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Abstract - This paper presents a novel methodology for detecting open and short circuit faults in multi-level inverters using a 

combination of time-frequency analysis, simulation, and experimental investigations. The proposed approach integrates the 

Discrete Wavelet Transform (DWT), Artificial Neural Networks (ANNs), and the back-propagation training technique to achieve 
accurate fault recognition. The utilization of DWT enables the extraction of fault-related features from the time-frequency 

domain, enhancing fault detection capabilities. These features are then utilized as inputs to an ANN, trained using the Back 

Propagation Training technique, to classify different fault conditions. Moreover, a LabVIEW real-time fault diagnosis model is 

developed to validate the effectiveness of the proposed approach through experimental implementation. This model provides a 

practical framework for real-time fault detection and diagnosis in multi-level inverters, contributing to improved reliability and 

operational efficiency of power electronics systems. By combining advanced signal processing techniques with artificial 

intelligence, the proposed methodology offers a comprehensive solution for fault recognition in multi-level inverters, addressing 

the challenges of modern power systems. The experimental validation underscores the effectiveness and feasibility of the 

proposed approach in real-world applications, highlighting its potential for enhancing the reliability and performance of multi-

level inverter-based power systems. 

Keywords - Artificial Neural Networks, Back propagation training, Discrete Wavelet Transform, Fault detection, Multi-level 
inverters. 

1. Introduction  
Multi-level Inverters have emerged as key components in 

modern power electronics systems due to their ability to 

generate high-quality output waveforms with reduced 

harmonic distortion, lower switching losses, and enhanced 

efficiency compared to conventional two-level inverters. 
However, like any complex electrical system, multi-level 

inverters are prone to faults that can compromise their 

performance, reliability, and safety.  

Faults in multi-level inverters can manifest in various 

forms, including open-circuit faults, short-circuit faults, 

device failures, and voltage unbalances. These faults can occur 

due to factors such as aging of components, thermal stress, 

manufacturing defects, environmental conditions, and 

operational anomalies. Detecting and diagnosing these faults 

accurately and promptly is crucial for preventing system 

failures, minimizing downtime, and ensuring the safety of 

personnel and equipment. Fault analysis in multi-level 

inverters involves the identification, localization, and 

characterization of abnormal conditions or deviations from 

normal operation.  

Traditional fault analysis techniques often rely on 

mathematical models, circuit simulations, and analytical 

methods to predict fault behaviour and assess the impact on 
system performance. However, these approaches may have 

limitations in capturing the complexity of fault dynamics and 

real-time operational conditions. In recent years, there has 

been growing interest in employing advanced computational 
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intelligence techniques such as ANNs, fuzzy logic, genetic 

algorithms, and machine learning algorithms for fault analysis 

in multi-level inverters. These techniques offer the advantage 

of learning from data, adaptability to changing operating 

conditions, and robustness against noise and uncertainties. By 

leveraging these intelligent techniques, researchers aim to 
develop more accurate, efficient, and reliable fault detection 

and diagnosis systems for multi-level inverters [1-3]. 

Open circuit faults occur when there is an interruption in 

the current path, leading to an open circuit condition in one or 

more semiconductor devices (such as Insulated Gate Bipolar 

Transistors - IGBTs or Metal-Oxide-Semiconductor Field-

Effect Transistors - MOSFETs) or passive components (such 

as capacitors or resistors) within the multi-level inverter 

circuit.  

Open circuit faults can result from factors such as device 

aging, thermal stress, manufacturing defects, or external 

disturbances. When an open circuit fault occurs, the affected 
phase or voltage level may experience a voltage drop or 

complete loss of output, leading to waveform distortion, 

reduced system efficiency, and potential damage to other 

components if not promptly detected and mitigated. Short 

circuit faults occur when there is an unintended connection or 

low impedance path between different points in the multi-level 

inverter circuit, leading to excessive current flow.  

Short circuits can occur between power semiconductor 

devices, between phases, or between phases and ground. 

These faults can result from insulation breakdown, device 

failure, conductor damage, or external factors such as 
environmental conditions or mechanical stress. Short circuit 

faults pose serious safety hazards, as they can lead to 

overcurrent conditions, excessive heating, component 

damage, and even catastrophic failures if not promptly 

addressed. Detecting and mitigating open circuit and short 

circuit faults in multi-level inverters is crucial for ensuring 

system reliability and safety.  

Various techniques are employed for fault detection and 

diagnosis, including model-based methods, signal processing 

techniques, and intelligent algorithms such as ANNs and 

fuzzy logic. By continuously monitoring system parameters 

such as voltages, currents, and temperatures and employing 
advanced fault detection algorithms, it is possible to detect and 

mitigate open circuit and short circuit faults in multi-level 

inverters effectively, thereby enhancing system resilience and 

performance [4-7]. 

Diode-clamped multi-level inverters, also known as 

Neutral-Point Clamped (NPC) inverters, are one of the earliest 

types of multi-level inverters. They utilize clamping diodes to 

establish multiple voltage levels between the DC input and 

output terminals. By connecting several voltage sources in 

series, each with its clamping diode network, diode-clamped 

inverters can synthesize stepped output waveforms with 

reduced harmonic content. However, their main drawback is 

the limited number of voltage levels, which affects their output 

waveform quality and efficiency. 

Capacitor-clamped multi-level inverters, also known as 

flying capacitor inverters, employ capacitor voltage balancing 
techniques to achieve multiple voltage levels. These inverters 

are capable of offering stepped output voltages with better 

waveform accuracy by constantly altering the voltages across 

flying capacitors linked to the DC input and output terminals. 

Capacitor-clamped inverters have higher voltage resolution 

than diode-clamped inverters and are ideal for medium-

voltage applications. However, they required complex 

algorithms for controlling capacitor voltage balancing, which 

increases system complexity and cost [8, 9]. 

Cascaded H-bridge multi-level inverters are made up of 

numerous H-bridge modules connected in series, each capable 

of producing different voltage levels. Cascaded H-bridge 
inverters can generate highly precise output waveforms with 

minimum harmonic distortion by separately managing each 

H-bridge module’s switching states. These inverters are 

scalable and modular, allowing for a simple extension to suit 

higher voltage levels [10].  

Hybrid multi-level inverters combine features of different 

multi-level inverter topologies to achieve enhanced 

performance and flexibility. These inverters may integrate 

diode-clamped, capacitor-clamped, or cascaded H-bridge 

modules to exploit the advantages of each topology while 

mitigating their drawbacks. Hybrid multi-level inverters offer 
improved voltage resolution, reduced switching losses, and 

enhanced reliability compared to single-topology inverters 

[11]. 

1.1. Literature Review  

Multi-level inverters, like any other complex electronic 

system, are prone to malfunctions that can disrupt operations 

and jeopardize system reliability. As a result, failure diagnosis 

and fault tolerance procedures are crucial for ensuring that 

multi-level inverters operate continuously and reliably in 

critical applications [12].  

Artificial Neural Networks (ANN) and machine learning 

approaches have emerged as effective tools for fault detection 
and tolerance in multi-level inverters. These methods take 

advantage of neural networks’ innate capacity to learn 

complicated patterns from data and create correct predictions, 

resulting in effective defect detection, classification, and 

mitigation [13]. 

However, one of the most difficult aspects of fault 

identification in multi-level inverters is the complexity of 

failure patterns and their manifestations in the system. Multi-

level inverters are made up of several power electronic 
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components that operate at different voltage levels, making it 

difficult to distinguish fault signals from normal performance 

without advanced diagnostic procedures. Furthermore, faults 

have the potential to display nonlinear behaviours and 

interactions, which complicates the detection process. To 

successfully identify fault signals and separate them from 
normal operation, complex signal processing algorithms and 

feature extraction techniques are required.  

Switch faults in multi-level inverters can result from 

factors such as device aging, thermal stress, manufacturing 

defects, and external disturbances. These faults can manifest 

as open circuit or short circuit conditions in the power 

semiconductor switches, leading to voltage imbalance, 

harmonic distortion, and potential system instability. 

Detecting switch faults promptly and accurately is crucial for 

maintaining the reliability and safety of multi-level inverter 

systems.  

Switch faults can lead to voltage imbalances among the 
different voltage levels generated by the multi-level inverter, 

resulting in distorted output waveforms and reduced system 

efficiency. Switch faults can introduce higher harmonic 

components in the output voltage, leading to increased Total 

Harmonic Distortion (THD) and potentially causing 

interference with other electrical equipment connected to the 

system.  

Severe switch faults may result in system instability, 

leading to voltage fluctuations, current surges, and potential 

damage to connected loads or other components within the 

power distribution network. Switch faults can pose safety 
hazards to personnel and equipment, especially in high-power 

applications where the failure of a single switch can result in 

catastrophic consequences such as electrical fires, equipment 

damage, or personnel injury. Addressing switch faults in 

multi-level inverters requires effective fault detection, 

diagnosis, and mitigation strategies to minimize their impact 

and ensure the continued operation of the system with optimal 

performance and reliability [14, 15]. 

Switch reliability is paramount in CHB multi-level 

inverters, as these switches are responsible for controlling the 

flow of current and voltage in the system. Any malfunction or 

failure of the switches can lead to voltage imbalances, 
harmonic distortion, and potentially catastrophic system 

failures. Characterizing switch failure modes in CHB inverters 

presents several challenges, including the complex nature of 

switch operation, the dynamic operating conditions of the 

inverter, and the interaction between multiple switches within 

each H-Bridge cell.  

Additionally, switch failures may exhibit transient 

behaviour or intermittent faults, making them difficult to 

detect and diagnose. Fault detection is essential for ensuring 

the reliable and safe operation of multi-level inverters. Open 

circuit faults, if left undetected, can lead to voltage 

imbalances, increased harmonic distortion, and potential 

damage to other system components. Prompt detection of 

these faults allows for timely mitigation actions to be taken, 

minimizing downtime and preventing further damage.  

Open circuit faults occur when there is an interruption in 
the current path within the inverter circuit, leading to voltage 

imbalances and distorted output waveforms. Traditional fault 

detection methods may not be sufficient to detect open circuit 

faults due to their complex and dynamic nature.  

By leveraging advanced signal processing techniques, 

machine learning algorithms, and data-driven approaches, this 

research aims to develop effective fault detection algorithms 

capable of identifying open circuit faults in multi-level 

inverters. The proposed algorithms will enhance system 

reliability by enabling timely intervention and preventive 

maintenance actions, thereby minimizing downtime and 

ensuring the continued operation of multi-level inverter-based 
power systems [16-19].  

However, their reliability can be compromised by switch 

faults, which may occur due to aging, thermal stress, or 

manufacturing defects. Assessing the performance 

degradation of multi-level inverter systems under various 

switch fault scenarios is crucial for ensuring system reliability 

and maintaining optimal operation. Switch faults in multi-

level inverters can lead to several performance degradation 

issues, including increased harmonic distortion, voltage 

imbalance, and reduced efficiency. The severity of these 

degradation effects depends on factors such as fault type, fault 
location, and fault duration.  

In assessing performance degradation, it is essential to 

consider the impact on key system parameters, such as total 

harmonic distortion, output voltage ripple, and system 

efficiency. Simulation studies and experimental investigations 

can provide valuable insights into how different switch fault 

scenarios affect these parameters under various operating 

conditions. Furthermore, fault-tolerant control strategies and 

mitigation techniques can be developed and evaluated to 

minimize the impact of switch faults on system performance. 

These strategies may include reconfiguration of the inverter 

topology, fault detection and isolation algorithms, and 
adaptive control schemes.  

This knowledge can inform the development of robust 

fault detection, diagnosis, and mitigation strategies, ultimately 

enhancing the reliability and resilience of multi-level inverter-

based power systems in diverse applications. Grid-connected 

multi-level inverter systems play a vital role in modern power 

distribution networks, enabling the integration of renewable 

energy sources, voltage regulation, and power quality 

improvement. However, switch failures within these systems 

can have significant implications for grid stability and power 
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quality. Investigating the impact of switch failures on these 

critical aspects is essential for ensuring the reliability and 

performance of grid-connected multi-level inverter systems 

[20-23]. 

Switch failures in multi-level inverters can result in 

voltage fluctuations, harmonic distortion, and imbalance in 

grid-connected currents, potentially leading to instability in 

the power grid. The consequences of switch failures may 

include increased power losses, reduced system efficiency, 

and compromised power delivery to consumers. By 

systematically investigating the impact of switch failures on 

grid stability and power quality, researchers can assess the 

vulnerability of grid-connected multi-level inverter systems to 

different fault scenarios.  

Simulation studies and experimental evaluations can help 

quantify the extent of voltage and current distortions, assess 

transient responses, and identify potential grid instability 

issues resulting from switch failures. Furthermore, advanced 

control strategies and fault management techniques can be 

developed to mitigate the impact of switch failures on grid 

stability and power quality.  

These strategies may include fault detection and isolation 

algorithms, real-time monitoring systems, and adaptive 
control schemes to ensure seamless operation and minimize 

disruptions to the power grid. Understanding the complex 

interplay between switch failures, grid stability, and power 

quality is essential for designing robust and resilient grid-

connected multi-level inverter systems. By addressing these 

challenges, researchers and engineers can contribute to the 

development of more reliable and efficient power distribution 

networks, facilitating the widespread adoption of renewable 

energy sources and enhancing overall grid resilience in the 

face of evolving energy demands and environmental concerns 

[24-26]. 

The following objectives have been formulated to identify 

faulty switches in multi-level inverters effectively: 

 Develop a novel methodology integrating time-frequency 

analysis, DWT, ANNs, and Back Propagation to detect 

open and short circuit faults in multi-level inverters 

accurately. 

 Extract fault-related features from the time-frequency 

domain using DWT to enhance fault detection 

capabilities. 

 Train ANNs using Back Propagation to classify different 
fault conditions based on extracted features. 

 Validate the proposed approach through experimental 

implementation using a LabVIEW real-time fault 

diagnosis model. 

 Contribute to improved reliability and operational 

efficiency of multi-level inverter-based power systems by 

combining advanced signal processing techniques with 

artificial intelligence for fault recognition. 

2. Proposed Fault Recognition System for Multi-

Level Inverter 
At the hardware level, a DC power supply is used when 

combined with a five-level multi-level cascaded inverter and 

an NI USB interface, all of which have been integrated with 

an induction motor. At the software level, LabVIEW is used 

to implement the provided fault recognition system, which is 

illustrated in Figure 1. The system operates by employing 
LabVIEW for various tasks. Firstly, LabVIEW is used for 

performing DWT analysis, facilitating feature extraction from 

the system’s operation. These extracted features are then 

employed as inputs for an ANN trained with fault patterns. 

Subsequently, LabVIEW’s Graphical User Interface (GUI) is 

leveraged for fault diagnosis. Through the GUI, the system 

identifies faulty switches within the multi-level inverter. This 

fault diagnosis is conducted based on the patterns recognized 

by the ANN, enabling accurate identification of faulty 

components. 

2.1. Fault Analysis of Five-Level Inverter 

Figure 2 illustrates the structure of a cascaded five-level 

inverter comprising two bridges, denoted as Bridge A and 

Bridge B. Each bridge consists of four power switches. The 

inverter operates based on Sinusoidal Pulse Width Modulation 

(SPWM) techniques to generate a five-level output voltage 

waveform. SPWM involves modulating the width of the 

pulses in a sinusoidal manner to approximate the desired 

output waveform. By combining the outputs of both bridges, 

the cascaded five-level inverter achieves a higher number of 

voltage levels, allowing for improved output waveform 
quality and reduced harmonic distortion compared to 

traditional two-level inverters. 

2.2. Open Circuit Fault Analysis 

Figure 3 depicts the open circuit analysis of a five-level 

inverter, focusing on the scenario where the S1A switch 

experiences an Open Circuit (OC) fault. The magnified 

voltage waveforms illustrate the normal operating condition 

alongside the faulty condition resulting from the switch fault. 

During normal operation, the voltage waveform exhibits 

expected characteristics. However, upon the occurrence of the 
S1A switch fault, noticeable deviations in the voltage 

waveform are observed, indicating the fault. Additionally, the 

inference of changes in current during the system’s starting 

phase and subsequent operation after the fault occurrence are 

discussed, providing insights into the dynamic behaviour of 

the inverter under fault conditions. 

2.3. Short Circuit Fault Analysis 

Figure 4 illustrates the short circuit analysis of a five-level 

inverter, specifically focusing on the scenario where the S1A 
switch experiences a short circuit fault. The magnified view 

contrasts the normal current waveform with the significantly 

increased current value observed during the Short Circuit (SC) 

fault, surpassing the normal current level by more than 

tenfold.
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Fig. 1 Fault recognition for multi-level inverter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Structure of cascaded five-level inverter 
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Fig. 3 Open circuit analysis of five five-level inverter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Short circuit analysis of five five-level inverter 
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Fig. 5 Extraction of voltage signal using DWT 

3. Signal Processing with DWT 
In Figure 5, the process of extracting voltage signals using 

DWT from a CHB-MLI  is depicted. The DWT energy 

analysis is conducted to assess the characteristics of the 

voltage signal. This analysis allows for the identification of 

relevant features extracted from D1 to D9, which capture 

essential information regarding the fault conditions present in 

the system.  

Subsequently, a LabVIEW-based ANN classifier is 
employed to analyse the extracted features and classify the 

fault conditions accurately. The ANN utilizes a back-

propagation training technique to learn from the extracted 

features and identify patterns associated with various fault 

scenarios in the multi-level inverter.  

Through the integration of DWT-based signal processing 

techniques and ANN-based pattern recognition algorithms, 

the proposed approach offers a robust and efficient method for 

fault diagnosis in multi-level inverter systems. By leveraging 

LabVIEW for implementation, the system provides a user-

friendly interface for real-time monitoring and diagnosis, 
contributing to enhanced reliability and operational efficiency 

of power electronics systems. 

The novel defect detection algorithms function by 

detecting important features in output voltage data, which are 

subsequently methodically extracted from the raw data to 

produce diagnostic information. Time and frequency 

characteristics of voltage signals must be analysed together for 

effective problem diagnosis. The method of extracting 

features from an output voltage signal using the DWT is 

shown in Figure 6.  

The procedure describes the output of an equation 

involving differential variables, a(n), at multiple 
decomposition levels using DWT-based multi-resolution 

signal analysis of statistics. The initial data sequence is 

designated as b0[n] as the signal achieves convergence with 

quadrature mirror filters indexed by i and j.  

It is separated at scale 1 into an informational component, 

also represented by the symbol b1[n], and an estimation 

component, b1[n]. At the following scale, the predicted vector 

b1[n] is further divided into b2[n] and c2[n], and so on. 

Equations (1) and (2) provide a mathematical quantification 
for this layered decomposition. 

  [n]2q]bi[n[q]b 1pp
 (1) 

  [n]2q]bj[n[q]c 1pp
 (2) 

In Daubechies 4 wavelet decomposition, spanning from 

D1 to D9, Multi-Resolution Analysis (MRA) is employed to 

scrutinize signal characteristics. Standard deviation emerges 

as a pivotal metric, serving as a gauge for signal energy and 

power transitions within the decomposition process. As the 

signal undergoes successive levels of decomposition, its 

energy distribution across various frequency bands is 

analysed.  

This facilitates the identification of significant features 
and patterns, aiding in fault diagnosis and signal 

interpretation. Through MRA, Daubechies 4 wavelet 

decomposition enables a comprehensive understanding of the 

signal’s behaviour at different scales, offering insights crucial 

for effective analysis and decision-making in diverse 

applications, which is expressed in Equation (3). 








nS

1j

2

nn

n

]R(j)[h
1S

1
STD  (3) 

In this case, Sn indicates the vector’s temporal span and 

Rn its average value. The analysis of energy levels in discrete 

wavelet transform multi-resolution analysis signals is crucial 

for detecting and diagnosing potential failures in inverters, 

aiding in predictive maintenance strategies. 

3.1. DWT - MRA Analysis 

Figure 6 showcases an extensive portion of the DWT 

spanning from D1 to D9, facilitating MRA of informative 
signals. This analysis identifies significant components within 

the signals, enabling a comprehensive understanding of their 

characteristics across various decomposition levels. Table 1 

illustrates the DWT - MRA decomposition analysis. 
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Fig. 6 DWT - MRA decomposition analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Open circuit faults with different energy levels 

Table 1. Operating frequency at various band levels 

DWT Extraction 

Features 
Operating Frequency (kHz) 

D1 7-12 

D2 2-7 

D3 0.25-2 

D4 0.01-0.25 

D5 0.005-0.01 

D6 0.00025-0.005 

D7 0.00005-0.00025 

D8 0.000025-0.00005 

D9 0.0000075-0.000025 0           1             2            3             4            5            6            7             8              9 

25 

20 

15 

10 

5 

0 

D
W

T
 M

R
A

 E
n

er
g

y
 C

o
n

te
n

t 

No Fault 
S1A O.C. Fault 
S2A O.C. Fault 
S3A O.C. Fault 
S4A O.C. Fault 

m = 0.85 

Level of Decomposition 

0            200           400           600           800          1000         1200        1400         1600         1800         2000 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

20 

-20 

0 

20 

-20 

0 

10 

-10 

0 

5 

-5 

0 

2 

-2 

0 

5 

-5 

0 

20 

-20 

0 

50 

-50 

0 

20 

-20 

0 

No. of Sampling Points 

V
o
lt

ag
e 

M
ag

n
it

u
d
e 



E. Parimalasundar et al. / IJEEE, 11(5), 161-174, 2024 

 

169 

In Figure 7, open circuit faults are depicted with differing 

energy levels, ranging from the S1A switch to the S4A switch. 

Meanwhile, Figure 8 illustrates short circuit faults also 

exhibiting varying energy levels from the S1A switch to the 

S4A switch. These visual representations provide insights into 

the diverse magnitudes of faults occurring across different 
switches, aiding in the understanding of fault characteristics 

and their potential impact on the system’s performance and 

reliability. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Fig. 8 Short circuit faults with different energy levels 

4. Experimental Validation and ANN Analysis 
4.1. Experimental Setup 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Experimental setup of MLI with load 

The experimental setup for five-level MLI includes a 

load, Insulated Gate Bipolar Transistor power module, firing 
circuit, Digital Storage Oscilloscope (DSO), and a laptop for 

MATLAB-ANN training. This configuration allows for 

comprehensive testing and optimization of MLI performance, 

facilitating research and development in a real-time fault 

recognition system. Figure 9 illustrates the real-time output 

signals of a five-level output voltage in different scenarios: (a) 

No fault, (b) S1A - Open Circuit (OC) fault, (c) S2A - OC 

fault, (d) S3A - Short Circuit (SC) fault, and (e) S4A - SC 

fault. These signals provide insights into fault detection and 

system response for comprehensive analysis and mitigation 

strategies. 
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Fig. 10 (a) Five-level output voltage - No fault, (b) S1A - OC fault,                               

(c) S2A - OC fault, (d) S3A - SC fault, and (e) S4A - SC fault. 

4.2. DWT Analysis Based on LabVIEW Approach 

Figure 10 shows LabVIEW DWT analysis performed to 

the output voltage pattern of a five-level MLI with standard 

deviation used for fault diagnosis. The accompanying plot 

illustrates the standard deviation variations, aiding in fault 

identification and system monitoring. In Figures 11 and 12, 
LabVIEW employs DWT and ANN analysis to identify a 

faulty switch within the MLI system. The analysis provides a 

faulty switch meter indicating the severity of the fault.  
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It generates a detailed report for efficient troubleshooting 

and maintenance, enhancing the reliability and performance of 

the MLI system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 LabVIEW DWT analysis based on the output voltage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 12 LabVIEW DWT ANN analysis to identify a faulty switch 

4.3. ANN Approach to Identify Faulty Switch 

Figure 13 showcases a back-propagation feed-forward 

network used for various applications, including pattern 

recognition and function approximation. Table 2 outlines the 

specifications of this ANN. The neural network comprises 

nine input nodes, 18 nodes in the hidden layer, and nine nodes 

in the output layer.  

It employs a learning rate (η) of 0.1 and undergoes 2500 

iterations of training. During training, it utilizes 200 values, 

while 150 test input values are employed. The convergence 

criteria are defined as 0.01. Figure 14 illustrates the process of 

identifying the minimum MSE during the training phase of the 
ANN. This is a critical step in ensuring the network’s accuracy 

and effectiveness in learning the desired patterns or 

relationships within the data. Figure 15 displays the MSE 

during the training process, indicating the disparity between 

the actual output and the desired output. The goal-based 

approach ensures that the network’s performance steadily 

improves over epochs, ultimately reaching a predefined 

threshold. Monitoring MSE throughout epochs aids in 
assessing the network’s convergence and determining if 

further training iterations are necessary for optimal 

performance. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Fig. 13 Back propagation feed-forward network 

Table 2. Major parameters of Artificial Neural Network  

Parameters Values 

Number of input layer 9 

Number of hidden layers 18 

Number of the output layer 9 

Value of learning rate (η) 0.1 

Number of iterations 2500 

Number of training patterns 200 

The number of tested values considered 150 

Overall convergence criteria 0.01 

 

 

 
 

 

 

 
 

 

 
 

 

 
 
 

Fig. 14 Identification of a minimum mean square error 
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Fig. 15 Mean square error train and goal based on epochs 

 

 
 

 

 

 
 

 

 
 

 

 
 
 

Fig. 16 Faulty switch identification based on the number of hidden 

layers 
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(i) 

Fig. 17 (a) - (i) Identification of faulty switch based on a mean output of a neuron

Figure 16 illustrates the faulty switch identification based 

on a number of hidden layers. Figure 17 illustrates the 

identification of a faulty switch based on the mean output of 

neurons corresponding to various conditions: (a) to (i) 

represent the mean output under no fault, open circuit, and 

short circuit conditions, aiding in fault diagnosis. 
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5. Conclusion 
The integration of Discrete Wavelet Transform, Artificial 

Neural Networks, and Back Propagation Training presents a 

robust methodology for detecting open and short circuit faults 

in multi-level inverters. By extracting fault-related features 

from the time-frequency domain using DWT and leveraging 

ANN classification trained with Back Propagation, accurate 

fault recognition is achieved. The developed LabVIEW real-

time fault diagnosis model validates the effectiveness of the 

approach, offering a practical framework for real-time fault 

detection and diagnosis. This methodology holds promise for 

enhancing the reliability and operational efficiency of multi-

level inverter-based power systems. Future research could 

explore extending this methodology to other types of faults, 

refining the fault classification accuracy, and integrating it 
into broader power system monitoring and control 

frameworks. Overall, this work contributes to advancing fault 

recognition in multi-level inverters, addressing crucial 

challenges in modern power systems. 
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