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Abstract - The article discusses experimental research on the navigation control of self-driving cars using predictive control. 

The effectiveness of the solution lies in its ability to steer the vehicle within its lane and avoid collisions. Model Predictive 

Control (MPC) proves highly effective at speeds of 1 meter per second, ensuring smooth position changes, quick setup, and 

minimal steering angle deviations. This control approach could enhance the development of autonomous vehicles. The study 

lays the groundwork for future research and progress in autonomous vehicle navigation control. Recognizing the limitations of 

the current MPC controller at higher speeds, future studies could focus on integrating additional intelligent and adaptive control 

algorithms to enhance overall performance in various dynamic scenarios. Experimental validation is crucial for bridging 

theoretical concepts with real-world applications, providing a solid foundation for implementing MPC control systems in 
autonomous vehicles. 
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1. Introduction  
In recent years, self-driving cars have been researched 

and produced by many scientists and manufacturers [1]. 

Autonomous vehicles have made technological breakthroughs 
for all levels of driving, independent of the driver [2]. 

Autonomous cars are equipped with driving, control, and 

monitoring support systems to help control the vehicle and 

ensure it operates properly. For example, if a driver steers past 

the desired angle and wants to return the desired value, a 

system that responds to sensors about the steering angle is 

needed [3].  

During travel, the vehicle aligns itself and actively turns 

left or right according to road markings, identifying objects on 

the road and crossing the road to brake and avoid obstacles 

automatically [4]. Therefore, autonomous vehicle technology 

is increasingly demanding, with higher requirements for 
improving control performance and optimizing processes 

integrated into the design of the control system. The 

optimization process is subject to increasing factors, such as 

environmental constraints, weather, safety and energy 

efficiency, size, and cost [5, 6]. This topic has received much 

attention. Specifically, many companies operating in the 

automotive sector are developing control systems that allow 

vehicle automation at different levels.  

A model describing vehicle dynamics has been presented 

[7]. The authors [8] researched focusing on trajectory and 

velocity tracking while combining horizontal and vertical 

control methods mentioned in [9]. Lane-keeping studies are 

found in [10], collision avoidance [11], trajectory planning 

and tracking [12], cruise control [13], vehicle platooning, and 

vehicle clustering [14]. There are currently several collision 

avoidance solutions in vehicle control applications for 

autonomous vehicles, addressing challenges such as static or 
moving obstacle recognition [15], pedestrian detection [16], 

lane changing [17], lane merging [18], or route planning [19].  

In this context, Model Predictive Control (MPC) is a 

powerful optimization strategy for model-based feedback 

control of a system. Essentially, the MPC controller runs a set 

of timely predictions on the system model for different drive 

strategies. MPC determines the following control action 

immediately based on optimization. Next, it reinitiates the 

optimization process to determine the following control input. 

Current and future control inputs are chosen to minimize the 

difference between the target set point and the predicted 
output [20]. The MPC features and capabilities effectively 

meet requirements and achieve optimization tasks. The 

primary MPC controller solves Linear Programming (LP) 

problems, improving the classic PI controller.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Additionally, MPC controllers have the natural ability to 

handle soft and hard constraints. That means the requirements 

imposed by operating conditions can be managed and 

formulated using constraints. However, the MPC controller 

implementation has challenges, such as high computational 

load and power consumption, while embedded system 
applications have resource limitations. This research project 

makes the following key contributions: 

 Successfully designed an MPC controller for navigation 

control of self-propelled vehicles, focusing on position 

and steering angle requirements at speeds of 1m/s and 

3m/s. The self-vehicle operates under normal conditions 

and encounters obstacles. However, the MPC controller 

fails to adjust the vehicle’s navigation appropriately when 

its dynamics change at higher speeds. Thus, there is a need 

to enhance the autonomous vehicle navigation controller 

by integrating other intelligent, adaptive controllers in the 

future. 

 Experimental validation confirms the research findings. 

These results establish a theoretical foundation for 

implementing MPC control in practical scenarios 

involving self-propelled vehicles.  

 This research paves the way for further exploration and 

development in the field of autonomous vehicle 

navigation control. By acknowledging the limitations of 

the current MPC controller at higher speeds, future 

research can focus on integrating additional intelligent and 

adaptive control strategies to enhance the overall 

performance of self-propelled vehicles in various dynamic 
environments. The experimental validation serves as a 

crucial step towards bridging the gap between theoretical 

concepts and real-world applications, setting a solid 

foundation for the practical implementation of MPC 

control systems in autonomous vehicles. 

The article is divided into four main parts. Part 1 presents 

the research motivation and urgency of research to improve 

the performance of autonomous vehicles. Part 2 builds a 

kinematic and lateral dynamic model of a self-propelled 

vehicle with a 2-wheel front axle pulling 02 rear wheels. The 

following section presents the predictive navigation design for 
autonomous vehicles based on the autonomous vehicle’s 

lateral dynamics model. Part 4 demonstrates the effectiveness 

of MPC for autonomous cars in controlling position and 

steering angle by experiment. Finally, there are conclusions 

and future research directions to improve the limitations of 

MPC control.  

2. Lateral Dynamics Model of Autonomous 

Vehicle 
The lateral dynamics model of the autonomous vehicle is 

shown in Figure 1. Figure 1 depicts the dynamic model of a 

car’s motion with an axle, illustrating the primary forces 

affecting the vehicle.  

 

 
 

 

 

 
 

 

 
 

 

 
 

Fig. 1 The lateral dynamics model of the autonomous vehicle 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Fig. 2 Tire slip angle 

We consider the oxygen coordinate system, representing 

the vertical and horizontal directions within the vehicle frame. 

In contrast, the OXY coordinate system denotes the vertical 

and horizontal directions in the absolute reference system. 
Here, ψ signifies the rotation angle of the vehicle body in the 

OXY reference system. By applying Newton’s Law principle, 

the differential equations governing the car’s motion in Figure 

1 can be derived as follows:  

{
𝑚(�̈� + 𝑉𝑥�̇�𝑦) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟

𝐼𝑟�̈� = 𝐼𝑓𝐹𝑥𝑓 − 𝐼𝑓𝐹𝑦𝑟

 (1) 

Where: m and 𝐼𝑟 are the vehicle mass and moment of 

inertia, respectively, and 𝐼𝑟 represent the mass and moment of 

inertia of the vehicle, respectively; 𝐹𝑦𝑓 , 𝐹𝑦𝑟 are the forces 

acting on the wheels in the x and y directions, respectively. 

Empirical evidence suggests that the sideways force 

exerted by a tire is precisely proportional to the angle at which 

it slips (for modest slip angles). This relationship is known as 

the “cornering stiffness” of the tire, and it plays a crucial role 

in the handling and stability of a vehicle during cornering 

maneuvers.  
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Manufacturers carefully design tires to optimize this 

cornering stiffness, balancing factors such as grip, wear, and 

rolling resistance to achieve the desired performance 

characteristics. By understanding and manipulating this 

fundamental property, engineers can fine-tune a vehicle’s 

handling dynamics to provide the best possible combination of 
grip and control. The tire slip angle is shown in Figure 2. 

The slip angle of the tire is written as Equation (2): 

𝑎𝑓 = 𝛿 − 𝜃𝑣𝑓 (2) 

Where 𝛿 is the front tire steering angle. 

The forces acting on the wheels in y directions, 

respectively or rear and fond tire, are calculated in Equation 

(3). 

{
𝐹𝑦𝑓 = 2𝐶𝑎𝑓(𝛿 − 𝜃𝑣𝑓)

𝐹𝑦𝑟 = 2𝐶𝑎𝑟(−𝜃𝑣𝑓)
 (3) 

Where 𝐶𝑎𝑓 , 𝐶𝑎𝑟 are cornering stiffness. 

And 

{
tan𝜃𝑣𝑓 =

𝑉𝑦+𝑙𝑓�̇�

𝑉𝑥

tan 𝜃𝑣𝑟 =
𝑉𝑦−𝑙𝑟�̇�

𝑉𝑥

 (4) 

If 𝜃𝑣𝑓 &𝜃𝑣𝑟 are small. The 𝜃𝑣𝑓 &𝜃𝑣𝑟 are calculated by 

Equation (5) 

{
𝜃𝑣𝑓 =

𝑦+̇𝑙𝑓�̇�

𝑉𝑥

𝜃𝑣𝑟 =
�̇�−𝑙𝑟�̇�

𝑉𝑥

  (5) 

The forces exerted on the rear and front tires in the vertical 

direction are computed in  Equation (6). 

{
𝐹𝑦𝑓 = 2𝐶𝑎𝑓(𝛿 −

𝑦+̇𝑙𝑓�̇�

𝑉𝑥
)

𝐹𝑦𝑟 = 2𝐶𝑎𝑟(−
�̇�−𝑙𝑟�̇�

𝑉𝑥
)

 (6) 

The dynamic model of the autonomous vehicle is rewritten 

as follows: Equations (7) & (8): 

�̈� + 𝑉𝑥𝜓 =̇
2𝐶𝑎𝑓𝛿

𝑚
−

2𝐶𝑎𝑓(𝑦+̇𝑙𝑓�̇�)

𝑚𝑉𝑥
−

2𝐶𝑎𝑟(
�̇�−𝑙𝑟�̇�

𝑉𝑥
)

𝑚𝑉𝑥
   (7) 

�̈� =
𝑙𝑓

𝐼𝑟
(2𝐶𝑎𝑓𝛿 − (

2𝐶𝑎𝑓(𝑦+̇𝑙𝑓�̇�)

𝑉𝑥
) +

𝑙𝑓

𝐼𝑟

2𝐶𝑎𝑟𝛿(𝑦+̇𝑙𝑟�̇�)

𝑉𝑥
  (8) 

Equations (7) and (8) are rewritten as Equations  (9) & 

(10): 

�̈� =
2𝐶𝑎𝑓𝛿

𝑚
−

2(𝐶𝑎𝑓+𝐶𝑎𝑟)

𝑚𝑉𝑥
�̇� − (𝑉𝑥 +

2(𝐶𝑎𝑓𝑙𝑓−𝐶𝑎𝑟𝑙𝑟)

𝑚𝑉𝑥
)�̇�  (9) 

�̈� =
𝑙𝑓2𝐶𝑎𝑓𝛿

𝐼𝑟
−

2(𝐶𝑎𝑓 𝑙𝑓− 𝐶𝑎𝑟𝑙𝑟)

𝐼𝑧𝑉𝑥
�̇� −

2(𝐶𝑎𝑓 𝑙𝑓
2− 𝐶𝑎𝑟𝑙𝑟

2)

𝐼𝑧𝑉𝑥
�̇�  (10)            

The dynamic state space model of the autonomous vehicle 

is rewritten as follows in Equation (11). 
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0
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𝑚

0
2𝐶𝛼𝑓𝑙𝑓

𝐼𝑧 ]
 
 
 
 

𝛿 (11) 

3. Controller Designing A Model Predictive 

Navigation Controller for Autonomous Vehicles 
Linear MPC and dynamic matrix control methods have 

gone viral these past two decades. Although most real 

processes are nonlinear, the majority of MPC techniques 

applied in industrial processes are linear models for one of the 

following reasons: 

 Linear models are quick and easy to deploy compared to 

nonlinear models. 

 Stability and sustainability are still challenges for 

nonlinear models. 

Some nonlinear models and constraint conditions require 

solving non-convex nonlinear optimization problems, so the 

solution is very complicated. Therefore, linear MPC control 

and dynamic matrix control methods are widely used in 

industrial processes due to their simplicity, stability, and ease 

of deployment. While nonlinear models are more accurate 

representations of natural processes, the challenges associated 

with their implementation often make linear models the 

preferred choice for many applications. The model prediction 

controller utilizes object models and input and output noise to 

predict and approximate the state.  

Figure 3 displays the model structure used in the MPC 

controller. The model prediction controller computes the most 

favorable control input by minimizing a cost function 

penalizing departure from the target state trajectory. 

Subsequently, the anticipated condition is used to dynamically 

modify the control input dynamically, enabling the controller 

to follow the intended trajectory precisely. The controller’s 

ability to adapt to system dynamics and disturbances 

uncertainties is crucial for ensuring robust performance. The 
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MPC controller can effectively handle variations and 

disturbances by continuously updating its predictions based on 

feedback from the actual system behavior, maintaining 

stability and tracking accuracy. This adaptive capability allows 

the controller to respond to changing conditions in real-time, 

making it a versatile and reliable tool for various control 
applications.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 3 The MPC controller architecture 

3.1. Object Model 

The car state model is written as the Equations (12) & 

(13): 

𝑥𝑝(𝑘 + 1) = 𝐴𝑝𝑥𝑝(𝑘) + 𝐵𝑆𝑖𝑢𝑝(𝑘) (12) 

 𝑦𝑝(𝑘) = 𝑆0
−1𝐶𝑥𝑝(𝑘) + 𝑆0

−1𝐷𝑆𝑖𝑢𝑝(𝑘)  (13) 

Where: 

xp,yp is the input and output variable of the object. 

Ap, B, and C are state space matrices with constant zero 

delay 

Si is the input diagonal matrix 

S0 is the output diagonal matrix 

xp is the state vector that includes all delay states 

up is a vector of input variables consisting of manipulated 

variables, measured noise, and unmeasured input noise 

yp is a vector of output variables.  

State model Equations (7) and  (8) do not include input 
and output noise. Thus, the car state model is rewritten as the 

Equations (14) & (15): 

𝑥𝑝(𝑘 + 1) = 𝐴𝑝𝑥𝑝(𝑘) + 𝐵𝑝𝑢(𝑘) + 𝐵𝑝𝑣 (𝑘) + 𝐵𝑝𝑑(𝑘) (14) 

𝑦𝑝(𝑘) = 𝐶𝑝𝑥𝑝(𝑘𝑠)𝐷𝑝𝑢(𝑘) + 𝐷𝑝𝑣 (𝑘) + 𝐷𝑝𝑑(𝑘) (15) 

Where:  

𝐶𝑝 = 𝑆0
−1𝐶, 𝐵𝑝𝑢 ,𝐵𝑝𝑣 , 𝐵𝑝𝑑 is a parameter of 𝐵𝑆𝑖. 

𝐷𝑝𝑢 ,𝐷𝑝𝑣 , 𝐷𝑝𝑑is a parameter of 𝑆0
−1𝐷𝑆𝑖. 

(𝑘), 𝑣(𝑘), 𝑑(𝑘) are the measured and unmeasured input 

noises. 

The MPC controller is limited, so Dpu = 0, means that 

the MPC controller does most allow direct transmission from 

any controlled variable to any output of the control object. 

Matrix A, B, C and D are determined as follows: 

A = [

Ap BpdCid 0 0

0 Aid 0 0
0 0 Aod 0
0 0 0 An

] (16) 

B = [

Bpu Bpv BpdDid 0 0

0 0 Bid 0 0
0 0 0 B0d 0
0 0 0 0 Bn

] (17) 

C = [Cp DpdCid C0d] [
Cn

0
];  (18) 

D =0 Dpv DpdDid D0d [
Dn

0
]; (19) 

 3.2. Input Noise Model 

The input noise model is determined by the Equations  

(20) and (21): 

 𝑥𝑖𝑑(𝑘 + 1) = 𝐴𝑖𝑑𝑥𝑖𝑑(𝑘 + 1) + 𝐵𝑖𝑑𝑤𝑖𝑑(𝑘 + 1)   (20)  

𝑑(𝑘) = 𝐶𝑖𝑑𝑥𝑖𝑑(𝑘) + 𝐷𝑖𝑑𝑤𝑖𝑑(𝑘)     (21) 

Where: 

𝐴𝑖𝑑 ,𝐵𝑖𝑑 , 𝐶𝑖𝑑  are constant state matrices. 

𝑥𝑖𝑑(𝑘) is the vector of the measured input noise when 

𝑛𝑥𝑖𝑑 ≥ 0. 
d(k) is the vector of input noise 𝑛𝑑cannot measure. 

𝑤𝑖𝑑 is the input noise vector whose mean value is 0 when 

𝑛𝑖𝑑 ≥ 1. 

3.2.1. Output Noise Model 

The Equations determine the output noise model (22) & 

(23): 

𝑥0𝑑(𝑘 + 1) = 𝐴0𝑑𝑥0𝑑(𝑘 + 1) + 𝐵0𝑑𝑤𝑑0(𝑘 + 1)  (22) 

 𝑦0𝑑(𝑘) = 𝐶0𝑑𝑥0𝑑(𝑘) + 𝐷0𝑑𝑤0𝑑(𝑘) (23) 

Where, 

𝐴0𝑑 ,𝐵0𝑑 , 𝐶0𝑑, 𝐷0𝑑 are constant state matrices. 

𝑥0𝑑(𝑘) is the vector of the measured output noise when 

𝑛𝑥0𝑑 ≥ 0. 

𝑦0𝑑(𝑘) is the vector of the output noise 𝑛𝑦Cannot 

measure. 

𝑤0𝑑 is the vector of input noise whose mean value is 0, 

when 𝑛0𝑑 ≥ 1. 
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3.3. Measured Noise Pattern 

The measured noise pattern is determined by the Equation 

(24): 

 𝑥𝑛(𝑘 + 1) = 𝐴𝑛𝑥𝑛(𝑘 + 1) + 𝐵𝑛𝑤𝑛(𝑘 + 1) (24) 

Where,  

𝐴𝑛 ,𝐵𝑛 , 𝐶0𝑑 are constant state matrices. 

𝑥𝑛(𝑘) is the vector of the measured noise when 𝑛𝑥𝑛 ≥ 0 ; 
𝑤𝑛(𝑘)is the input noise vector whose mean value is 0, 

when 𝑛𝑛 ≥ 1. 

4. Results of Experiment and Assessment  
The experimental model showcased in Figure 4 

demonstrates the effectiveness of utilizing the MPC for 

autonomous vehicle navigation. By employing this advanced 

control technique, the vehicle is able to make real-time 

decisions based on predictive models, enhancing its ability to 

navigate complex environments with precision and efficiency. 

This innovative approach represents a significant step forward 

in the development of autonomous driving systems, paving the 

way for safer and more reliable transportation solutions in the 

future. 

 

Fig. 4 The experimental model of an autonomous car  

The autonomous car’s experimental model with multi-

directional wheels is deployed and controlled based on the 

algorithm flow chart in Figure 5. The algorithm ensures 

precise navigation and obstacle avoidance, making the 
autonomous car a safe and efficient mode of transportation.  

The experimental model showcased in Figure 5 

demonstrates the effectiveness of utilizing the MPC for 

autonomous vehicle navigation. By employing this advanced 

control technique, the vehicle is able to make real-time 

decisions based on predictive models, enhancing its ability to 

navigate complex environments with precision and efficiency.  

This innovative approach represents a significant step 

forward in the development of autonomous driving systems, 

paving the way for safer and more reliable transportation 

solutions in the future. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 
Fig. 5 Flow chart of navigation algorithm for autonomous vehicle 

model 

Table 1. Experimental specifications 

Engine Size 42*42*47mm (H*W*H) 

Shaft Size 5mm 

Corner Step 1.80 

Accuracy +/- 5% 

Torque 0.45 Nm 

Voltage 12-24 VDC 

Electric 1.5 A 

 
Experiment with the MPC controller with sampling time 

𝑇𝑠 = 0.1. Output weight (2,2,3). The control variable 
constraints are [min -5; max +5]. The obstacle in this paper is 

the assumption of an immobile object in the middle of the 

center lane of the same size car. The MPC controller matrices 

have the following values: 

Start 

End 

False 

True 

Set the Velocity and Target 

Position for Automated Guided 

Car 

The Controller Receives 

Feedback on Velocity Values, 

Current Position and 

Measurement Noise 

The MPC Controller Predicts 
the Vehicle’s Future Speed and 

Position 

Is the Vehicle’s Position off the 

Trajectory? 

The Automated Guided Car 

Moves to the Destination 
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𝐴𝑑 = [
1 0 0
0 1 0
0 0 1

] ; 𝐵𝑑 = [
0.1 0
0 0
0 0

] ;  

 
 𝐶𝑑

= [
1 0 0
0 1 0
0 0 1

]; 𝐷𝑑 = [
0 0
0 0
0 0

] 

Develop four experimental scenarios to demonstrate the 

effectiveness of the MPC navigation control algorithm for 

autonomous vehicles. 

4.1. Scenario 1 

The autonomous vehicle moves from position A (right 

lane) to position B (left lane) at a speed of 1m/s. The 

experimental results are shown in Figure 6. 

 

Fig. 6 The autonomous vehicle moves from position A (right lane) to 

position B (left lane) at a speed of 1m/s 

4.2. Scenario 2 

The autonomous vehicle moves from position A (right 

lane) to position B (left lane) at a speed of 3m/s. The 

experimental results are shown in Figure 7. Given the 

challenges encountered at higher speeds, it is evident that 

further optimization and fine-tuning of the MPC controller are 

necessary to enhance the autonomous vehicle’s performance.  

Addressing the inaccuracies in steering angle control and 

trajectory tracking will be crucial in ensuring safe and efficient 
navigation in real-world scenarios. By refining the controller’s 

parameters and incorporating robust feedback mechanisms, 

we can mitigate the observed deviations and improve the 

overall stability and responsiveness of the self-propelled 

vehicle. These insights underscore the importance of 

continuous testing, validation, and refinement to advance the 

capabilities of autonomous systems in dynamic environments. 

 

Fig. 7 The autonomous vehicle moves from position A (right lane) to 

position B (left lane) at a speed of 3m/s 

5. Conclusion 
Successfully designed the MPC prediction algorithm to 

control the motion of self-propelled vehicles. The self-

propelled vehicle is transported according to the set trajectory, 

with the required response time and the most minor actual and 

set steering angle errors. In which the MPC controller only 

responds when the autonomous vehicle’s dynamics do not 

change. The correctness of the proposed solution is verified by 

experiment. However, this controller needs to be designed in 
the intermittent domain, depending on the accuracy of the 

autonomous vehicle model. These are the first steps to realize 

experimental results. Therefore, motion control for 

autonomous vehicles requires continued research and the 

design of intelligent control methods (machine learning, deep 

learning, reinforcement learning, iterative learning) and 

implementation in actual autonomous cars. Improving and 

enhancing MPC control to respond to dynamic system 

changes brings good performance in autonomous vehicle 

navigation. Integrating adaptive learning algorithms, such as 

neural networks and reinforcement learning, into the MPC 
framework shows promise for effectively addressing dynamic 

system changes. 
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