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Abstract - This study investigates the enhancement of 3D bounding box estimation techniques for object localization on Single-

Board Computers (SBCs), focusing on the Jetson Nano platform. The adaptation and optimization of deep learning models, 

specifically transitioning from VGG networks and YOLOv3 to more efficient alternatives like MobileNetV3 and YOLOv7, within 
the constraints of SBCs. The implementation leverages the advanced capabilities of MobileNetV3 for 3D bounding box 

generation, coupled with the superior detection accuracy and speed of YOLOv7 for object detection. The research employs an 

innovative loss function to improve 3D orientation predictions and utilizes geometric constraints from 2D bounding boxes for 

precise object localization. A comparative analysis of MobileNet V3, VGG-19, and MobileNet V2 models on the Jetson Nano 

inference speed and consistency reveals that MobileNet V3, optimized using TensorRT, significantly outperforms others, a 

preferable candidate for solutions in real-time environments. The study concludes that the strategic optimization of deep 

learning models on SBCs, like the Jetson Nano, markedly enhances the performance and applicability of 3D bounding box 

estimation in edge computing environments, offering valuable insights for deploying advanced object detection technologies in 

resource-constrained scenarios. 
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1. Introduction 
Of late, deep learning and computer vision domains have 

seen substantial advancements, especially in object detection 

and localization. The use of 3D bounding boxes for object 

estimation has emerged as crucial for applications in 

autonomous driving, robotic vision, and augmented reality. 

However, implementing these advanced techniques on 

resource-limited platforms like Single-Board Computers 
(SBCs), which serve to offload some processing tasks from 

central servers for edge processing, presents significant 

hurdles.  

While SBCs are cost-effective and compact, their 

computational capabilities often lag behind those of more 

powerful systems, necessitating the need for deep learning 

models to be tailored to their constraints. This study aims to 

advance the work of Mousavian et al. (2017) by exploring the 
practicality and improving single-board computer 

performance in terms of sophisticated object localization 

methods. The original research predominantly used VGG 

networks for 3D bounding box generation and You Only Look 

Once version 3 (YOLOv3) for object detection [1]. VGG is 

noted for its deep convolutional layers [2], and YOLOv3 for 
its rapid detection speed and accuracy [3], setting a benchmark 

in the field. Nevertheless, the advent of new models and 

architectures opens up possibilities for refining this 

framework to achieve better efficiency and effectiveness. 

Accordingly, this research introduces two major updates. 

Firstly, the YOLOv7 adoption. Being the advanced 

component of the YOLO algorithm family, acclaimed for its 

superior detection accuracy and speed. YOLOv7's architecture 

includes numerous enhancements over its predecessors [4], 

making it the prime selection for real-time computing services 

on bare-bone devices.  

Secondly, replacing the VGG backbone with a more 
efficient model like MobileNetV3, which is designed 

specifically for mobile and edge computing environments [5]. 

MobileNetV3 optimally balances latency and accuracy [5], 

which is vital for applications on single-board computers. 

Additionally, further model performance enhancement can be 

achieved via TensorRT optimization. As for the SBC, Jetson 

Nano [6] is chosen, given its standing as a representative 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lokman.mohd.fadzil@usm.my


Lokman Mohd Fadzil et al. / IJEEE, 11(5), 77-84, 2024 

78 

example of current SBC technology. This research not only 

aims to validate the feasibility of leveraging deep learning and 

geometric principles for 3D bounding box estimation on 

single-board computers but also seeks to elevate its efficiency, 

making it more applicable for real-life scenarios that require 

portable and low-power solutions. The findings of this study 
will shed light on adapting cutting-edge deep learning models 

for use within ecosystems with constrained resources, 

extending the range and applicability of advanced object 

detection technologies. 

The paper will commence with a thorough review of the 

relevant literature, followed by a presentation of the 

implementation, which will include the modifications made 

for SBC compatibility. Subsequent sections will outline the 
results, and a detailed discussion of the outcomes, culminating 

in repercussions for emerging research and real-world 

applications. 

2. Literature Review 
This literature review critically examines the evolution 

and existing status of Deep Learning (DL) algorithms in object 

detection and existing 3D bounding box generation research. 

The review delves into the progression of the object detection 

model, which is YOLO, from the earliest version to the one of 

the latest, YOLOv7 and onto related research on 3D bounding 

box generation.  

Before delving into the YOLO families, let us take a look 

at the initial breakthrough of object detection, which was the 

Region-based Convolutional Neural Networks (R-CNN) that 
offered a novel approach to object detection. R-CNN 

combined high-capacity CNNs with region proposal methods 

to localize and classify in-image objects [7]. However, the R-

CNN framework was computationally expensive due to the 

independent processing of multiple region proposals per 

image.  

As a result, improvements seen in Fast R-CNN [8] paved 

the way for shared convolutional feature maps for all region 

proposals, significantly improving efficiency. The subsequent 

iteration, Faster R-CNN, integrated a Region Proposal 

Network (RPN), allowing the network to spawn the region 

proposals, thus speeding up the process [9]. 

2.1. YOLO Algorithms and Its Evolution 

In contrast to the region proposal-based approaches, 

Redmon et al. pitched the YOLOv1 algorithm in 2016 [10], 

revolutionising object detection with its unique approach. 

YOLO realigned object detection primarily as a sole 

regression problem, straightforwardly calculating class 

probabilities and bounding boxes from whole images in a 

single pass [10]. This unified method enabled the YOLO 

algorithm to achieve remarkable speeds, significantly 

outpacing its contemporaries like R-CNN. YOLO's initial 

version, while fast, lagged in terms of accuracy, particularly 

with small objects and objects in groups [10]. This led to the 

development of YOLOv2 (or YOLO9000) by Redmon and 

Farhadi in 2017, which improved the input image resolution 

and incorporated anchor boxes, enabling the model to detect 

miniature-sized objects [11]. 

Redmon and Farhadi achieved another breakthrough in 
YOLOv3 iteration by introducing multi-scale predictions and 

a deeper architecture, further improving the detection 

accuracy across varied object sizes [3]. YOLOv3’s 

architecture, with 106 convolutional layers, was a significant 

leap, enabling the detection of objects at three different scales, 

thereby capturing a wider range of object sizes more 

effectively [3]. 

The evolution of the YOLO series did not stop there. 

Subsequent versions, such as YOLOv4 [12], YOLOv5 [13], 

and YOLOv6 [14] and culminating in one of the latest such as 

YOLOv7, have continuously refined the balance between 

speed and accuracy [4]. YOLOv7, in particular, incorporates 
advancements in network design, loss functions, and training 

techniques, setting new benchmarks in object detection tasks. 

These improvements make YOLOv7 a prime candidate for 

real-time object detection applications, even in environments 

with computational limitations [4]. 

2.2. 3D Bounding Box Estimation 

The evolution from two-dimensional to three-

dimensional bounding box detection signifies a pivotal 

development in computer vision, profoundly impacting fields 

such as autonomous driving [17], robotics [18], and 

augmented reality [19]. This evolution entails the complex 
task of deducing an object's precise location and orientation in 

three-dimensional space from mere two-dimensional images 

[20].  

This advancement not only enhances the accuracy and 

reliability of object detection systems but also broadens their 

applicability across various technological domains, paving the 

way for more sophisticated and immersive applications [20]. 

Highlighted below are some of the seminal research efforts in 

this area, showcasing the diverse methodologies and 

innovations that have propelled this field forward. 

2.2.1. Deep Learning Assisted Approach 

An exemplary technique within this domain cited recent 

work involving deep learning and geometric methods in 3D 

bounding box estimation by employing a deep learning 

framework to deduce stable attributes of 3D objects [1]. These 

attributes are then merged with geometric constraints derived 

from the object’s two-dimensional bounding box to construct 
a comprehensive three-dimensional bounding box [1]. This 

method capitalizes on established 2D object detection 

methodologies to infer the 3D bounding box dimensions, 

ensuring the three-dimensional bounding box's perspective 

projection accurately fits within the 2D detection frame [1]. It 
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effectively minimizes the reprojection error by calculating the 

optimal translation based on the constraints of the initial 2D 

detection box, thereby enhancing computational efficiency 

and facilitating real-time application scenarios [1].  

Another groundbreaking technique is DETR3D [21], 

which utilizes deep learning to detect 3D objects from images 
captured from multiple viewpoints, creating a LiDAR-esque 

effect using purely camera-based data. This system processes 

RGB images from several cameras to deduce the parameters 

of 3D bounding boxes. DETR3D is noteworthy for its set 

prediction module that seamlessly transitions between 2D and 

3D processing, bridging the gap between 2D feature extraction 

and 3D bounding box prediction through a geometry-

conscious framework.  

The model employs a common ResNet architecture and 

an optional Feature Pyramid Network (FPN) for feature 

extraction, subsequently projecting 3D reference points into 

image planes to refine object queries. This approach mitigates 
common drawbacks of traditional methods, such as the need 

for dense 3D geometry reconstructions and extensive post-

processing, like Non-Maximum Suppression (NMS), thereby 

streamlining its suitability for real-time applications. 

2.2.2. Deep Learning and LiDAR Assisted Approach 

A novel deep learning architecture, termed RoIFusion, is 

designed to effectively integrate features from multiple 

modalities for 3D object detection, capitalizing on the 

strengths of both LIDAR and camera technologies. Unlike 

traditional methods that densely merge point-wise features 

from point clouds with corresponding pixel features from 
images, RoIFusion innovatively combines a limited number of 

3D Regions of Interest (RoIs) from point clouds with 

matching 2D RoIs from images. This approach not only 

minimizes computational demands but also addresses the 

issue of misalignment between different sensor perspectives 

during feature combinations. Comprehensive testing on the 

KITTI 3D object detection benchmark has been conducted to 

validate the efficacy of this fusion technique, with results 

indicating that RoIFusion sets a new benchmark in 

performance [22]. 

While the research highlighted above demonstrates 

promising results, a common limitation is their reliance on 
supplementary hardware, such as LiDAR, or the need for 

high-end GPU resources, which can be prohibitive for 

widespread adoption. In response to these challenges, this 

paper seeks to advance the deep learning-assisted 

methodology presented in a study using deep learning and 

geometry [1], which will be discussed more in the 

implementation section. The focus is on refining crucial 

elements, including the object detection process and the 

foundational architecture for generating 3D bounding boxes. 

By optimizing these aspects before engaging in complex 

mathematical calculations, the processing efficiency is 

significantly enhanced, and the computational demands of the 

model are diminished. This strategic improvement will 

facilitate the deployment of the enhanced model on SBD, 

which is Jetson Nano for edge computing, making it more 

accessible and practical for real-time applications in diverse 

environments. This initiative underscores a commitment to 
pushing the boundaries of computer vision technology, 

making it more adaptable and efficient for a range of 

applications. 

3. Materials and Methods 
The core concept of the paper presented by Mousavian et 

al. (2017) revolves around identifying objects within a 3D 

environment and determining their poses-both orientation and 
position using a singular image through a synthesis of various 

techniques. A Convolutional Neural Network (CNN) is 

utilized to predict specific, stable attributes of 3D objects, such 

as their dimensions and orientation.  

To enhance the 3D orientation prediction accuracy, the 

approach introduces an innovative loss function that melds 

discrete and continuous aspects, offering a notable 

improvement over the conventional L2 loss typically 

employed in deep learning regression tasks. Additionally, the 

network is designed to approximate the dimensions of the 3D 

object namely height, width, and length which tend to be more 
consistent and thus more reliably predicted across different 

object categories.  

The approach also capitalizes on the geometric 

constraints imposed by the 2D bounding box visible within the 

image, which serves to limit the potential 3D positions of the 

object. By integrating the CNN's orientation and dimension 

predictions with the spatial constraints provided by the 2D 

bounding box, the method is capable of assembling a 

comprehensive 3D bounding box that encapsulates the entire 

pose of the object within the 3D space [1]. This research will 

focus on improving the pretrained model for regressing the 3D 

parameter and the object detection model used in the paper. 

3.1. Object Detection Replacement 

In the paper [1], Mousavian et al. utilized YOLOv3 as the 

foundational object detection model to pinpoint objects and 

extract 2D bounding boxes for subsequent 3D regression 

analysis. Redmon and Farhadi introduced YOLOv3 in 2018; 

YOLOv3 marked a significant advancement from its 

predecessor, YOLOv2, by incorporating multi-scale 

prediction capabilities through feature pyramids. This 

enhancement improved the model's ability to detect objects at 

varying scales and aspect ratios accurately. YOLOv3 

calculates 4 coordinates using logistic regression for each 
bounding box objectness score, designating an anchor box for 

each object detected. If an anchor box is not assigned, it only 

influences the classification loss, leaving the localization and 

confidence loss unaffected. 
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Additionally, YOLOv3 uses binary cross-entropy for 

classifying objects, enabling it to assign multiple labels to a 

single bounding box-a useful trait for complex categorizations 

such as an object being both a “Person” and a “Man.” 

YOLOv3 maintains its predecessors’ real-time processing 

proficiencies while delivering better mean Average Precision 
(mAP) scores and more accurate localization. Despite being 

celebrated for its speed in object detection, YOLOv3 has been 

overtaken by a variety of newer algorithms. 

To push the performance of object detection, the existing 

YOLOv3 from the paper was replaced with one of the latest 

entries from the YOLO family, YOLOv7. YOLOv7, created 

by Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan 

Mark Liao in 2022, introduced significant improvements to 

the YOLO object detection series. The model features a new 

layer design called E-ELAN, which helps it learn more 

efficiently by better managing how it processes information, 

even when dealing with complex models. This design also 
mixes and matches features from different parts of the model 

to improve learning without disrupting the flow of important 

information. Another major advancement in YOLOv7 is its 

unique way of adjusting the model's size to maintain its 

effectiveness, unlike previous methods that could reduce the 

model's performance.  

The model also uses a revised approach to convolution, 

called RepConvN, which removes certain connections that 

were found to hinder performance in previous versions like 

YOLOv6. YOLOv7 makes a clear distinction in how it assigns 

labels for training, which helps in achieving more accurate 
results. It also incorporates some smart tweaks during the final 

stages of model inference, such as integrating batch 

normalization directly into the convolutional layers and using 

an exponential moving average, drawing inspiration from the 

YOLO strategy to enhance its detection capabilities. These 

updates collectively make YOLOv7 a more efficient and 

accurate object detection model compared to YOLOv3, as 

demonstrated in Table 1. 

Table 1. YOLOV3 and YOLOV7 performance 
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[3] YOLOv3 COCO 320x320 51.5 38 

[3] YOLOv3 COCO 416x416 55.3 31 

[3] YOLOv3 COCO 608x608 57.9 23 

[4] YOLOv7 COCO 640x640 69.7 161 

3.2. 3D Bounding Box Estimation Backbone Replacement 

The understanding related to the paper [1] for 3D 

bounding box estimation led to a strategic decision to use 
MobileNetV3 as the backbone architecture, replacing the 

traditionally used VGG network. This choice is grounded in 

the architectural advantages and suitability of MobileNetV3 

for environments with computational constraints, such as 

Single-Board Computers (SBCs) (Figure 1). 

Howard et al. developed MobileNetV3 as part of the 

MobileNet family, specifically designed for low-power edge 
and mobile devices due to efficiency and compactness [23], 

uniquely balanced between computational efficiency and 

model performance. Key MobileNetV3 features include 

lightweight depthwise separable convolutions, network 

pruning and optimization, the use of advanced non-linearities 

like the h-swish activation function, and hardware-aware 

optimization using AutoML and Neural Architecture Search 

(NAS).  

 

 

 

 

 

 

 

 

Fig. 1 Performance comparison on small and large mobile models [5] 

Contrastingly, the VGG network, known for its deep 

architecture [15], faces challenges in deployment on SBCs 

(Figure 2). VGG's high computational complexity, substantial 

number of parameters, and large model size make it less 

practical for environments where processing power and 

memory are limited [23]. Its design, focusing on performance 

without particular consideration for efficiency, lacks 

architectural optimizations like those in MobileNetV3, 

leading to lower energy efficiency. This is a significant 

drawback for SBCs, where energy efficiency is often a critical 

factor. 

By integrating MobileNetV3 as the backbone for 3D 

bounding box estimation, this research aims to leverage its 

lightweight and computationally efficient nature. The 

streamlined architecture of MobileNetV3 significantly 

reduces computational demands while maintaining high 

accuracy, aligning with the goal of developing efficient deep-

learning solutions for resource-constrained environments. 

This makes MobileNetV3 a more appropriate choice 

compared to the heavier and less efficient VGG network for 

application in SBCs. 
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Fig. 2 VGG-19 architecture illustrations [17] 

3.3. Model Optimization Using TensorRT 

NVIDIA developed a superior-performance DL runtime 

library and inference optimizer called TensorRT [16]. It offers 

several key benefits for deep learning inference, particularly 

in production environments: 

3.3.1. Performance Optimization 

Performance Optimization: TensorRT can significantly 

increase the inference speed of deep learning models by 

optimizing the network structure and layer operations. This 

includes techniques like layer fusion, precision calibration 
(e.g., using FP16 or INT8 instead of FP32), and kernel auto-

tuning to make the best use of the underlying hardware [16]. 

3.3.2. Reduced Resource Footprint 

By optimizing models, TensorRT reduces both the 

computational footprint and memory usage, which is crucial 

for deploying models on edge devices with limited resources, 

such as embedded systems and IoT devices [16]. 

3.3.3. Cross-Platform Consistency 

TensorRT ensures that models perform consistently 

across different platforms, from data centers with powerful 

GPUs to edge devices, making it easier to deploy and maintain 
AI applications across diverse environments [16]. 

3.3.4. Support for Major Frameworks 

TensorRT provides support for importing models from 

major deep learning frameworks like TensorFlow, PyTorch, 

and Open Neural Network Exchange (ONNX), making it 

versatile and accessible for a wide range of applications and 

development workflows [16]. 

4. Results and Discussion 
For this section, object detection will not be discussed, as 

it has already been demonstrated in Table 1. The result and 

analysis of 3D bounding box generation also consisted of two 

sections. The first section would be an analysis where three 

models in Pytorch format were run. The second section would 

be the best model from the previous analysis against the 

comparable TensorRT version. 

4.1. Pytorch Models 

The following analysis presents a comparative evaluation 

of the inference time metrics for the MobileNet V3, VGG-19, 

and MobileNet V2 architectures implemented on a Jetson 
Nano device. This examination includes MobileNet V2 to 

ascertain performance variations relative to its successor. Key 

findings are delineated below: 

4.1.1. MobileNet V3 Performance on Jetson Nano (Figure 3) 

 The mean inference duration across various batch sizes is 

noted to be approximately 0.095 seconds, indicating 

efficient processing capabilities. 

 Inference time variability remains minimal for batch sizes 

ranging from 1 to 6, evidenced by a standard deviation of 

0.086 seconds, underscoring consistent performance. 

 Anomalously, batch size 1 exhibits a markedly elevated 
mean inference time of 0.265 seconds, diverging 

significantly from the trend observed in subsequent batch 

sizes. 

 Batch sizes 2 through 6 demonstrate homogenous 

performance metrics, with inference times confined within 

the 0.047 to 0.049 seconds range, indicative of model 

stability. 

 A discernible escalation in inference time to 0.162 seconds 

is observed at batch size 7, hinting at a decrement in 

performance with increasing batch size. 

 The model's standard deviation is notably high at 4.067 
seconds, largely impacted by the outlier at batch size 7, 

suggesting potential model or hardware limitations at 

increased batch sizes. 

 

 

 

 

 

 

 
Fig. 3 Mobilenet V3 performance, inference time against batch sizes 

4.1.2. VGG-19 Performance on Jetson Nano (Figure 4) 

 Disregarding the outlier at batch size 7, a gradual 

increment in inference times is observed from batch size 1 

to 6, ranging between 0.053 to 0.566 seconds. 
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 A substantial standard deviation of 1.620 seconds is 

observed, primarily attributed to the pronounced 

variability in inference times at batch sizes 1 and 4, which 

are notably high at 3.278 and 2.385 seconds, respectively. 

 Noteworthy is the performance at batch sizes 2 and 3, 

where inference times are markedly lower (0.145 and 
0.052 seconds, respectively). However, the model's 

efficacy diminishes beyond batch size 4, indicating 

scalability constraints on the Jetson Nano. 

 The average inference time for VGG-19 is significantly 

higher at 1.465 seconds, reflecting its greater 

computational complexity in comparison to the MobileNet 

series. 

 A substantial standard deviation of 1.620 seconds is 

observed, primarily attributed to the pronounced 

variability in inference times at batch sizes 1 and 4, which 

are notably high at 3.278 and 2.385 seconds, respectively. 

 Noteworthy is the performance at batch sizes 2 and 3, 

where inference times are markedly lower (0.145 and 

0.052 seconds, respectively). However, the model's 

efficacy diminishes beyond batch size 4, indicating 

scalability constraints on the Jetson Nano. 

 

 

 

 

 

 

 

 
Fig. 4 VGG-19 performance, inference time against batch sizes 

4.1.3. MobileNet V2 Performance on Jetson Nano (Figure 5) 

 MobileNet V2 exhibits the highest average inference time 

among the evaluated models at 1.720 seconds, with the 

inference time at batch size 7 (10.934 seconds) 

significantly influencing this average. 

 The model's standard deviation is notably high at 4.067 

seconds, largely impacted by the outlier at batch size 7, 

suggesting potential model or hardware limitations at 

increased batch sizes. 

From the results, MobileNet V3 emerges as the most 

consistent and efficient model, displaying stable inference 

times across varied batch sizes, making it well-suited for real-

time or near-real-time inference applications on the Jetson 

Nano. VGG-19's performance is marred by significant 

variability, especially at higher batch sizes, indicating its 

suboptimal suitability for low-power devices like the Jetson 

Nano. While MobileNet V2 shows efficiency at lower batch 

sizes, its performance at higher batch sizes raises concerns 

regarding scalability and potential performance degradation. 

 

 

 

 

 

 

 

Fig. 5 Mobilenet V2 performance, inference time against batch sizes 

4.2. Running MobileNet V3 as TensorRT Engine 

Upon applying TensorRT optimization to the MobileNet 

V3 model on an SBD, a noteworthy enhancement in 

performance metrics is observed when juxtaposed with its 

PyTorch-based counterpart. 

4.2.1. Optimization Effects Of Tensorrt On Mobilenet V3 in 

(Figure 6) 

 The inference latency for the model post-TensorRT 

optimization remains commendably low across varying 

batch sizes, with an average duration of approximately 

0.112 seconds. 

 The observed standard deviation is minimal, at 0.010 

seconds, reflecting a high degree of temporal consistency 

in model inference, a critical factor for time-sensitive 

applications. 

 Remarkably, even at an increased batch size of 15, the 
model sustains a low inference time of about 0.097 

seconds, outpacing the PyTorch version's average latency. 

 The peak latency recorded for the TensorRT-optimized 

variant is around 0.127 seconds at batch size 21, a metric 

that aligns well with the requirements of real-time 

processing tasks. 

The comparative analysis underscores the TensorRT 

optimization's efficacy in enhancing model performance, 

particularly in terms of consistency and resource optimization 

on the Jetson Nano. This improvement is manifested in the 

reduced variance of inference times and the model's ability to 

retain low latency across expanded batch sizes. 

TensorRT's optimization mechanisms, such as layer 

fusion, efficient data format selection, and hardware-specific 

enhancements, play a pivotal role in this performance uplift. 
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These optimizations contribute to markedly reduced inference 

times, thereby ensuring more stable and predictable model 

behavior across a spectrum of batch sizes. 

 

 

 

 

 

 

 

 
 

Fig. 6 MobileNet V3 (TensorRT)  performance, inference time against 

batch sizes 

5. Conclusion 
In concluding this comprehensive analysis, it becomes 

evident that the optimization of the MobileNet V3 model 

using TensorRT substantially advances Jetson Nano platform 

capability in 3D bounding box generation performance. This 

optimized model showcases remarkable consistency and 

efficiency, rendering it exceptionally well-suited for 

deployment in real-time applications where rapid and 

predictable processing is paramount. The enhanced 

performance of MobileNet V3, when juxtaposed with the 
VGG-19 model, highlights a stark contrast. VGG-19, while 

robust in its capabilities, encounters significant challenges on 

the Jetson Nano, particularly with extended inference 

durations and increased variability in processing times. Such 

characteristics may hinder its applicability in circumstances 

timely response is req required. 

On the other hand, the MobileNet V2 model demonstrates 

commendable functionality at lower batch sizes. However, it 

reveals discernible constraints as the batch size escalates, 

suggesting a potential compromise in performance under 

heightened operational demands. This observation 

underscores a pivotal consideration in edge computing 

environments, where computational resources are inherently 

limited. The selection of inherently lightweight models, 

coupled with the strategic application of optimization 
techniques like TensorRT, emerges as a critical strategy. This 

approach not only enhances the operational efficiency of the 

models but also ensures their resilience and reliability under 

varying workloads. 

Drawing from real-world insights, the implications of 

such optimizations extend far beyond mere academic interest. 

In practical scenarios, such as autonomous vehicles, 

surveillance systems, and interactive AI applications, the 

ability to process information swiftly and reliably can be the 

difference between success and failure. In these contexts, the 

latency and predictability of model inference times are not just 

metrics but are integral to the safety, effectiveness, and user 
experience. Hence, the findings from this analysis not only 

contribute to the theoretical understanding of model 

optimization but also offer tangible guidelines for 

practitioners in the field of edge computing. They highlight 

the importance of model selection and optimization in 

achieving high-performance, real-time processing 

capabilities, essential for the burgeoning array of applications 

reliant on edge computing technologies. 
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