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Abstract - In the fourth industrial revolution, more people were working in production sites, including traffic areas, chemical 

plants, nuclear reactors, and building sites, raising worries about worker safety. The Head is the most important part of the 

body, and there have not been many studies done on detecting helmet use across a variety of units in hazardous environments. 

This research constructed a revolutionary deep learning mechanism called YOLOv8.0 that integrates object detection, key point 

localization, and basic rule-based reasoning to solve this problem. Moreover, it presents an active helmet-wearing detection 

method and a dataset created from scratch for multifunctional use applications. The three research questions that guide the 

process are, (i) Is it possible to identify certain classes in any video?, (ii) Can the model be used to identify helmets across 

numerous sites, and (iii) Can detections be made in challenging environmental circumstances in real-time? first created a dataset 

in Yolo format and augmented the photos to produce a second, more generic dataset. Next, the proposed datasets on 5 different 

versions of the YOLOv8.0 pre-trained model because YOLOv8.0 is an anchor-free mechanism; it detects object’s centers 
straightly rather than its redeem through a known anchor box. On the augmented dataset original dataset, the YOLOv8l version 

received the best mAP score among the other versions, scoring approximately 95% and 81% respectively. 

Keywords - Computer vision, Image augmentation, Object detection, Safety helmet, SOTA DNN, YOLOV8.

1. Introduction  
Every year, more than 1.3 million individuals expire on 

the globe’s roadways, while two fifty million suffer minor 

injuries. The Worldwide Status Survey on Highway Safety is 
the initial comprehensive evaluation of the state of road safety 

in 178 nations based on data from a standardized survey. The 

findings reveal that injuries sustained in crashes continue to be 

a dominant public health problem, especially in low as well as 

middle-income nations.  

Pedestrians, bicycles, as well as bikers account for over 

half of all road fatalities, underscoring the importance of 

giving these road users greater prominence in road safety 

programs. The findings indicate that many countries’ road 

safety legislation should be expanded, and implementation 

should be tightened. The conclusions of the Worldwide Status 
Report on Highway Safety reveal that much more work is 

required to make the globe’s roadways safer [1]. 

Motorcycles have become the primary mode of 

transportation in some impoverished communities, owing to 

limitations in urban infrastructure as well as economic 

constraints, and the fatality rate from road traffic in these 

places is around 3 times that of refined locations. Motorbike 

traffic accident mortality led to 43% as well as 0.36 of all 

traffic accident deaths in Southeast Asia as well as the Western 

Pacific area, respectively, in India, Vietnam, Indonesia, and 

other nations. Figure 1 is a graphical representation of fatal 
workplace accidents in the United Kingdom (2016-2021). 

According to the WHO, motorbike head lacerations are the 

dominant cause of mortality. 

Motorbikers who wear helmets appropriately can cut their 

chance of mortality by 42% and their risk of brain injury by 

69%. As a result, motorcycle riders must wear helmets [2]. 

However, for a variety of reasons, the rate of helmet use in 

certain developing nations has been extremely low.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dasaarinagavinod@gmail.com
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Fig. 1 Depicts the most common forms of fatal workplace accidents in 

the United Kingdom [7] 

The Indian regime has suggested several fines under the 

Motor Vehicles (Amendment) Law of 2019 to boost the use 

of helmets. A biker who fails to wear a helmet receives a 

penalty of 1000 rupees and loses his or her driving license for 

3 months under Section 194d. Even if these rules are obeyed, 

individuals would strive to avoid being arrested by traffic 

cops, and severe law enforcement also necessitates a large 

number of cops, which is both times taking as well as 
expensive.  

To minimize the number of casualties in motorbike traffic 

mishaps, it is important to design a robotic helmet-detection 

motorcycle technology powered by deep learning. 

Convolutional neural networks have been widely employed in 

present years, with the expeditious growth of DL, like 

semantic disjunction as well as object identification, all of 

which have achieved significant advancements. CNNs are 

used to build semantic segmentation, a sensor-level vision job 

rapidly. Wang et al. [3] present a strategy for increasing 

classification efficiency from synthetic to real-life information 

that is weakly guided by adversarial domain adaptation. 

Deep learning-positioned object recognition techniques 

are currently classified into two classes: one-stage techniques 

as well as two-stage techniques. Two-stage techniques are the 

faster R-CNN [4] as well as the mask R-CNN [5]. These 

techniques offer high precision for recognition, but their 

performance is low, making real-time detection difficult. To 

resolve this issue, authors presented one-stage mechanisms 

such You Only Look Once (YOLO) [6, 7], Single Shot 

Detector (SSD) [8, 9], and RetinaNet [8] positioned on anchor 

as well as Adaptive Training Sample Selection (ATSS) [10], 

as well as RepPoints [11] positioned on anchor free. The 
YOLO algorithm is available in eight different flavours. In this 

work, the fifth version of the YOLO detection method, 

YOLOv5, is applied [12]. It is both quick and exact, with very 

few model parameters. The shortest variant is only 7.3M long. 

To address the above issues, a new YOLOV8 was 

implemented.  

The main components of this article are illustrated as 

follows: 

 Created a new corpus dataset from scratch and introduced 

image augmentation 

 Developed one of the SOTA models enabled by 

YOLOV8. 

 Deployed the model to identify helmet-wearing in real-

time by accessing the webcam. 

 Compared the SHEL5K dataset (6 classes) with the 

proposed original and augmented dataset with 8 classes 

enabled by YOLOV8n, YOLOV8s, YOLOV8m, 

YOLOV81, and YOLOV8x. 

 Associated with various versions of YOLO, the 

YOLOV8x mechanism achieved an average mAP of 0.9 

from the original dataset and obtained 0.953 mAP from 

an augmented dataset.  

The summary of this article is as follows. The following 
sections focus on recent research leveraging deep-learning 

algorithms to identify safety helmets. The data-collecting 

process, the method used for identifying safety helmets, and 

the different performance assessment criteria for the 

algorithms are all described in Section 3. Experimental 

outcomes from the present research are illustrated in Section 

4 as well as the denouement is laid out in Section 5. 

2. Literature Survey 
Researchers have suggested deep learning-based 

approaches in a variety of areas in recent years, including 

medicine, agriculture, defence, and others. In [13], the 

background removal technique as well as the SMO predictor, 

are utilized to recognize motorbikes in movies. Hand-Crafted 

lineaments, as well as CNN, are then utilized to distinguish 

between helmets as well as no helmets. At last, it appears that 

in terms of precision, CNN exceeds manual features. To 

extract the moving object in the video frame, the authors of 

[14] apply adaptive background subtraction. Then, CNN 
employs this technique to classify bikers as moving particles. 

Moreover, they continue to enable CNN to categorize 

motorcycle top quarter areas to verify motorists’ absence of 

helmets. Gaussian mixture technique is utilized [15] to 

segment as well as recognize foreground objects. 

The system then employs a faster region-positioned CNN 

to identify motorbikes in the specified foreground elements, 

assuring the presence of riders. Subsequently, the faster R-

CNN was employed to determine whether or not motorcyclists 

were wearing helmets. Even though the helmet recognition 

technique is employed in conventional background removal, 

it remains employed in the motorbike recognition phase to get 
the foreground goal, and this will be very poor in an 

overflowing scene. Despite motorcycle recognition is not 

reported, it is recommended in [16-18] to use the YOLOv3 

technique to detect if the biker is wearing a helmet.  
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They utilized the YOLOv3 approach to identify the 

motorcycle as well as the individual in the visual [19, 20]. 

Then they calculated the region in which they overlapped the 

bounding box encompassing the biker as well as the human to 

identify who was driving the bike. In the end, the YOLOv3 

method was used to identify whether the rider was equipped 
with a helmet or not. 

Nevertheless, riders, as well as motorcycles, are highly 

merging in terms of surveillance of traffic, so identifying 

riders separately is unnecessary. In [21], the motorcycle area 

is detected using the SSD or YOLOv3 approach. The top half 

of the image is instanced as well and the categorization 

technique is utilized to discriminate among Helmet as well as 

non-helmet.  

Similarly, if more than a single individual is riding on a 

motorcycle, the classification method is rendered worthless. 

They analyze the motorcycle as well as the biker as a whole in 

[22-24] and then utilize the CNN technique to decide if the 
person riding the bike is wearing a helmet. The precision of 

this single-step coarse-grained identification technique is 

relatively low. 

YOLO is a simple one-stage recognition of objects 

approach. The identification challenge is recast as a regression 

issue. Rather than computing RoI, the regression method 

provides the organization of the bounding container and a 

likelihood for every class instantly. When contrasted to the 

faster R-CNN, it significantly enhances identification speed.  

In 2020, ultralytics released YOLOv5, the fifth edition of 

YOLO that beats all previous versions with respect to speed 

as well as precision. Using the depth_multiple as well as 

width_multiple variables, the YOLOv5 method modifies the 

width as well as the depth of the backbone network, generating 

4 approaches: YOLOv5m, YOLOv5s, YOLOv5x, and 

YOLOv5l [25]. 

3. Proposed Methodology 
3.1. Experimental Setup 

In order to construct the deep learning technique, this task 

entailed installing Anaconda to pre-process the data and using 

Google Colab to train and assess the model. The CUDA and 

CuDNN libraries required for GPU support utilizing PyTorch 

will be installed automatically by conda, but the system-

specific NVIDIA GPU driver must be installed first.  

Conda is a cross-platform open-source suite as well as a 

setting supervision structure. The original dataset is to have 

been trained on Google Colab, and the system requirements 

are Ultralytics YOLOv8.0.87, Python-3.9.16 torch-

2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB).  

The augmented data is trained using the local system 

specification Ultralyt-ics YOLOv8.0.86 Python-3.9.16 torch-

2.0.0 CUDA:0 (16 CPUs, 27.9 GB RAM, and 129.4/293.2 GB 

disc) with NVIDIA GeForce RTX 3060 Laptop GPU. 

3.2. Methodology 

This study suggests two datasets with labels that have 
been expanded from 6 to 8 together with the cutting-edge 

YOLOv8 deep learning method. Before performing image 

rescaling, the transformation was first used for image 

augmentation.  

In order to distinguish whether workers were wearing 

helmets or not, a computer vision system was created utilizing 

the YOLOv8 object detection method. The methodological 

stages involved in safety helmet identification in this research 

are shown in Figure 2. 

3.3. Data Collection 

In the proposed work, the videos and images are collected 

from both real-life and available open-source sites. Since our 
focus is to build a multipurpose helmet detection dataset, the 

data were collected from traffic areas, construction sites, and 

industrial factories.  

The video data is extracted frame by frame at certain 

intervals which led to lots of extraction of similar types of 

frames that were deleted manually to select only the best 

quality images. To reduce the memory requirement the data 

were resized at 640*640 dimension. Finally, a total of 1569 

images for annotations were selected. 

3.4. Dataset Preparation 

The processes in data preparation include data annotation, 
label balancing, and data augmentation. Eight categories were 

assigned, including the following: face, mask, vehicle, a 

person with Helmet, a person without a helmet, Head, as well 

as Head with Helmet.  

The annotated file has been chosen over other data 

annotation formats for this study due to its simplicity (one-line 

normalization per label), small storage need (text format), and 

rapid calculation for the Yolo model, as the name implies 

itself. In the proposed work, the Label Img tool was used to 

label the image.  

First, we changed the tool’s default setting for the number 

of classes in our dataset to 8, subsequently provided the image 
directory for opening and labelled storing locations, annotated 

the objects that belonged to the classes, and then generated a 

text file. The text file contains information about the image, 

including its name, coordinates, size, depth, and location. 

3.5. Data Augmentation 

To build usable Deep Learning algorithms, the validation 

error must be reduced with the training error. This is quite 

doable with data augmentation. The enriched data will lessen 

the gap between the validation and training sets, as well as any 
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subsequent testing sets, by reflecting a wider spectrum of 

potential data points.  

Table 1 compares the number of classes in the SHEL5K 

database, the suggested original database, and the extended 

database for each class. As exhibited in Figures 3(a), (b), (c), 

(d), (e), and (f) added five image effects to the original dataset-
rainy, foggy, snowy, shadow, and sun flare-using the image 

albuminization python library in order to broaden the 

applicability of our mechanism. The combined total of labels, 

including the original labels, is 72683. 

3.6. Data Splitting  

In Table 2, divide the original database and supplemented 

dataset at random into training data as well as validation data, 

with approximately 80% and 20% of the total photos in each 

set. Our training set for the experiments consists of 9762 labels 

with 1256 images, while our validation set consists of 2352 

labels with 313 images.  

The training set for the enhanced dataset has 58130 labels 

with 7532 images, and the validation set has 14553 labels with 
1882 images. These numbers are both much higher than those 

for the original dataset. 

3.7. Model Building 

As shown in Figure 4, the YOLOv8 algorithm 

architecture is made up of a Backbone, Neck, and Head, as 

well as Loss in the subsections that follow, with great detail 

about the design concepts for each element of the building. 

 

 

 

 

 

 

 

 

Fig. 2 Schematic workflow of the recommended technique 

Table 1. Contrast of the SHEL5K database with the proposed original and augmented dataset 

S. 

No. 
Classes 

SHEL5K [26] Original Dataset Augmented Dataset 

No. of 

Labels 

Total 

Images 

No. of 

Labels 

Total 

Images 

No. of 

Labels 

Total 

Images 

1 Hat 19252 

5000 

247 

1569 

1482 

9414 

2 Head by hat 16048 1847 11082 

3 Person by hat 14767 1831 10986 

4 Head 6120 2125 12749 

5 Person without hat 5248 2079 12474 

6 Face 14135 1547 9282 

7 Mask - 477 2862 

8 Vehicle - 1961 11766 

 Total 75570 12114 72683 
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Table 2. Data splitting with respect to original and augmented database with class labels 

S. 

No. 
Classes 

Original Dataset Augmented Dataset 

Train (80%) Validation (20%) Train (80%) Validation (20%) 

Tags Pictures Tags Pictures Tags Pictures Tags Pictures 

1 Hat 192 

1256 

55 

313 

1233 

7532 

249 

1882 

2 Head by hat 1491 356 8742 2340 

3 Person by hat 1461 370 8674 2312 

4 Head 1703 422 10255 2494 

5 
Person 

without hat 
1716 363 10036 2438 

6 Face 1231 316 7377 1905 

7 Mask 391 86 2279 583 

8 Vehicle 1577 384 9534 2232 

 Total 9762 2352 58130 14553 

 

 
                                                                           (a)                                                                                                         (b) 

 
                                                                            (c)                                                                                                       (d)  
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                                                                            (e)                                                                                                       (f) 

Fig. 3 (a) Inventive image, (b) Rainy effect, (c) Foggy, (d) Shadow effect, (e) Snow, and (f) Sun flare effect. 

Table 3. Compares the many variations of the YOLO with their different parameters

Model 
mAP^val 

50-95 

Size 

(Piexts) 

Speed A100 Tensor 

RT (ms) 

Speed CPU 

ONNX (ms) 

FLOPs 

(B) 

Params 

(M) 

YOLOv8l 52.9 640 2.399 375.2 165.2 43.7 

YOLOv8m 50.2 640 1.83 234.7 78.9 25.9 

YOLOv8n 37.3 640 0.99 80.4 8.7 3.2 

YOLOv8s 44.9 640 1.20 128.4 28.6 11.2 

YOLOv8x 53.9 640 3.53 479.1 257.8 68.2 

 

There are five different variants of the YOLOV8: the 
YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), 

YOLOv8l (large), as well as YOLOv8x (extra big). Activation 

Function: Sigmoid Weighted Linear Unit (SiLU), commonly 

known as the switch activation function, was chosen as one of 

the hyperparameters for training. - Epoch number: 100, Batch 

size: eight. The other various parameters of the YOLO 

variants lie in Table 3.  

4. Results and Analysis 

4.1. Performance Measures 

4.1.1. Precision-Recall Curve 

In the suggested study, recall (R), precision (P), F1 score, 

as well as Mean Average Precision (mAP) were utilized as 

assessment criteria to carry out a fair contrast among the 

experimental outcomes of the mechanisms. The accuracy, 

which is described below, is a measure of the likelihood that 

the projected bounding boxes will match the actual ground 

truth boxes. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (1) 

Where True Negative, True Positive, False Negative, as 
well as False Positive respectively, stand in for TN, TP, FN, 

and FP. As seen in the demonstration below, the recall shows 

the likelihood that ground truth objects will be accurately 

identified. 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (2) 

4.1.2. F1-Score 

Additionally, the F1 measure is mathematically 

represented as the harmonic mean of the technique’s accuracy 

as well as recall in the equation below. 

𝐹1 = 2 ×
𝑃𝑅

𝑃+𝑅
           (3) 

4.1.3. Mean Average Precision (mAP) 

The score obtained by contrasting the recognized 

bounding box to the ground truth bounding box is known as 

the mean Average Precision (mAP). The following calculation 

for the mAP is provided if the intersection over the blending 

score of together cases is 50.0. 
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Fig. 4 A detailed overview of YOLOv8 architecture 
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𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑖=𝑛
𝑖=1             (4) 

4.1.4. Intersection over Union (IoU) 

A traditional statistic for assessing how well an algorithm 

performs in object recognition tasks is Intersection over Union 

(IoU). IoU, which denotes the point at which the produced 

candidate, as well as the ground truth bounding case, 

intersects, is the proportion of their overlap as well as the 

union.  

𝐼𝑜𝑈 =
𝑎𝑟ⅇ𝑎(𝐶)∩𝑎𝑟ⅇ𝑎(𝐺)

𝑎𝑟ⅇ𝑎(𝐶)∪𝑎𝑟ⅇ𝑎(𝐺)
          (5) 

4.1.5. Loss 

The YOLOv8 method contains reversion as well as 

categorization branches, and the equation for the 

categorization branch, which pays BCE Cost, is as follows: 

𝑙𝑜𝑠𝑠𝑛 =  −𝑤[𝑦𝑛𝑙𝑜𝑔𝑥𝑛 + (1 − 𝑦𝑛) log(1 − 𝑥𝑛)]    (6) 

Here, w denotes the weight, yn is the categorized value, 
and xn denotes the algorithm model’s anticipated value. 

Additionally, the regression branch makes use of CIoU Loss 

and Distribute Focal Loss (DFL). DFL’s equation is as 

follows, intending to concentrate on increasing the likelihood 

of the value around the object y: 

𝐷𝐹𝐿(𝑆𝑛 , 𝑆𝑛+1) =  −(𝑦𝑛+1 − 𝑦) log(𝑆𝑛 + (𝑦 −
𝑦𝑛) 𝑙𝑜𝑔(𝑆𝑛+1)) (7) 

Where, 

 𝑆𝑛 =  
𝑦𝑛+1−𝑦

𝑦𝑛+1−𝑦𝑛
, 𝑆𝑛+1 =  

𝑦−𝑦𝑛

𝑦𝑛+1−𝑦𝑛
 

 

By taking into account the aspect ratio of the anticipation 

as well as the ground truth bounding box, as illustrated below, 

CIoU Loss adds an influencing element to DIoU Loss: 

𝐶𝐼𝑜𝑈𝐿𝑜𝑠𝑠 = 𝐿𝐺𝐼𝑜𝑈 + 𝛼𝑣 −
𝜌2

𝑐2     (8) 

Where GIoU stands for the generalized IoU loss, 𝜈 is the 

aspect ratio term, ρ is the distance among the centres of the 

anticipated as well as ground truth bounding boxes, and c is a 

normalization factor whose value is dependent on the 

dimensions of the ground truth bounding case.   

4.2. Inference Results 
The original database was used to train five different 

YOLOv8 replicas, each of which was further refined, as seen 

in Tables 4 through 8 below. The YOLOv8l mechanism 

trained on the initial database attained the highest mAP0.5 of 

0.816. For YOLOv8l, the Mask label achieved the best 

mAP0.5 of 0.921, while the Helmet and Head classes reported 

the two worst mAP 0.5 values of 0.769 and 0.675. However, 

the same model achieved higher accuracy when trained on the 

augmentation dataset, with mAPs of 0.935 for the Helmet and 

0.993 for the Head. The Mean Average Precision (mAP) 50 

under intersection over union 50 thresholds, precision (Pr), 
recall (Re), and Mean Average Precision (mAP (50-95)) 

where iou sweeps at every 5 steps during training and 

validation like (50 - 55 - 60) until reaches to 95 steps are the 

results of the validation of the YOLOv8 algorithm. The 8 

classes expanded dataset appears to perform well during the 

validation phase, which increases the precision and recall 

score and elevates the mAP. The best mAP is given by the 

YOLOv8l model, which has an original dataset mAP of 0.91 

and an expanded dataset mAP of 0.953.

Table 4. YOLOv8n performance on the original database as well as augmented database 

Class 

Original Dataset Augmented Dataset 

YOLOv8n YOLOv8n 

Re 
mAP 

0.5 
Pr 

mAP 

(0.50-0.95) 
Re 

mAP 

0.5 
Pr 

mAP 

(0.5-0.95) 

Hat 0.765 0.837 0.749 0.608 0.753 0.801 0.832 0.654 

Head by hat 0.76 0.817 0.815 0.503 0.857 0.904 0.932 0.683 

Person by hat 0.84 0.848 0.836 0.568 0.915 0.961 0.925 0.812 

Head 0.582 0.618 0.8 0.301 0.636 0.716 0.883 0.404 

Person without hat 0.669 0.764 0.82 0.487 0.779 0.879 0.884 0.646 

Face 0.68 0.765 0.822 0.393 0.748 0.847 0.901 0.551 

Mask 0.727 0.812 0.945 0.511 0.825 0.907 0.95 0.624 

Vehicle 0.801 0.857 0.862 0.616 0.827 0.912 0.877 0.69 

Average 0.728 0.79 0.831 0.498 0.793 0.866 0.898 0.633 
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Table 5. YOLOv8 performance on the original database as well as augmented database 

Class 

Original Dataset Augmented Dataset 

YOLOv8s YOLOv8s 

Re 
mAP 

50 
Pr 

mAP 

(0.50-0.95) 
Re 

mAP 

0.5 
Pr 

mAP 

(0.5-0.95) 

Hat 0.714 0.623 0.637 0.485 0.819 0.911 0.912 0.752 

Head by hat 0.76 0.815 0.879 0.513 0.888 0.928 0.959 0.768 

Person by hat 0.801 0.84 0.804 0.573 0.964 0.984 0.965 0.892 

Head 0.656 0.707 0.868 0.352 0.68 0.77 0.91 0.494 

Person without hat 0.711 0.805 0.827 0.507 0.864 0.934 0.908 0.746 

Face 0.652 0.816 0.908 0.436 0.806 0.889 0.933 0.669 

Mask 0.752 0.786 0.861 0.504 0.873 0.938 0.955 0.718 

Vehicle 0.81 0.89 0.856 0.641 0.863 0.941 0.908 0.756 

Average 0.726 0.785 0.83 0.502 0.844 0.912 0.931 0.724 

 

Table 6. YOLOv8m performance on the original database as well as augmented database 

Class 

Original Dataset Augmented Dataset 

YOLOv8m YOLOv8m 

Pr Re 
mAP 

50 

mAP 

(0.50-0.95) 
Re 

mAP 

0.5 
Pr 

mAP 

(0.5-0.95) 

Hat 0.659 0.607 0.604 0.443 0.899 0.848 0.94 0.798 

Head by hat 0.854 0.758 0.818 0.527 0.972 0.906 0.941 0.828 

Person by hat 0.814 0.802 0.841 0.582 0.986 0.974 0.992 0.932 

Head 0.895 0.653 0.742 0.379 0.934 0.723 0.806 0.569 

Person without hat 0.8 0.725 0.802 0.516 0.932 0.887 0.955 0.803 

Face 0.91 0.688 0.843 0.453 0.937 0.851 0.924 0.745 

Mask 0.832 0.762 0.805 0.505 0.98 0.906 0.952 0.776 

Vehicle 0.845 0.832 0.884 0.64 0.926 0.88 0.956 0.802 

Average 0.826 0.728 0.792 0.506 0.946 0.872 0.933 0.782 

 
Table 7. YOLOv8l performance on the original database, as well as augmented database 

Class 

Original Dataset Augmented Dataset 

YOLOv8l YOLOv8l 

Pr Re 
mAP 

50 

mAP 

(0.50-0.95) 
Re 

mAP 

0.5 
Pr 

mAP 

(0.5-0.95) 

Hat 0.71 0.765 0.869 0.57 0.915 0.853 0.955 0.808 

Head by hat 0.871 0.822 0.845 0.537 0.974 0.913 0.957 0.851 

Person by hat 0.867 0.837 0.888 0.631 0.983 0.98 0.993 0.951 

Head 0.805 0.631 0.675 0.329 0.937 0.74 0.825 0.602 

Person without hat 0.87 0.713 0.826 0.568 0.941 0.904 0.965 0.831 
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Face 0.811 0.687 0.773 0.403 0.96 0.875 0.946 0.788 

Mask 0.921 0.755 0.862 0.547 0.986 0.917 0.957 0.802 

Vehicle 0.861 0.831 0.892 0.661 0.933 0.895 0.963 0.822 

Average 0.841 0.755 0.916 0.531 0.954 0.885 0.953 0.807 

 
Table 8. YOLOv8x performance on the original database as well as augmented database 

Class 

Original Dataset Augmented Dataset 

YOLOv8x YOLOv8x 

Re 
mAP 

50 
Pr 

mAP 

(0.50-0.95) 
Re 

mAP 

0.5 
Pr 

mAP 

(0.5-0.95) 

Hat 0.565 0.577 0.676 0.449 0.87 0.962 0.938 0.829 

Head by hat 0.849 0.893 0.888 0.581 0.917 0.962 0.979 0.853 

Person by hat 0.866 0.885 0.86 0.644 0.98 0.994 0.98 0.951 

Head 0.625 0.704 0.862 0.335 0.745 0.827 0.934 0.602 

Person without hat 0.725 0.795 0.807 0.526 0.908 0.964 0.935 0.827 

Face 0.71 0.808 0.879 0.421 0.882 0.943 0.949 0.787 

Mask 0.83 0.893 0.926 0.553 0.917 0.953 0.959 0.805 

Vehicle 0.786 0.945 0.83 0.609 0.893 0.963 0.925 0.825 

Average 0.744 0.916 0.841 0.515 0.889 0.953 0.95 0.81 

 

    

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Fig. 5 The YOLOv8x PR curve and label instances on the augmented dataset 

F1 scores of each version of the models are illustrated in 

Figure 6, overall loss, as well as accuracy graphs, are exhibited 

in Figures 7 (a), and (b) for Yolov8l and the confusion matrix 

for all the versions is drafted in Figure 8. Table 9 describes the 
correlation of our suggested dataset to new-fangled models. 

Table 10 describes the comparison of our suggested dataset to 

state-of-the-art replicas. The precision, recall, as well as mAP 

score obtained by the mechanism on the recommended 

augmented database, were higher than the original database.  

The recall, precision, as well as mAP score obtained by 

the mechanism on the recommended augmented database, 

were higher than the original database. The recall, precision, 

as well as mAP of the mechanism on the SHEL5K, were 
obtained as 0.817, 0.9188, as well as 0.8644, correspondingly.  

The SHEL5K database has only six labels, while the 

recommended database has eight labels. Additionally, during 

the labeling of the recommended database, an image residing 
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a few portions of the Helmet as well as the face was 

categorized as the hat or face class, subsequently.  

4.3. Prediction on Real-Time Images 

The predicted outcomes of the best mechanism YOLOv8l 

trained on the augmented database as well as the original 

database on test images were relied on in Figures 9 (a), (b), 
(c), (d), and (e). The outcome of the technique trained on the 

original database is illustrated in Figure  9(b), which describes 

that the mechanism can identify the helmet class precisely, 

which illustrates that the labelling in the recommended 

database was executed accurately.  

The same helmet database has been employed in this 

chore to validate the model better. To train helmet detection 

techniques, the same configuration environment was utilized 

to train two-level identification technique Faster R-CNN as 

well as single-stage identification mechanisms FEFDNet, 

YOLOv7, YOLOv6, YOLOv5s, YOLOv4, YOLOv3, as well 
as SSD. The contrast between these mechanisms and the 

YOLOv8l technique relied mostly on AP@50 and mAP@50 

as important contrast pointers. Table 10 displays the 

experiment comparison findings. This suggests that the 

YOLOv8l algorithm has a greater level of accuracy and 

performance in place of work safety helmet identification.

  
 
 

 

 

 
 

 

 
 

 

 
 

 

 
                                             (a) YOLOv8n_original dataset                                                                 (b) YOLOv8n_augmented dataset 
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                                            (e) YOLOv8m_original dataset                                                                 (f) YOLOv8m_augmented dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

                                            (g) YOLOv8l_original dataset                                                                   (h) YOLOv8l_augmented dataset 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

                                            (i) YOLOv8x_original dataset                                                                  (j) YOLOv8x_augmented dataset 

Fig. 6 F1 score of YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8m, YOLOv8x respectively  (a), (c), (e), (g), (i) on original dataset, and                                                        

(b), (d), (f), (h), (j) on the augmented dataset. 

F1-Confidence Curve 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0              0.2              0.4              0.6              0.8              1.0    

Confidence 

Helmet  
Head_with_Helmet 
Person_with_Helmet 
Head 
Person_without_Helmet 
Face 
Mask 
Vehicle 
All Classes 0.77 at 0.397 

F
1
 

F1-Confidence Curve 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0              0.2              0.4              0.6              0.8              1.0    

Confidence 

Helmet  
Head_with_Helmet 
Person_with_Helmet 
Head 
Person_without_Helmet 
Face 
Mask 
Vehicle 
All Classes 0.91 at 0.385 

F
1
 

F1-Confidence Curve 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0              0.2              0.4              0.6              0.8              1.0    

Confidence 

Helmet  
Head_with_Helmet 
Person_with_Helmet 
Head 
Person_without_Helmet 
Face 
Mask 
Vehicle 
All Classes 0.79 at 0.418 

F
1
 

F1-Confidence Curve 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0              0.2              0.4               0.6              0.8              1.0    

Confidence 

Helmet  
Head_with_Helmet 
Person_with_Helmet 
Head 
Person_without_Helmet 
Face 
Mask 
Vehicle 
All Classes 0.92 at 0.375 

F
1
 

F1-Confidence Curve 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0              0.2              0.4              0.6              0.8              1.0    

Confidence 

Helmet  
Head_with_Helmet 
Person_with_Helmet 
Head 
Person_without_Helmet 
Face 
Mask 
Vehicle 
All Classes 0.79 at 0.401 

F
1
 

F1-Confidence Curve 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0              0.2              0.4              0.6              0.8              1.0    

Confidence 

Helmet  
Head_with_Helmet 
Person_with_Helmet 
Head 
Person_without_Helmet 
Face 
Mask 
Vehicle 
All Classes 0.92 at 0.346 

F
1
 



Dasari Naga Vinod et al. / IJEEE, 11(5), 102-118, 2024 

 

114 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig. 7 (a) YOLOv8l_original dataset 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
Fig. 7 (b) YOLOv8l_augmented dataset 

  

 

 
 

 

 
 

 

 
 

 

 

 
 

 
                                                                   (a)                                                                                                                     (b) 

Fig. 8 Confusion matrix of YOLOv8l (a) Original dataset, and (b) Augmented dataset. 

1.3 
1.2 
1.1 
1.0 
0.9 
0.8 
0.7 

0                  50                100 

train/box_loss 
1.75 
1.50 
1.25 
1.00 
0.75 
0.50 

0                  50                100 

train/cls_loss 
results 1.3 

1.2 

1.1 

1.0 

0                  50                100 

train/dfl_loss 

0.85 

0.80 

0.75 

0.70 

0                  50                100 

metrics/precision(B) 
0.775 
0.750 
0.725 
0.700 
0.675 
0.650 

0                  50                100 

metrics/recall(B) 

0.625 

1.35 

1.30 

1.25 

1.20 

0                  50                100 

val/box_loss 

1.15 

1.1 

1.0 

0.9 

0.8 

0                  50                100 

val/cls_loss 

0.7 

1.35 

1.30 

1.25 

0                  50                100 

val/dfl_loss 

1.20 

0.80 

0.75 

0.70 

0                  50                100 

metrics/mAP50(B) 

0.65 

0.50 

0.45 

0.40 

0                  50                100 

metrics/mAP50-95(B) 

1.2 

1.0 

0.8 

0.6 

0                  50                100 

train/box_loss 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 

0                  50                100 

train/cls_loss 
results 0.95 

0.90 

0.85 

0.80 

0                  50                100 

metrics/precision(B) 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 

0                  50                100 

metrics/recall(B) 

1.2 

1.0 

0.8 

0                  50                100 

val/box_loss 

0.6 

1.0 

0.8 

0.6 

0.4 

0                  50                100 

val/cls_loss 
0.95 

0.80 
0.75 

0                  50                100 

metrics/mAP50(B) 

0.70 

0.8 

0.7 

0.4 
0                  50                100 

metrics/mAP50-95(B) 

1.3 

1.2 

1.1 

1.0 

0                  50                100 

train/dfl_loss 

0.9 

1.3 

1.2 

0.9 

0                  50                 100 

val/dfl_loss 

0.8 

1.1 
1.0 

0.90 
0.85 

0.6 

0.5 

0.76 0.01 
0.85 0.01 

0.87 
0.7 

0.79 
0.75 

0.58 
0.88 

0.29 

0.9 
0.8 
0.7 
0.6 

0.01 0.03 
0.03 0.01 

0.08 

0.09 

0.15 0.13 0.09 0.1 
0.02 

0.23 0.19 0.11 

0.01 
0.02 

0.02 
0.01 
0.01 

0.01 

0.03 
0.09 
0.11 
0.16 
0.19 
0.18 
0.01 
0.23 

0.5 
0.4 
0.3 
0.2 
0.1 
0 True 

Helmet 

Class 

Head_with_helmet 
Person_with_Helmet 

Head 
Person_without_Helmet 

Face 
Mask 

Vehicle 
Background 

H
el

m
et
 

H
ea

d
_

w
it

h
_

h
el

m
et
 

P
er

so
n

_
w

it
h
_

H
el

m
et
 

H
ea

d
 

P
er

so
n

_
w

it
h
o

u
t_

H
el

m
et
 

F
ac

e 

M
as

k
 

V
eh

ic
le
 

B
ac

k
g
ro

u
n

d
 

P
re

d
ic

te
d
 

0.92 
0.82 

0.90 
0.72 

0.83 
0.91 

0.80 
0.82 

0.22 

0.9 
0.8 
0.7 
0.6 

0.05 

0.12 0.07 0.01 0.0 0.09 0.07 0.0 

0.02 
0.08 
0.05 
0.15 
0.38 
0.13 
0.02 
0.27 

0.5 
0.4 
0.3 
0.2 
0.1 
0 True 

Helmet 

Class 

Head_with_helmet 
Person_with_Helmet 

Head 
Person_without_Helmet 

Face 
Mask 

Vehicle 
Background 

H
el

m
et
 

H
ea

d
_

w
it

h
_

h
el

m
et
 

P
er

so
n

_
w

it
h
_

H
el

m
et
 

H
ea

d
 

P
er

so
n

_
w

it
h
o

u
t_

H
el

m
et
 

F
ac

e 

M
as

k
 

V
eh

ic
le
 

B
ac

k
g
ro

u
n

d
 

P
re

d
ic

te
d
 



Dasari Naga Vinod et al. / IJEEE, 11(5), 102-118, 2024 

 

115 

  
                                                                   (a)                                 (b) 

 
                                                                   (c)                                                              (d) 

 
(e) 

Fig. 9 Actual prediction with YOLOv8l mechanism by test images taken from the various locations a) Railway station - predicted accuracy with the 

Helmet is 0.94 mAP, b) Vehicle parking lot - predicted accuracy with the Helmet is 0.95 mAP, c) Road with moving vehicles - predicted accuracy with 

the Helmet is 0.92 mAP, d) Classroom – predicted accuracy without a helmet is 0.97 mAP, and e) Workplace – predicted accuracy with the Helmet is 

0.940 mAP. 
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Table 9. Comparison results of proposed YoloV8 mechanisms on both the original database as well as the augmented database with different 

SHEL5K-trained models 

Models Layer 
Parameter 

(million) 

Batch 

Size 

Inference 

Time 

(ms/img) 

Training 

Time 

(Hours) 

GFL

OPs 
P R mAP 50 F1 

O
ri

g
in

al
 D

at
as

et
 YOLOv8n 168 3.007208 8 5.0 1.734 8.1 0.831 0.728 0.79 0.77 

YOLOv8s 168 11.12868 8 5.3 1.641 28.5 0.83 0.726 0.785 0.77 

YOLOv8m 218 25.844392 8 10.4 1.862 78.7 0.826 0.728 0.792 0.77 

YOLOv8l 268 43.612776 8 16.8 2.22 164.8 0.841 0.755 0.916 0.79 

YOLOv8x 268 68.131272 8 25.9 3.316 257.4 0.841 0.744 0.8 0.79 

A
u

g
m

en
te

d
 D

at
as

et
 YOLOv8n 168 3.007208 8 5.7 7.0 8.1 0.898 0.796 0.866 0.84 

YOLOv8s 168 11.12868 8 12.9 8.12 28.5 0.931 0.844 0.912 0.88 

YOLOv8m 218 25.844392 8 15.0 10.2 78.7 0.946 0.872 0.933 0.91 

YOLOv8l 268 43.612776 8 23.8 14.0 164.8 0.954 0.885 0.951 0.92 

YOLOv8x 268 68.131272 4 95.4 20.45 257.4 0.95 0.889 0.943 0.92 

S
H

E
L

5
K

 [
2

6
] 

Fast-R-
CNN 

48 13.3 16 84.0 55.6 - 0.7808 0.3862 0.3689 0.5167 

YOLOv3-

tiny 
37 8.7 16 6.0 5.2 - 0.7695 0.4225 0.3779 0.5408 

YOLOv3 222 61.6 16 11.0 24.6 - 0.8509 0.4482 0.417 5848 

YOLOv3-

SPP 
225 62.6 16 12.0 24.6 - 0.8851 0.5848 0.5572 0.7032 

YOLOv4 488 63.9 16 14.0 11.2 - 0.925 0.7798 0.7693 0.8449 

YOLOv4(p

acsp-x-mish) 
488 63.9 16 14.0 14.5 - 0.9195 0.8036 0.7915 0.8567 

YOLOv5s 224 7.1 16 18.0 0.3 - 0.9205 0.774 0.861 0.8397 

YOLOv5m 308 21.1 16 22.0 2.7 - 0.9251 0.7851 0.8687 0.8488 

YOLOv5x 476 87.2 16 32.0 6.3 - 0.9188 0.817 0.8826 0.8644 

YOLOR 665 36.9 16 12.0 9.8 - 0.9322 0.8066 0.8828 0.8637 

 
Table 10. Contrast of outcomes of various state-of-art mechanism 

Mechanism AP-50% (Person) AP-50% (Helmet) mAP-50% Average 

FEFDNet [24] 94.67% 94.89% 94.78% 

YOLOv7 [28] 88.76% 90.67% 89.71% 

YOLOv6 [27] 87.51% 90.46% 88.98% 

YOLO5s [29] 85.76% 90.26% 88.01% 

YOLOv4 85.93% 87.87% 86.90% 

YOLOv3 79.68% 81.78% 80.73% 

Faster R-CNN 84.55% 82.67% 83.61% 

SSD300 74.84% 77.62% 76.23% 

YOLOv8l (Proposed) 97.33% 95.50% 95.30% 

mailto:AP@0.5%25%20(Person
mailto:mAP@0.5%25
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5. Conclusion 
The publicly accessible SHEL5K dataset’s six classes 

were to be increased to eight as part of the proposed study. 

Several cutting-edge one-stage object identification 

mechanisms, including YOLOv8l, YOLOv8m, YOLOv8n, 

YOLOv8s, and YOLOv8x, were benchmarked against the 

suggested dataset. The experimental findings revealed 

considerable improvements in the models’ mAP0.5l. It is clear 

from the experimental results of the mechanisms on the 

suggested database that all of the techniques had good 

accomplishments in class detection. Additionally, it can be 

said that the high-dimensional pictures and labelling of the 

proposed dataset were superior to those of the SHEL5K 
dataset, as well as state-of-the-art mechanisms. 

Additionally, models developed using the suggested 

dataset may be applied to the real-time identification of safety 

helmets. As a result, our suggested model presents a new 

dataset with data augmentation that solely interacts with items 

of interest to shorten training time and conserve computing 

resources. A brand-new, cutting-edge Yolov8 DNN model 

that can precisely recognize the Helmet in any adverse 

environmental conditions can prevent needless damage and 

can identify whether the individual is wearing a helmet or not. 

The proposed dataset may be utilized for additional research 

studies and can be extended based on the user’s requirements. 

In the forthcoming, we majorly focus on improving the real-

time efficacy % of safety hat identification. 
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