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Abstract - In this study, an automatic solar defect detection and classification system using deep learning was proposed. This 

study focuses on solar faults in photovoltaic systems identified through Electroluminescence (EL) images by employing a deep 
learning framework that utilizes both traditional Convolutional Neural Networks (CNNs) and a pre-trained VGG16 and VGG-

19 network for feature extraction. This approach was designed to enhance the accuracy and efficiency of solar defect 

classification. The framework is structured into three main phases: image preprocessing, feature extraction using CNNs, 

Histogram of Oriented Gradients (HOG) and Artificial Neural Networks (ANN), and classification through a Deep Neural 

Network (DNN). During preprocessing, images are scaled down to uniform dimensions to ensure consistent learning. They 

adopted two classification strategies: binary classification (defective or non-defective) and multiclass classification; the class 

names are 0%, 33%, 67%, and 100% (here, % represents the percentage of defectiveness), which represents the defect 

likelihood. To refine the model’s performance, a data augmentation technique has been utilized on the dataset. The effectiveness 

of the model was evaluated using various metrics, including the precision, recall, F1-score, and accuracy for two and four 

classes and obtained on, supported by confusion matrices. VGG-19 model outperformed other models and achieved precision, 

recall, F1-score and accuracy of 90% each for two classes respectively and similarly 94% for four classes. This study compares 
two classification methods to assess the ability of the deep learning framework to detect and classify solar defect images 

automatically. 

Keywords - Electroluminescence, Photovoltaic, Deep Neural Network, Feature extraction, Defect detection, Solar cell. 

1. Introduction 
Renewable energy has historically played an important 

role in meeting the growing power demand while also 

protecting the environment. Solar farms produce solar energy; 
hence, it is a rapidly growing technology that offers an eco-

friendly power supply. Nevertheless, various solar flaws that 

develop because of routine operations or environmental 

factors reduce the effectiveness of solar energy generation. 

Such detection can be effectively visualized using 

Electroluminescence (EL) imaging techniques [1]. EL is the 

electrically determined emission of light from non-crystalline 

natural materials, which was first observed and widely 

concentrated during the 1960s. In the late 1980s, significant 

advancements were made in EL technology. Notably, Kodak 

introduced a dual-layer light-emitting device in 1987, 
integrating thin film deposition techniques for low bias 

voltages and high luminance efficiency. Subsequently, in 

1990, a polymer-based LED emerged [2]. From that point 

forward, there has been increasing interest and research, and 

colossal advancements have been made in the upgrades of 

shading range, luminance productivity, and gadget 

unwavering quality. The developing interest is, to a great 

extent, roused by the guarantee of the utilization of this 

innovation in level board shows [3]. 

As discussed previously, utilizing EL imaging, it is 

conceivable to envision defects such as splits and inert cell 

zones to assess the cell quality, general module, and sunlight-
based park quality. As machine vision grows rapidly, a 

picture-based imperfection discovery technique has been 

utilized for solar cell surface quality control in the assembly 

industry [4]. Sunlight-based cell surface quality assessment 

cannot only improve the creation of the sun-oriented cell 

module but can also increase the lifetime of the sun-powered 

cell module. Solar cells are primarily divided into 

monocrystalline and polycrystalline silicon cells based on 
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their components. Monocrystalline Si solar cells have a 

uniform foundation surface [5]. To acquire surface deformity 

attributes, some component extraction strategies are powerful 

when the image intensity consistency is fulfilled. Current 

surface deformity discovery strategies based on machine 

vision can be classified into four categories in terms of surface 
highlights:  

1. Non-finished surface,  

2. Rehashed design surface, 

3. Homogeneously finished surface, and  

4. Non-homogeneously finished surface. 

However, using these approaches leads to a quasi-

automatic process of defect detection with limited scope. 

Techniques that involve machine learning using deep learning 
have gained significant attention because of their automatic 

learning and detection functionality. Recently, a few studies 

have been proposed for deep-learning-based (using the CNN 

model) solar defect detection according to various 

configurations of CNN; however, there are research problems 

to solve.  

The key challenge of solar cell manufacturing to generate 

eco-friendly solar energy is the multiple and indeterminate 

detection of defects on the solar cell surface in the presence of 

heterogeneous textures and complex backgrounds. The 

existing methods focus on directly automated feature 
extraction and detection using CNN-based deep learning 

models; however, they do not address the challenge of defect 

detection under complex and heterogeneous textures. 

Additionally, current CNN models are based on an automated 

feature extraction process that may not be reliable when 

considering the variations in solar surface images; hence, it is 

necessary to optimize the automatic process of feature 

extraction using CNN. In addition, the two classification 

methodologies used by existing techniques-two classes and 

four classes are mostly focused on flaw identification. Using 

deep learning models, a unique framework for automatic solar 

cell detection has been proposed, which includes the following 
contributions: 

Images were scaled down by a factor of 255 during the 

preprocessing stage before being fed to the model. Image 

augmentation has also been used to scale up and collect 

balance data.  

Convolution layer stacks and collections of pooling layers 

were used in the CNN feature extraction procedure. As its 

name suggests, the convolution layer uses convolution to alter 

the image. This can be compared with a collection of digital 

filters. The nearby pixels were combined into one pixel using 

the pooling layer. The pooling layer subsequently reduces the 

image dimensions. The convolution and pooling layer 

processes are naturally performed on a two-dimensional plane 

because the CNN focuses on the image. This is one of CNN’s 

distinctions of CNN from other neural networks. A DNN was 

introduced to perform sequential learning and classification. 

The Paper’s contributions can be summarized as:  

1. A preprocessing to test the challenges of unbalancing 

datasets using CNN to extract and feature learning 

2. Evaluation of different classification methods to detect 

defective images 

3. Prove the transfer learning using VGG16 and VGG19 as 

the best solution in 2 Classes and 4- Classes 

The rest sections of this paper can be organized as 

follows: Section 2 presents a review of various related 

methods. Section 3 presents the design of the methodology. 

Section 4 presents the simulation results and evaluation. 

Finally, Section 5 presents our conclusions and future work. 

2. Related Works 
In the past decade, several image-processing-based 

techniques have been introduced for solar-cell defect detection 

using semi-automated and automated approaches. Various 

techniques based on semi-automatic defect detection have 

been proposed in [6]. The basic direct iterative bunching 

superpixel strategy proposed in [6] is a method for problem 

area identification. They exhibited robotizing imperfection 

recognition in a solar vitality framework utilizing warm 

imaging to create an exact and opportunistic arrangement of 

unsafe conditions.  

In [7], the authors intended to recognize the types and 
areas of deformities. Initially, the picture was pre-handled, and 

the solar cell was partitioned into sub-cuts. At that point, 

homomorphism and high-pass channels were applied to the 

sub-cuts to accomplish picture upgrades, which could keep the 

picture subtleties better while stifling the clamour. The surface 

deformity recognition technique proposed in [8] is dependent 

on the Mobile Net-SSD model and is applied to recognize the 

sorts and areas of surface imperfections. In the preprocessing 

stage, a local arranging technique was introduced to remove 

the principal body of the imperfection, diminish excess 

parameters, and improve the location speed and accuracy.  

The information upgrade increased the heartiness of the 
calculation. The way of thinking of Mobile Net, a lightweight 

system, is to improve the recognition accuracy, reduce the 

registration stack, and shorten the preparation time of this 

calculation. The Mobile Net and SSD were acclimated to 

distinguish surface imperfections, with the end goal of 

separating small deformities from the foundation. The Multi-

scale Feature Selective Matching (MFSM) fragment 

disengagement precisely abandons what is proposed in [9]. To 

feature the separation territory and debilitate the foundation, 

they utilize the Parameter-Upgraded Climatic Dispersing 

Model (PASM) to improve picture differentiation and protect 
disengagement deformity locale data. At that point, the multi-
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scale slope highlight was utilized to acquire the multi-scale 

highlight saliency map, including every imaginable shape 

from the improved image. The author of [10] created and 

exhibited a pipeline for the improvement and assessment of 

programmed cell arrangement calculations based on EL 

imaging. They gave pertinent rules for improvement 
throughout the entire procedure and exhibited their application 

in a praiseworthy case. The author in [11] presented a 

computational plan for the pseudo-colorization of EL pictures 

to feature deformity areas in solar cells for human review. 

They gave a layout EL picture and pseudo-shading names on 

its deformity districts; they forced the pseudo hues to other 

greyscale EL pictures concerning diverse imperfection types 

and picture structures by format highlight grouping and 

pseudo-shading movement.  

The focus pixel angle data proposed in [12] are applied to 

an inside symmetric neighbourhood double example (CPICS-

LBP), which could intertwine the CPICS-LBP by thresholding 
every pixel of the picture into a paired code. The arrangement 

of deformities in a heterogeneous foundation can be 

significantly upgraded. A far-reaching survey of the structure 

and manufacture of solar cells aided by ML systems was 

presented in [13]. ML strategies have been demonstrated to be 

powerful in helping plan and create solar cells when 

information is appropriately gathered to counterfeit neural 

systems and hereditary calculation (GA), the two most applied 

ML procedures, and the themes in the advancement of gadget 

structures and improvement of manufacturing forms.  

The author in [14] presented the discovery and division of 
breaks in EL pictures of mono- and polycrystalline solar 

modules. It exhibited a regulated learning procedure that only 

used picture-level explanations to acquire a technique that was 

suitable for portioning breaks on EL pictures of solar cells. In 

[15], a strategy for solar-cell issue identification in EL pictures 

utilizing SVM and RF was proposed. SVM (RBF bit) and RF 

were applied to identify the shortcomings of the solar cells. 

Two area extraction calculations were performed. Those who 

assessed the pictures sorted and categorized them into four 

types of flaws: finger disappointment and three types of splits, 

depending on their seriousness. 

As part of the progressive advantages of deep learning 
technology, deep learning-based automated solar cell defect 

detection strategies were recently designed [16]. Significant 

learning is required to identify solar-cell surface defects, as 

proposed in [16]. To collect the networks underlying loads, 

Deep Belief Networks (DBN) was first constructed and 

prepared. An intelligent defect-detection method based on 

deep learning was proposed in [17]. The method first builds a 

network based on the sample characteristics. The initial 

network value is obtained through training. Subsequently, a 

neural algorithm was used to adjust the system parameters to 

acquire the mapping connection between the preparation tests 
and imperfection-free layouts. The author in [18] focused on 

the first achievable concentration for the identification of 

deformities in solar cells. They proceeded to remove cells 

from the perspective of solar module pictures and arrange the 

cell pictures by utilizing a CNN in a completely mechanized 

manner. They presented a profoundly put-together 

characterization pipeline concerning EL pictures. In [19], the 
authors planned a visual deformity recognition strategy based 

on a multiphoton profound CNN. 

The image information of every solar cell presented in 

[20] is processed through a progression of image-processing 

calculations and then placed into an all-around prepared neural 

system for grouping. Profound learning was utilized to 

identify defects in Photovoltaic (PV) modules. A 

convolutional neural system with seven layers was built to 

characterize faulty battery boards and present a technique 

wherein a solitary battery cell can be extracted from the EL 

images of the PV module and in [21] proposed a programmed 

discovery of such imperfections in the solitary picture of a 
Photovoltaic (PV) cell. The hardware requirements of these 

techniques differ from one another and are determined by their 

unique application contexts.  

The more hardware-productive methodology depends on 

the available highlights that are characterized in a Support 

Vector Machine (SVM), the more hardware-requesting 

approach utilizes a start-to-finish profound Convolutional 

Neural System (CNN) for sudden spikes in demand for an 

illustration processing unit (GPU). In [22], an imperfection 

discovery technique that is dependent on a CNN was 

proposed. Google Net is one of the prime CNN models for 
vision registration owing to its fewer neurons, limited scope 

parameters, and multifaceted nature.  

In [23], a novel methodology utilizing light 

Convolutional Neural System (CNN) engineering for the 

programmed identification of photovoltaic cell surrenders in 

EL pictures was presented. This methodology achieved the 

best-in-class results on the first openly accessible solar cell 

dataset of EL pictures. In [24], ML models built the structure-

property relationship and, along these lines, executed the 

quick screening of OPV materials. They investigated a few 

articulations for particle structures, that is, pictures, ASCII 

strings, descriptors, and fingerprints, as contributions to ML 
calculations.  

During the time spent discovering superior materials for 

Natural Photovoltaics (OPVs), the connection between 

substance structures and photovoltaic properties could be 

established even before incorporating them. In [25], a novel 

use of DCNNs to address PV cell debasement was proposed. 

The examinations led on the "Photovoltaic Pictures Dataset," 

a gathered dataset, were introduced to show the debasement 

issue and completely assess the strategy displayed. Energy 
problems are ubiquitous and have recently been studied to 

address them [26-28]. Thus, solar energy efficiency has also 
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become a challenge. From the above studies, it is noticed that 

automatic deep learning-based methods have received great 

attention for effective defect detection; however, so far, very 

little work has been proposed with a limited scope. This study 

proposes a scalable and efficient deep-learning model for solar 

cell defect detection. 

3. Methodology 
This section presents the design of the methodology. 

Figure 1 shows the architecture of the proposed system. 

3.1. Dataset and Preprocessing 

The dataset is publicly available at 

https://github.com/zae-bayern/elpv-dataset. A total of 2624 

EL Photovoltaic (ELPV) images were obtained. In this study, 

a set of conditional probabilities (0%, 33%, 67%, and 100% 

defect likelihood) that defined the labels of each solar cell 

image are utilized.  

A sample of the images is shown in Figure 2. An 

overview of the number of cells in each defect likelihood 

category is presented in Figure 3 and Table 1. Each pixel in 

each image was rescaled to 1/255. This rescaled the pixels in 

the range [0, 1]. Scaling every image to the same range [0, 1] 

makes the images contribute more evenly to the total loss. 

Treating all images in the same manner, some images have a 

high pixel range, whereas others have a low pixel range. The 

images share the same model, weights, and learning rate as 

CNN, which delivers improved accuracy. 

3.2. Dataset Augmentation 

Data augmentation generates more training data from 

existing training samples by augmenting the samples via 

several random transformations on images. The goal is for the 

model to learn different patterns during training. This helps 

expose the model to more aspects of the data and generalize it 

better. 

Obtained transformed images from the original dataset. It 

is a technique of applying different transformations to the 

original images that results in multiple transformed copies of 

the same image. Each image, however, is different from the 

others in certain aspects, depending on the augmentation 
techniques, such as shifting, rotating, flipping, and brightness. 

In addition, all images were resized to 224×224 for the target 

size of data augmentation. 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Fig. 1 Methodology used in this study 

Table 1. Details of dataset 
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Fig. 2 Sample images of the dataset 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3 Bar graph of the details of each category in the dataset 

3.3. Upsampling of Classes 

In addressing the class imbalance observed within our 
dataset, a sampling technique has been employed to ensure 

that each category is equally represented. To augment the 

number of images across classes, an image data generator has 

been used. This tool allowed us to artificially enhance our 

dataset, ensuring that each class reached a balanced 

distribution [29]. Details of the two-class dataset are listed in 

Table 2. The details of the four-class balanced dataset are 

listed in Table 3. 

Table 2. Two-class solar cell dataset after up-sampling 

Type of Sample Number of Images 

Non-Defected Samples 1508 

Defected Samples 

(0.33, 0.66, 1.0) 
1116 

Total Samples 2624 

Table 3. Four-class balanced dataset after up-sampling 

Probability Number of Images 

0 Probability 1508 

0.33 Probability 1499 

0.66 Probability 1426 

1.0 Probability 1430 

Total Samples 5863 

3.4. Splitting Training, Validation and Testing data 

The training dataset was further divided into validation 
and testing datasets for the model evaluation. Usually, model 

training occurs on a training dataset, whereas, because the 

training set was considered as an exposed dataset, that train set 

cannot use that exposed dataset for evaluation; therefore, an 

unseen dataset that has not been used during training of the 

model. Thus, the dataset was divided our up-sampled dataset 

into test and training datasets with a ratio of 80:20 percent. 

3.5. Model Training 

In this step, the model for training was the selected model. 

The details of the utilized models are as follows:  

Creating Descriptor of Histogram of Oriented Gradients 

(HOG): The HOG is a feature descriptor that is often used to 
extract features from image data, as shown in Figure 4. 

 
Fig. 4 HOG-based feature-extracted image 

Creatin the SVM Model: The features extracted from the 

HOG techniques are utilized in the SVM model, which is 

imported from the sklearn library. 

Creating ANN Model: In this model, using Keras APIs, 

four fully connected dense layers were used to create an ANN 
model. The first layer contains an input layer of 128 units. The 

second and third layers were hidden layers with 1024 and 512 

units, respectively. The last layer is the output layer, which has 

two or four units with the softmax activation function. The 

Softmax activation function is used to provide the output from 

two or four classes. The features extracted from the HOG are 

also utilized in this model. 
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Creating the CNN Model: For this model, a convolution 

layer was used with 32 filters, and the kernel size was 3 × 3. 

The input shape of the filter was 224×224, and the activation 

was ‘Relu.’ Max pooling with a 2x2 kernel size is added after 

the first convolution layer. Then, 64 filters in the second layer, 

each with a 3x3 kernel and the activation “Relu.” Max pooling 
with a 2x2 kernel size is added after the second convolution 

layer. Similar to the second convolution layer, a third 

convolution layer was added. After flattening, 64 units of 

dense layer were added, and at the end, two or four units of 

dense layer were added for classification with the Softmax 

activation function. The Softmax activation function is used to 

provide the output from two or four classes. 

Using Pre-Trained Models (VGG16 and VGG19): To 
train a CNN from scratch, a significantly large amount of data 

is required, and it is not always possible to collect large 

datasets. However, the need for a large training dataset can be 

avoided by utilizing pre-trained weights. These two models 

have different architectures. Moreover, The VGG16 model 

contains 13 convolutional layers, whereas the VGG19 model 

contains 16 convolutional layers; along with this, they contain 

dense and batch normalization layers in their architecture.  

The utilization of pre-trained weights also accelerates the 

learning process by making it more accurate and requires less 

training data. Therefore, the pre-trained models VGG16 and 

VGG19 were preferred in this study, and the CNNs used had 

already been trained on the ImageNet dataset. ImageNet is a 

large-scale labelled dataset containing more than 14 million 

images spanning over 20,000 classes. The pre-trained weights, 

or the weights obtained during training on the ImageNet 

dataset, were used during training. The pre-trained layers were 

frozen to apply the transfer-learning technique. Each model 

included a batch normalization layer before the fully 
connected layer.  

After flattening the model, dense layer 1, which has 128 

units with the ReLU activation function, is added to the fully 

linked layer. After dense layer 1, a batch normalization layer 

was added. Next, a dropout layer with a dropout size of 0.4 is 

added. Dense Layer 2, which has 64 units with the activation 

function “ReLU,” is added after the dropout layer. After dense 

layer 2, a dropout layer with a 0.3 dropout size of added, and 
dense layer 3, which has two or four units with the Softmax 

activation function, is added. The Softmax activation function 

is used to provide the output from two or four classes. 

3.6. Model Evaluation 

After model training, confusion metrics and classification 

report parameters have been used to evaluate the models on 

unseen data. This process is used to test the performance of 

the trained model. 

4. Experimental Analysis 
The following experimental criteria were used to conduct 

the current experiments: the deep learning backend for 

simulation was either Keras or TensorFlow, and the 

programming language was Python. On a 12-GB NVIDIA 

Tesla P40, the model training processes were performed. The 

outcomes of the proposed model are also compared in this 

section. 

4.1. Comparative Results 

Precision, recall, F1-score, and accuracy rate were the 

metrics used to evaluate the performance. These results were 
computed using parameters such as True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN).  

This section presents the comparative results obtained by 

considering both 2-Class and 4-Class datasets using the 

different methods discussed above. The confusion matrices of 

all models for the two classes are shown in Figure 5, and those 

of all models for the four classes are shown in Figure 6. The 

parameters extracted from the confusion matrices are listed in 

Table 4. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

4.2. Classification Results 

HOG + SVM: The results obtained from the HOG + SVM 

model for two-class classification were in terms of accuracy, 

recall, precision, and F1-score (74%, 72%, 73%, and 72%, 

respectively). Accordingly, the sum of true negatives, false 

negatives, and false positives was high, low, and low, 

respectively.  

Owing to a low sum of false negatives and false positives, 

one class was found with low evaluation values. Table 4. 

demonstrates that the overall SVM accuracy for the two 

classes obtained was 74%. HOG+SVM reported that for the 

classification of four classes, the accuracy, recall, precision, 

and F1-score (78%, 77%, 77%, and 76%, respectively).
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Table 4. Performance of the utilized models 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

No. of Classes Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Two Classes 

HOG+SVM  74 73 72 72 

HOG+ANN 77 78 77 76 

CNN 82 82 82 82 

VGG16 89 89 89 89 

VGG19 90 90 90 90 

Four Classes 

HOG+SVM 78 77 77 76 

HOG+ANN 77 78 77 76 

CNN 85 86 85 86 

VGG16  93 93 93 93 

VGG19  94 94 94 94 
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Fig. 5 Confusion matrices for the two classes on the testing dataset (a) HOG+SVM, (b) HOG+ANN, (c) CNN, (d) VGG16, and (e) VGG19. 
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Fig. 6 Confusion matrices four classes on the testing dataset (a) HOG+SVM, (b) HOG+ANN, (c) CNN, (d) VGG16, and (e) VGG19. 

This indicates that the sum of the False Positives, False 

Negatives, and True Negatives was low, low, and high, 

respectively. HOG + ANN: For the classification of two 

classes, ANN showed that the classes were classified with 

good precision, recall, and F1-score compared with 

HOG+SVM. The precision value was 78%, which means that 
the sum of the false positives was low.  

For recall, the value was 77% because the sum of false 

negatives was low. The accuracy of the model for the two 

classes was 77%, as shown in Table 4, which is better than that 

of the SVM+HOG model. For the classification of the four 

classes, HOG+ANN surprisingly achieved 80% precision, 

recall, F1-score, and accuracy.  

CNN: The CNN model’s categorization of the two classes 

shows that the 0 class was separated because its precision, 

recall, and F1-score reached satisfactory levels (82%, 82%, 

81%, and 82%, respectively). This can be explained by the fact 
that the sum of genuine negatives was large, and the sum of 

false negatives was low (precision and recall).  

The precision and the recall for each class were 82% and 

82%, respectively. Additionally, there was a strong specificity 

and an F1-score of 82% and 82%, respectively. These 

numbers (precision and recall) can be read as indicating that 

the total number of false positives and negatives is minimal. 

The CNN for four classes showed that the zero class was 

measured with precision, recall, and F1-score (86%, 86%, and 

86%, respectively), which means that the sum of false 

positives was low, the sum of false negatives was low, and the 

sum of true negatives was high.  

VGG16: According to the VGG16 results for the two 

classes, no class could be identified with high levels of 

precision, recall, specificity, and F1-score (89%, 89%, 89%, 

and 89%, respectively). These results were obtained because 

of the precision and recall of false positive rates and sums of 

false positives, as well as the high true negative rates. Table 4 

shows that the accuracy of the model is 89%. According to the 

VGG16 results for the four classes, the class was correctly 

identified with good accuracy, recall, and F1-score (93%, 
93%, and 93%, respectively). It was detected rather well at 

about 0.33 class since the F1-score, accuracy, recall, and 

specificity were all within acceptable limits. As demonstrated 

in Table 4, the VGG16’s overall accuracy across the four 

classes was 93%. 

VGG19: According to the VGG19 results for the two 

classes, no class could be identified with high precision, recall, 

specificity, and F1-score of 90%, 90%, and 90%, respectively. 

Furthermore, as presented in Table 4, the accuracy of the 

model was 90%. According to the VGG19 results for the four 

classes, no class was correctly identified with good accuracy, 
recall, or F1-score (94%, 94%, and 94%, respectively). 

5. Conclusion and Future Work 
The performance of the deep learning-based framework 

proposed for the accurate detection of solar cell defects using 

EL images is good. The proposed framework consists of 

different steps, such as preprocessing, feature extraction, 

classification, and evaluation of models. A preprocessing 
algorithm is proposed to overcome the challenges of 

unbalancing the dataset. A CNN architecture is proposed to 

extract and learn features automatically.  

The experimental results show that the proposed module 

achieves significant improvements in the accuracy, precision, 

recall, and F1 score. However, transfer learning using VGG16 

and VGG19 performed better considering both 2-Classes and 

4-Classes. The accuracy of using VGG16 in 2 classes and 4- 

classes are 89% and 93%, respectively. The VGG19 in 2-
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classes and 4- 4-classes accuracy are 90% and 94% 

respectively. 
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