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+3d-Deep-Learning-Based+Augmented+Reality+Calibration+Method+For+Robotic+Environments+Using+Depth+Sensor+Data&btnG=
https://ieeexplore.ieee.org/document/9197155
https://doi.org/10.1109/JSEN.2020.3020626
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+3D+Object+Detection+Networks+Using+Lidar+Data%3A+A+Review&btnG=
https://ieeexplore.ieee.org/document/9181591
https://doi.org/10.48550/arXiv.2110.06922
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DETR3D%3A+3D+Object+Detection+From+Multi-View+Images+Via+3D-To-2D+Queries&btnG=
https://arxiv.org/abs/2110.06922
https://doi.org/10.1186/s40537-021-00444-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+Of+Deep+Learning%3A+Concepts%2C+CNN+Architectures%2C+Challenges%2C+Applications%2C+Future+Directions&btnG=
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8

