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Abstract - The continuous increase in complexity and nature of loads in a power system has given rise to unknown inevitable 

risks hidden from the Power System Operator (PSOs). All the electric equipment in a power grid are assets to a utility whose 

ultimate goal is to prevent severe damage to these significant electrical components caused by disturbances within a power 

system. Several utilities are transitioning towards an intelligent grid. Advanced communication technology and the revolution 
in Artificial Intelligence (AI) have helped PSOs to accurately determine the state of any dynamic power system, providing an 

observable and comprehensible power grid. First, the paper explores the concept and significance of big data by highlighting 

some unique characteristics of synchrophasor measurement generated at every interval in conjunction with traditional data. 

Then, there are challenges in data acquisition and processing techniques while handling these raw data. Also, the methodology 

and standards are considered for verifying the reliability of synchrophasor data before any online and offline power system 

study. Secondly, the paper emphasizes the importance of stability analysis for identifying vulnerable points within the network 

prone to voltage collapse. It will also discuss advancements in simulation studies and control strategies followed by operators 

to identify critical contingencies and implement corrective measures, enhancing the overall security of a power system using 

wide-area monitoring systems. Subsequently, the paper focuses on WAMS Enabled Machine Learning Approaches for Power 

System Stability. This segment comprehensively covers transient and voltage stability assessments, showcasing the innovative 

intersection of machine learning techniques with WAMS technology. The discussion sheds light on various applications of 
machine learning in the realm of power system stability. 

Keywords - Synchrophasor technology, Wide Area Monitoring System (WAMS), Phasor Measurement Unit (PMUs), 

Synchrophasor technology, Big data, Artificial Intelligence, Machine Learning, Power System Analysis, Transient Stability 

Analysis and Voltage Stability Analysis.

1. Introduction  
The power system is a complex and vast network 

comprising generation, transmission, and distribution sectors. 
The central transmission utility is responsible for developing, 

planning, and operating the power transmission sector. The 

Regional Load Dispatch Center (RLDC) monitors and 

manages the transmission grid. India’s transmission system is 

one the largest in the world and operates at 765 kV, 400 kV, 

220 kV, and 132 kV.   

The transmission grid is divided into five regional grids, 

each operated by a RLDC. They coordinate the scheduling and 
dispatch of electricity from different generating stations and 

manage grid stability by ensuring the balance between 

generation and demand. The transmission sector in many 

countries faces some common challenges, including 

transmission losses and inadequate grid infrastructure. 

Various stakeholders are investing in projects to strengthen 

transmission infrastructure, reduce congestion, and enhance 

overall grid capacity. Modern power grids’ complexity and 

dynamic nature, exacerbated by the increasing integration of 

Renewable Energy Sources (RES) and fluctuating demands, 

necessitate advanced monitoring and analytical solutions.  

With the integration of a Wide area monitoring system, 

the PSOs are now observing real time data and control power 
system components. The Synchrophasor data, along with 

other traditional data, helps utilities determine adequate 

control strategies for enhancing power system security. The 

data utilization involves the interpretation of spatio-temporal 

data from each point in the power system. The size of a power 

system is very large, considering many instrumentation 

equipment, each having different characteristics and 

ambiguous occurrence of malfunctions due to multiple 
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reasons. The insufficiency of data handling techniques may 

cause less than accurate power system stability analysis when 

considering power system security. The paper highlights the 

various synchrophasor data utilization techniques, addressing 

the challenges in data acquisition and pre-processing.  This 

review delves into the innovative intersection of AI techniques 
with Wide Area Monitoring System technology, focusing on 

their application in power system stability analysis.  

The paper highlights the various synchrophasor-based 

machine learning algorithms, which mainly focus on real or 

synthetic Phasor Measurement Units for stability assessments. 

How the power system analysis gradually shifted from a 

simple linguistic-based approach used in Fuzzy logic to 

statistical decision theory to the most advanced deep neural 

network-based algorithm, which is able to bypass many 

shortcomings of traditional and classical machine learning-

based Power System Analysis (PSA). The advancement in 

neural networks has also helped data handling processes like 
data augmentation, labeling and anomaly detection, which 

further improves the PSA model are also discussed. The goal 

is to provide a comprehensive overview of these 

advancements, mostly in the computer science domain, and it 

is potential to revolutionize power system operations and 

management. 

1.1. Wide Area Monitoring System (WAMS) 

The PMUs are high-capacity microprocessor-based 

relays crucial for measuring electrical values in power 

systems, predominantly positioned in substations. These units 

effectively communicate exact values of electrical voltage and 
current phasors, playing a pivotal role in determining the 

operating characteristics of power grids. PMUs serve as vital 

health monitors, offering real-time data for control and 

optimization of power systems. They are integral in multi-area 

operations such as monitoring and communication and 

bolstering power system stability and security. This 

technology provides crucial information on system dynamics 

during pre- and post-contingency situations. The data from 

PMUs assists operators in choosing the most effective 

algorithms for swift fault detection, identification, and 

isolation.  

The Optimal PMU Placement (OPP) significantly 
enhances state estimation by supplying real-time dynamic data 

from key components like generating plants, lines, 

substations, and protection systems. The goal is to achieve 

complete observability of electromechanical nodes, especially 

during events or disturbances that affect multiple locations, 

leading to correlated changes in measured quantities. 

Analyzing spatial correlations helps detect patterns, identify 

anomalies, and improve the prediction or estimation of system 

behavior. This critical data, timeless and location-specific, is 

indispensable for monitoring a power grid’s Operating 

Conditions (OC). The diverse electrical data features from 
PMUs, present at each location, distribute information across 

multiple dimensions that describe the state of the power grid. 

This PMU data is essential for Wide Area Monitoring System 

(WAMS) applications, which mainly focus on protection and 

control applications. The utilization of PMUs enhances the 

reliability and efficiency of the grid by providing operators 

with precise, actionable data in real-time [1]. 

 

 

 

 
 

 

 
 

 

 

 
 

 
 

 

 
Fig. 1 Various synchrophasor applications using PMUs 

The significance of WAMS becomes even more apparent 

when considering the sensitivity and complexity of wide-area 

disturbances, which can rapidly cause substantial damage and 

potentially lead to system collapse. Information regarding the 

severity of disturbances is essential, providing an accurate 
real-time snapshot of the system’s state and alerting operators 

to emerging and concealed faults.  

The data types required for synchrophasor applications 

vary, depending on the multilayered nature of the power and 

energy industries. Essential data such as power system 

quantities (voltage, current, frequency, ROCOF, and phasor) 

necessitate real-time transmission to ensure reliable protection 

and control operations. The accurate and consistent 

information provided by the synchrophasor is vital for 

identifying congestion points within the grid, enabling 
operators to make optimal dispatch changes to ensure reliable 

power delivery [1].  

Synchrophasor technology presents several exciting 

avenues for research that can further enhance its application 

and effectiveness in power systems.  

 

1. Algorithm development and testing: Testing of 
algorithms in real-world conditions as well as simulations 

ensure bridging of the gap between theoretical research 

and operational implementation. 

2. Open-source platforms: Platforms which provide 

researchers with a standardized approach for 

synchrophasor data handling and algorithm testing. It 
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eventually fosters innovation and fosters adoption of new 

technology in grid monitoring and control. 

3. Anomaly detection: Measurement instruments are 

susceptible to anomalies due to communication glitches 

and hardware malfunctions. Research in this area 

involves developing models that can accurately identify 
usual patterns in synchrophasor data, preventing false 

alarms and ensuring the stability of the grid. 

4. Integration of RES: Research in this area might focus on 

developing algorithms that can predict and compensate 

for fluctuation caused by renewables like solar and wind. 

Renewables are becoming more prevalent.  

Each of the research areas under a wide area monitoring 

system pushes the boundaries of synchrophasor technology, 

directly contributing to a more efficient and secure power grid 

[4]. 

1.2. Phasor Measurement Units (PMU)  
The PMUs are high-capacity microprocessor-based 

relays crucial for measuring electrical values in power 

systems, predominantly positioned in substations. These units 

effectively communicate exact values of electrical voltage and 

current phasors, playing a pivotal role in determining the 

operating characteristics of power grids. PMUs serve as vital 

health monitors, offering real-time data for control and 

optimization of power systems. They are integral in multi-area 

operations such as monitoring and communication and 

bolstering power system stability and security.  

This technology provides crucial information on system 

dynamics during pre- and post-contingency situations. The 
data from PMUs assists operators in choosing the most 

effective algorithms for swift fault detection, identification, 

and isolation. The Optimal PMU Placement (OPP) 

significantly enhances state estimation by supplying real-time 

dynamic data from key components like generating plants, 

lines, substations, and protection systems. The goal is to 

achieve complete observability of electromechanical nodes, 

especially during events or disturbances that affect multiple 

locations, leading to correlated changes in measured 

quantities.  

Analyzing spatial correlations helps detect patterns, 

identify anomalies, and improve the prediction or estimation 
of system behavior. This critical data, timeless and location-

specific, is indispensable for monitoring a power grid’s 

Operating Conditions (OC). The diverse electrical data 

features from PMUs, present at each location, distribute 

information across multiple dimensions that describe the state 

of the power grid. This PMU data is essential for Wide Area 

Monitoring System (WAMS) applications, which mainly 

focus on protection and control applications.  

A Phasor Measurement Unit (PMU) typically receives 

analog inputs from transducers, capturing three-phase 

electrical values such as voltages, currents, and phasors. This 

raw data undergoes preprocessing through an anti-aliasing 

filter to eliminate high-frequency noise or signals that could 

distort the data. This is followed by converting the analog 

signals into digital form using an Analog-to-Digital Converter 

(ADC). The Digital Signal Processor (DSP) then runs a phasor 
estimation algorithm to estimate signal quantities like 

frequency, phase angle, and the Rate of Change of Frequency 

(ROCOF) [4].  

The processed phasor data is transmitted to a Phasor Data 

Concentrator (PDC) via a communication interface for further 

analysis and control. The phasor estimation algorithm, 

employing Discrete Fourier Transform (DFT) methods, 

calculates the positive sequence voltage and current value. 

This algorithm is crucial for determining the magnitude and 

phase angle of the phasors, which are essential in calculating 

the power system’s frequency and ROCOF. The PMU data, 

encompassing local estimates, frequency, and ROCOF, is then 
relayed to data aggregators for additional analysis and control 

purposes [2, 3]. Various data-related issues must be addressed 

at the individual component level of PMU, as shown in Figure 

2. The PMU data helps move from power system state 

estimation to state measurement, enabling real-time system 

monitoring.     

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2 Block diagram consisting of data-related issues at individual 

components of PMU 
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like fault and event (detection and classification, transient 
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research areas in Artificial intelligence-based power system 
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using machine learning in conjunction with synchrophasor 

data, allowing for more accurate and timely assessment, 

contributing to optimizing power grid operations, and 

preventing any potential stability and security issues. This 

paper provides insight into methods of continuous validation 

and optimization techniques of new algorithms, processes, and 
tools using synchrophasor data. 

All the alternative methods, like Signal analysis, 

Statistical analysis, and physics-based models, have 

limitations and challenges and may not be as effective as 

machine learning. Promoting power system stakeholders to 

participate in educating and creating awareness of 

synchrophasor technology among other stakeholders and 

motivating research institutes to develop WAMS applications 

so that future blackouts can be avoided.  

1.4. Outline of this Review 

A Comprehensive Review outlines the organization of the 

paper following Chapter 1. The integration of Wide-Area 
Monitoring Systems with Accurate Dynamic Models for 

Advancing Grid Stability explores the role of power system 

models in analysis and their integration with WAMS for 

determining robust control and operation schemes. Later, the 

paper discusses the future of big data and synchrophasor 

technology in grid management, challenges in synchrophasor 

data management, machine learning model incorporation, and 

data quality issues.  

Furthermore, the paper delves into Wide Area Monitoring 

System (WAMS)-enabled machine learning methodologies 

for assessing power system stability, encompassing transient 
and voltage stability evaluations. It also discusses the 

exclusive use of synchro phasor data in AI-enabled stability 

studies conducted over the past five years.  

The paper summarizes its findings and underscores the 

pivotal role of artificial intelligence and machine learning in 

power system stability analysis. Each section meticulously 

explores distinct facets of power system stability, employing 

data fusion alongside machine learning techniques, and 

critically examines the challenges and potential future 

advancements in this domain. 

2. Big Data in WAMS Technology 
The core of an efficient power system analysis is the data 

that satisfies the fundamental dynamic model of the power 

system. The PS is designed and operated using a mathematical 
model that illustrates the power system dynamics of the 

electrical components under steady and during abnormal 

cases.  

Grid modeling tools like production cost modeling, 

capacity expansion modeling, probabilistic modeling, and 

network reliability monitoring are some examples of statistical 

assessments essential for guiding the power industry transition 

towards clean electricity, and they help power engineers to 

plan and make informed decisions.  

The accuracy of the simulated dynamic response of the 

power system depends on how precisely the enormous grid is 

reduced to lower-dimension models.  Therefore, the vast grid 

architecture needs to be partitioned and segregated into zones 

and further minimized into smaller zones to identify and 

maintain the adaptation of the grid’s operating point. This is 

necessary to reduce computational burden while performing 

power system analysis and application of certain parts of the 

power grid [5].  

2.1. Fundamental Need for Accurate Dynamic Model 

Wide Area Monitoring Systems (WAMS) technology 

represents a sophisticated power system monitoring and 

stability analysis approach. One of the significant challenges 

in this domain is the vast and sparse nature of synchrophasor 

measurement and other traditional data, often covering a vast 

geographical expanse with limited visibility. This scenario 

necessitates intelligent data fusion and sensor selectivity to 

handle and accommodate the collected data effectively. The 

data gathered often presents challenges such as noise, gaps, 
and various time and space-related patterns, so analyzing 

incomplete labeled data is essential.  

Addressing these challenges is crucial in managing 

WAMS data, considering their sparse distribution, noise, 

incompleteness, and the temporal and spatial dependencies 

inherent in such data. Concerning network reliability analysis, 

the Development of wide area monitoring equipment has 

increased the accuracy and resolution of data acquired by the 
power utilities. The power system behavior can be optimized 

by analyzing correlations within data spread across the power 

system in space and time. Both steady state and transient 

analysis are vital in ensuring a stable power system in power 

systems.  

The Dynamic models help identify potential issues, 

improve system performance, and provide stable and secure 

operation. Data fusion strategies combine diverse data types 
to enhance the understanding and management of complex 

systems, as shown in Figure 3. High-resolution data from 

PMUs at various fault locations are merged with traditional 

data like historical load patterns, maintenance records, and 

operational data from multiple sensors and systems. The 

fusion of these two data types enables a more comprehensive 

analysis, enhancing decision-making. 

For example, multi-bus power systems composed of 

many sub-systems with incompatible defined inputs and 

outputs might cause port mismatches, which might cause 

instability. Participation analysis during instability, 

manipulation of state descriptor, model inversion, connection 

of sub-systems, and other transformations were performed to 

validate the state space analysis model to determine the 

controllability for proper and improper systems. 
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Fig. 3 Conceptual view of data fusion strategy 

Table 1. Standard source of data or information in advanced power systems 

Instruments Rate of Sampling Characteristics 

Digital Fault Recorder (DFR) The sampling rate is 500 Samples per cycle. 
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events. 

Seismic Data 
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2.2. Volume and Size of Power Grid Data 

For accurate dynamic modeling of power system, a power 

engineer must have access to critical information about the 

state of electrical equipment and the various sources of 

information in the Smart grid-like AMI, SCADA, WAMs, 

GIS, and other traditional metering data, Shown in Table 1. 
The operator should be able to merge these various raw data 

and draw semantic insight from it. 

2.3. WAMS Scenarios Currently in India  

In India, the initial phase of deploying PMUs began as 

exploratory projects to assess the capabilities of 

synchrophasor technology, setting the stage for its broader 

implementation [6]. In a landmark development in 2012, GE 

Power’s Grid Solutions commissioned an unprecedented 
WAMS for the Power Grid Corporation of India Ltd (PGCIL), 

focusing on the Northern Grid.  

This initiative termed the Unified Real Time Dynamic 

State Measurement (URTDSM) system, planned the 

installation of 1,950 PMUs, aiming to reach a total of 3,000 

units across 351 substations, linking 29 State Control Centers, 

5 Regional Control Centers, and 2 National Control Centers. 

The framework requires a substantial bandwidth of 146 Mbps 

to manage high-speed, synchronous data flow across different 

grid layers, utilizing complex communication technologies 

such as Ethernet, TCP/IP, and Web protocols.  

This system mandates an annual WAMS data storage 

capacity of about 500 terabytes. Under the URTDSM project, 

the implementation and evaluation of new software and 

substation equipment for the WAMS were conducted. This 

system significantly enhances the real-time awareness and 

visualization of the power grid, thereby augmenting 

operational and planning efficiency. 

Recognized as a project of national importance, it 

receives considerable financial backing, with 70% funding 

from the Ministry of Power through the Power System 

Development Fund (PSDF). The system’s advanced 

functionalities include detecting and analyzing low-frequency 
oscillations, managing islanding operations, and validating 

dynamic models offline. Moreover, the adoption and 

calibration of innovative grid technologies in India are 

underway through pilot projects initiated by various utilities. 

The Ministry of Power has endorsed 14 smart grid pilot 

projects nationwide in the distribution sector. The projected 

expenditure of these initiatives is approximately USD 212 

billion, with half of the funding contributed by the Ministry of 

Power and the remainder by the utilities. 

Table 2. PMU installation with optical fiber 

Region Substation Feeders PMU PDC MPDC SPDC 

 ISTS STU ISTS STU ISTS STU    

North 115 618 326 64 251 132 6 9 1 

South 73 428 225 58 209 110 6 4 1 

West 67 591 303 69 344 178 11 4 1 

East 82 544 281 13 50 26 4 5 1 

North East 14 93 49 26 71 37 0 3 1 

TOTAL 351 2274 1186 239 925 483 27 25 5 

Table 3. PMU installation without optical fiber [Report by-POSOCO, “Synchrophasors initiative in India,” New Delhi, tech.rep. December 2013] 

Region Substation Feeders PMU PDC MPDC SPDC 

 ISTS STU ISTS STU ISTS STU    

North 83 96 434 435 227 231 6 9 1 

South 60 767 520 415 267 216 11 4 1 

West 51 44 395 199 202 105 4 5 1 

East 60 71 348 289 183 152 6 4 1 

North East 18 22 95 69 50 36 0 3 1 

TOTAL 272 309 1792 1407 929 740 27 25 5 
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2.4. The Characteristics of Synchrophasor Data 

Synchrophasor data offers high temporal resolution, 

which traditional data sources lack. The changes in a power 

system’s operating condition play a crucial role in developing 

accurate dynamic models of the power grid. The size of 

synchrophasor data generated by PMU is significant.  

One PMU device can collect more than 4.5 GB of phasor 

data daily. There is no exact report on how much WAMS data 

is produced annually. However, the size can be estimated by 

considering specific characteristics. Extensive data handling 

leads to increased power consumption, attributed to the more 

significant number of data points processed per cycle. 

The size of synchrophasor data generated in the power 

system usually depends on: 

1. Types of sensors 

2. High-frequency data sampling and preprocessing 

3. Data encoding and compression 

4. Number of PMUs installed 

Time-domain simulation is necessary for creating a 

dataset of the dynamic changes happening in the power 

system; creating a database of a small test bus is time-

consuming. The limited labeled data is still an active research 

gap for various power grid applications.  In this paper [7], 

Real-time PMU measurement is replaced by synthetic 

synchrophasor data, reducing the simulation run-time, which 

merely accounts for data quality issues. Therefore, it is 

necessary to have publicly accessible data sources available 

for the research community. Furthermore, the necessity of a 

standard benchmark for power system test cases should be 
openly available to the research community [8, 9].  

Table 4. The data generated annually depends on the type of sensors 

utilized and the number of data streams 

N
u
m

b
er

 o
f 

S
tr

ea
m

s 

 SCADA PMU DFR 

10000 470.2 GB 45.9 TB 4.5 PB 448.5 PB 

100 4.7 GB 470.2 GB 45.9 TB 4.5 PB 

1 48.1 MB 4.7 GB 470.2 GB 45.9 TB 

 0.1 Hz 10 Hz 1 KHz 100 KHz 

 Sensor’s Frequency 

 

In Table 4, shown above, the volume of data generated 

annually is highly variable and depends significantly on the 

nature and quality of the sensors. The various sensors and the 

sheer number of data streams play a crucial role in determining 

the total data output, leading to a potentially exponential 

increase in data volume. 

2.5. Data Quality  

However, PMUs are not immune to data quality issues, 

which can be inherent to information and telecommunication 

limitations and must be accounted for. The data loss issue can 

be tackled using several advanced data recovery methods. 

However, there is no standardized method to address data loss, 
and data are often set to zero by the substitution method. 

Therefore, a methodology is required to ensure the reliability 

and authenticity of synchrophasor data. Developments in 

technology, evaluation procedures, and computational 

methods are necessary to handle data quality and security 

interdependency efficiently. 

Anomalies in PMU data can cause problems for the 

protection of the power system, including false and delayed 

tripping. Bad data anomalies are caused by errors in the 

synchrophasor data, such as sensor errors, communication 

errors, or software errors. Figure 4 illustrates that data quality 

and cybersecurity are deeply interdependent; high-quality data 
is essential for effective cybersecurity measures, as accurate 

and reliable information is needed to detect and respond to 

threats accurately. Conversely, robust cybersecurity is crucial 

to ensure data reliability; protecting it from unauthorized 

access and manipulation is essential to maintain its quality. 

This reciprocal relationship highlights the need for a holistic 

approach to data management and cybersecurity to maintain 

the integrity and utility of critical data systems. 

 
 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
Fig. 4 Synchrophasor data’s interdependency based on quality and 

cybersecurity of various synchrophasor technology  
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resolution temporal data at every interval [10]. Encoding 

involves converting raw PMU data into a standard 

representation that is easy to interpret and that different 

systems or applications can utilize. PMU data can be stored in 

various files and structures ranging from well-structured, 

semi-structured data to quasi-structured data.  

Further, processing time, compatibility, and 

interoperability are some factors that decide a suitable 

encoding scheme. Compressing large volumes of data into 

readable structures is crucial for transmission and data storage, 

real-time processing, and analytics and security [11].  

PMU data compression is essential for efficient and 

effective utilization of data. Still, specific encoding techniques 

and compression algorithms may sacrifice subtle data 

variations to maintain high compression ratios.  

2.5.2. Time Synchronization Error  

The synchronization of multiple PMUs is critical for 

analyzing the power system state and developing control 
applications to enhance power grid security. The accuracy and 

efficiency of PMUs are augmented by the Global Positioning 

System (GPS).  

This synchronization allows for precise correlation of 

measurements from multiple PMUs, enabling a 

comprehensive and integrated approach to power system 

analysis. Sensor error in PMU can introduce clock drift, 

synchronization delay, and signal latencies in the form of 

timing deviation [12]. This type of error can arise from 

communication delays, GPS inaccuracies, network latency, or 

hardware limitations.  

Synchronization errors lead to incorrect identification and 

misinterpretation of the events. Due to communication delay 

and signal propagation issues, achieving precise time 

synchronization across multiple PMUs spread across a vast 

geographical area is complex.   

Adhering to causality principles enables reliable and 

accurate interpretation of PMU data. The cause-and-effect 

relationships help identify the root causes of anomalies in 

PMU data and enhance fault detection, predictive analysis, 

system control, and data interpretation, contributing to the 

overall stability of power grids.  

Vulnerability in time synchronization, such as spoofing, 
where an attacker can manipulate and mislead information, 

potentially causing inaccurate measurements resulting in 

erroneous detection of system parameters, delayed faults and 

disturbance identification, and suboptimal control actions 

[13].  

Also, PMU relies on GPS or Precision Time Protocol 

(PTP) to receive precise time synchronization.  It is possible 

to physically attack the GPS receiver or cause a Denial of 

Service (DoS) of PTP time synchronization.  

Signal obstruction, such as physical barrier and 

Electromagnetic Interference (EMI), can introduce noise 

distortion, potentially leading to timing inaccuracies and 

synchronization errors. Equipment malfunctions, such as 
faulty antennas and hardware glitches, can impede 

synchronization signals’ proper transmission and reception.  

Any discrepancies or errors in the time synchronization 

among PMUs can lead to Frequency errors since Phase angle 

errors are closely related to frequency measurement. In Table 

2, the IEEE C37.118 standard series specifies a Total Vector 

Error (TVE) limit of 1%, a phase angle error of 0.5730 

degrees, and a time deviation of 31.8μs (50 Hz System). 

Knowing a small phase angle error can lead to significant 

frequency estimation discrepancies [14].  

2.5.3. Transducer Error  

Transformation performance of an Electronic Current 
Transformer (ECT) and Electronic Voltage Transformer 

(EVT) on a PMU under steady and dynamic conditions checks 

for transducer error. Error in the form of harmonic noise may 

arise and cause anomalies in frequency measurements.  

The Rate of Change of Frequency (ROCOF) 

measurement is sensitive to harmonic noise since the 

performance of the Electrical Voltage Transformer (EVT) is 

affected due to deviated input [15]. Sensor errors can cause 

slight changes in the synchrophasor data, such as random 

spikes or dips in the measured values. Sensor errors can create 

biases or noise in the form of impulse noise, which affects the 
accuracy of state estimation results.  

2.5.4. Communication Error 

Synchrophasor applications can be categorized into two 

main classes: online and offline. Synchrophasor applications 

may become biased and inaccurate due to anomalies in the 

data. Ensuring data accuracy requires that synchrophasor 

measurements fall within acceptable error margins and that the 

data is complete and consistent with acceptable latencies. 

However, statistical analysis suggests that data quality issues 

arise randomly, have a small probability of occurrence, and 

exhibit strong dynamic characteristics [16].  

This paper [17] examines the development of special 
protection and control schemes that consider latencies and 

optimize the communication architecture to minimize delay 

within an acceptable range for possible estimation methods, 

such as substitution and interpolation.  

High-speed synchronous data is shared among control 

centers via various complex communication architectures, 

including Ethernet, Transmission Control Protocol 

(TCP)/Internet Protocol (IP), and web applications.  
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Consequently, this requires a high bandwidth of 146 

Mbps and 500 terabytes of WAMS data storage annually. 

Transmitting high-resolution synchrophasor data demands 

higher power. Additionally, security issues like third-party 

tampering with information could cause significant problems 

for utilities, necessitating data encryption, comprehensive 
cybersecurity measures, and the incorporation of the latest 

firewall policies.  

Communication requirements for crucial WAMS 

applications, including generator synchronization, state 

estimation, and intelligent scheduling, demand higher data 

rates and tolerance for acceptable delays. WAMS with PMUs 

offers significantly faster data transmission and lower latency 

compared to traditional SCADA systems.  

Data flow latency in the context of the Indian power grid, 

particularly between interconnected grids, refers to the time 

delay experienced as data travels from one part of the grid to 

another.  The exact time can vary, and the approximate time is 
represented in Figure 5, which includes the average delay in 

seconds.  

This latency can vary depending on the communication 

infrastructure, the distance between different grid 

components, and the type of data transmitted. For a vast and 

complex network like the Indian power grid, which 

encompasses multiple regional grids, these latencies are 

critical in real-time monitoring and decision-making 

processes, affecting the efficiency and reliability of grid 

operations. 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 
Fig. 5 Shows data flow latency between the intergrids of the entire 

Indian power grid 

2.5.5. Hardware Constraints 

The Optimal PMU Placement (OPP) will enhance state 

estimation by providing real-time dynamic data of key 

generating plants, lines, substations, protection systems, and 

FACTS devices. More PMUs are installed in the power grid, 

which is more likely to increase the size of data, which is not 
feasible, and network congestion increases. However, to 

achieve complete observability, one-third of PMUs about the 

number of buses are sufficiently required.  

The OPP is an active research area in the WAMS; Integer 

Linear programming (ILP) and Genetic algorithms are widely 

used to determine the power grid’s observability range. Also, 

PMU data requires high bandwidth and low latency 

communication channels; errors such as missing data points or 

corrupted data can cause latencies and inconsistency.  

Packet loss due to heavy network traffic or congestion can 

impact the transmission of PMU data. The number of PMUs 

also depends upon the bandwidth of the channel type to ensure 
uninterrupted data transmission. Tuning the bandwidth and 

delays in communication links affects communication 

characteristics, such as average delay and drop rate, affecting 

data resolution.  

2.5.6. Cyber-Threats 
The communication infrastructure must be protected from 

cyber threats to prevent unauthorized access, data 

manipulation, or critical power system operations disruption. 

A bibliographic study of literature on special protection and 

control schemes shows that developing novel communication 

schemes, considering the interoperability between varying 
communication schemes and communication infrastructure, is 

of utmost importance.   

Software-Defined Networking (SDN) architecture is 

more efficient in managing PMU data congestion than IP 

network architecture [18]. The need for standards in Wide 

Area Monitoring Systems (WAMS) technology is critical due 

to the challenges associated with implementing synchrophasor 

technology.  

These challenges include communication, data quality, 

cybersecurity, cost, interoperability, standardization, 

scalability, and regulatory issues. These factors vary from 

country to country, necessitating a global approach to ensure 
the effective integration of synchrophasor technology.  

Several standards have been derived for the efficient 

interoperability of PMU technologies within various WAMS 

markets and stakeholders. The recent intelligent grid standards 

considering synchrophasor data are updated, and new 

advancements in operation schemes are taken into account, as 

shown in Table 5. 

 

NLDC 

ERLD           WRLDC         NRLDC           SRLD          NERLDC 

0.1 Seconds 
0.1 Seconds 2 Seconds 

2 Seconds 

2 Seconds 
2 Seconds 

SLDC                     SLDC 

2 Seconds 
2 Seconds 

Sub LDC Sub LDC 

15 Seconds 
15 Seconds 15 Seconds 

RTU 

RTU 
RTU 

Supervisory Control and Data Acquisition (SCADA) Wide Area Monitoring Systems (WAMS) 

0.1 Seconds 0.1 Seconds 

Regional PDC Regional PDC 

0.1 Seconds 
0.1 Seconds 

Local PDC Local PDC 

0.03 Seconds 

0.03 Seconds 

0.01 Seconds 

PMU 

PMU 

PMU 



Arunkumar Patil et al. / IJEEE, 11(5), 242-260, 2024 

251 

Table 5. Some critical and recent intelligent grid standards in consideration to synchrophasor data reliability and interoperability 

Functions Standards Description 

Wide Area 

Situational 

Awareness 

IEEE C37.118.1-2011 
Data contents and format of measured dynamic phasors 

and frequency measurement. 

IEEE C37.118.2-2011 
Proper guide for installation, calibration, 

Synchronization, and testing of PMUs. 

IEEE C37.244-2013 
Proper terminology for the implementation and operation 

of PDCs was added. 

IEEE C37.247-2013 PDC standards for enhanced data storage capability. 

Power System 

Analysis and 

Control 

CIGRE working group B5.59 

Guidelines for synchrophasor application, Voltage 

stability assessment, oscillation detection, and wide-area 

monitoring. 

IEEE 61850-90-5 

 

Defines communication network and integration of 

WAMS technology along with intelligent instruments, 

switchgear, and other IEDs. 

ISO/IEC 20547 
Mechanism of sharing WAMS data between grid operator 

and stakeholders/customers 

Cyber Security 

NIST SP 800-82 Rev.2 
Guideline to Industrial Control Systems (IC) Security of 

SCADA and WAMS Components. 

NIST Cybersecurity Framework 

(CSF) 

Guidelines for identifying, protecting, detecting, 

recovering, and chastising third-party offenses. 
 

2.5.7. Data Storage 

Data Storage infrastructure plays a critical role in 

managing vast amounts of data. It is a significant part of the 

smart grid; it collects and delivers data for further data 

analytics. Data storage and retrieval optimization: 

Implementing distributed computing frameworks for real-time 

operation requires efficient data partitioning, streamlined data 
processing pipelines, and optimized algorithms. Techniques 

such as parallelization frameworks, cloud computing, and 

distributed data processing platforms contribute to the 

scalability of PMU data. Distributed File Systems (DFS), such 

as Google File System (GFS) and Hadoop Distributed File 

System (HDFS), and NoSQL databases, such as Column 

databases and Key-value stores, are two types of SQL 

databases.  

Additionally, NoSQL databases, such as Column 

databases and key-value stores, offer flexible and scalable 

storage solutions to the smart grid. Big data processing can be 

accomplished in two ways: Batch processing and Stream 

processing. The choice between the response times of 

processing is crucial for timely decision-making in power grid 

operations.  

Furthermore, the effectiveness of data analysis in a smart 
grid system depends on the class of data analysis employed, 

such as Descriptive, diagnostic, and predictive analysis, which 

offers insights into power grid behavior. Each class suits 

various applications and operations, enabling utilities to detect 

anomalies, predict future events, and prescribe corrective 

actions for different power grid applications and operations 

[19]. 

2.6. ML Model Life Cycle 

The domain of Deep learning and Machine learning, in 

conjunction with data analytic tools, describes today’s AI 

landscape. For Batch, natural, or hybrid processing for model 

building of power system applications, data preparation is a 

crucial step that involves collecting, validating, and pre-

processing data. Based on their performance, the data is later 
fed to a suitable model for a particular power grid application 

from the pool of nominated models. The model training 

requires the intuitive and iterative task of tuning 

hyperparameters that determine the model prediction quality 

and training time.  

Class imbalance is a common challenge in machine 

learning-based voltage stability assessment using PMUs. 

Especially when an imbalance in the number of samples 

associated with one particular contingency is more than other 

classes, leading to a biased model. However, successful 

deployment of the selected model and analysis of feedback 

information from the model decides further possibilities for 
fine-tuning or retraining the model with newly acquired data. 

This loop of continuous model training, optimizing, 

deployment, and feedback summarizes the life cycle of AI 

model management. 

3. WAMS – Enabled Machine Learning 

Approaches for Power System Transient 

Stability Assessment 
Transient analysis is the most effective approach to 

determining the power flow limit in the power network during 

a disturbance. Transient instability can lead to catastrophic 
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cascading failure and widespread blackouts. The transient 

stability assessment is classified by its characteristics, such as 

numerical, direct, and machine learning methods. These three 

classes for transient stability assessments readily provide 

adaptable solutions to other stability problems in power 

systems [20]. The necessity of this analysis lies in its role in 
preventing widespread blackouts and ensuring the stable and 

secure operation of the power system.  

In Figure 6, the time responses of different controls and 

components are crucial for understanding how a system reacts 

to disturbances over time. Each component, like generators, 

transformers, and control systems, has its own characteristic 

response time, influencing how quickly it can respond to 

changes or faults in the system. The interaction of these varied 

response times determines the system’s overall stability; fast-

acting controls can help stabilize the system quickly, while 

slower components might delay recovery or exacerbate 

instability. 

The assessment of transient stability involves analyzing 

the dynamic behavior of the power system following a 

disturbance. Numerical methods often involve detailed 

simulations that can capture the system’s response over time, 

providing insights into potential vulnerabilities. Direct 

methods, on the other hand, offer a more immediate evaluation 

of stability by analyzing critical parameters and operating 

conditions without extensive simulations.  

Machine learning methods leverage historical data and 

patterns to predict stability outcomes, offering a modern data-

driven approach to stability assessment. By integrating these 
different methodologies, power system operators can gain a 

comprehensive understanding of transient stability, enabling 

them to implement effective mitigation strategies and enhance 

the resilience of the power grid. 

 

 

 
 

 

 
 

 

 
 

 

 

 
 
 

 
Fig. 6 Time responses of different controls and components for stability 

analysis 

3.1. Overview of TSA Using Machine Learning 

Joint studies between power utilities and co-generation 

were performed to develop possible mitigation strategies. 

Various sophisticated programs were designed to simulate 

EMT and electromechanical analysis of transients in multi-

phase power systems. Quasi-static phasor simulation is used 
in multiple applications, including voltage stability analysis, 

power system planning, and the analysis of power electric and 

electronic systems in the power system. Quasi-static phasor 

combined with other methods, such as electromagnetic 

transient and dynamic phasor simulations, provides a 

comprehensive understanding of the system’s behavior under 

various conditions.  

On the other hand, Electromagnetic Transient Simulation 

(EMTS) captures detailed, fast dynamic phenomena of inertial 

response during switching transient, Lighting surges, and the 

dynamic response of power electronic devices, mostly 

inverter-based, ranging in order from milliseconds to seconds. 
Changes in the magnitudes and phasors throughout the 

network are slow compared to changes in the power system’s 

frequency. Incorporating EMTS enables the assessment of 

transient phenomena and the evaluation of the effectiveness of 

protective devices and control systems, thereby enhancing the 

overall reliability and security of the power system.  

The traditional approach is prone to uncertainty in 

measurement and computation accuracy due to the power 

grid’s rising nonlinearity. It overlooks the security constraints 

of power system analysis. The variety of contingencies, 

magnitude of data issues, imbalances in class, and others have 
severe consequences in training machine learning models and 

lead to biased model performance. AI techniques, including 

deep imbalanced learning frameworks, transfer learning, and 

machine learning approaches, are being utilized to mitigate the 

impact of class imbalances in transient stability assessment. 

Time domain: Quasi-Static Phasor (QSP) simulations of 

steady-state and low-frequency dynamic behavior in the 

power system can be studied, and discrete changes within 

steady-state operating conditions of a power grid are 

represented algebraically for analyzing steady-state stability. 

3.2. Fuzzy Logic 

In-phase voltage control significantly improves the 
transient stability margin in power systems, with UPFC 

methods outperforming quadrature voltage control in reducing 

swings. The proposed multi-objective optimization method 

using parallel NSGA-II and fuzzy membership variance 

provides more scientific and objective solutions for Transient 

Stability-Constrained Optimal Power Flow (TSCOPF) [21]. 

Also, nonlinear controllers like Fuzzy Logic Controllers 

(FLC), Static Nonlinear Controllers (SNC), and ANFIS-based 

variable resistive fault current limiters effectively improve the 

transient stability of hybrid power systems in integrated 

renewable-based power plants [22].  
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3.3. Decision Tree (DT) 

The Decision Tree (DT) algorithm, developed using 

synchrophasor data, predicts Transient Stability Assessments 

(TSA) with 95.1% accuracy for post-fault conditions of 39 bus 

systems in New England [23]. Similarly, the decision tree 

method achieves 98.5% accuracy immediately after fault 
clearance and nearly 100% accuracy 2.5 seconds after fault 

clearance [24]. The proposed method, which utilizes a 

Characteristic Ellipsoid (CELL) and Decision Tree (DT), 

classifies power system transient stability after disturbances 

with high precision and less information [25]. Additionally, an 

ML method predicts transient stability using Extreme 

Learning Machine (ELM) and Particle Swarm Optimization 

(PSO). Online Dynamic Security Assessment (DSA) of ever-

changing Operating Conditions (OC) is performed in a data 

mining framework by training decision trees and adaptive 

Ensemble Decision Trees (EDT) [26]. 

3.4. Support Vector Machine (SVM) 
A combination of Support Vector Regression (SVR) and 

dragonfly optimization algorithm was proposed. The hybrid 

DFO-SVR model effectively assesses voltage stability in real-

time, providing better performance than the ANFIS model for 

predicting voltage stability index. [27]. A comparative 

analysis of this algorithm was conducted where SVMs and 

ANNs outperformed decision trees regarding accuracy and 

computation. TSA tasks mainly involve classification and 

prediction utilizing ML models, which are trained offline, and 

later, the testing is performed online [28].  

3.5. Ensemble Learning (ELM)   
Various ensemble learning methods, including bagging, 

voting, and stacking, are utilized for feature selection in 

Transient Stability Assessment (TSA). A notable approach 

involves Java-based feature selection with an Ensemble of 

OS-Extreme Learning Machines (EOS-ELM), which can 

reduce features to one-third, enhancing TSA performance 

[29]. Additionally, the Fisher discriminator is employed to 

determine the optimal feature subset for transient stability 

analysis [30]. The maximum relevance minimum redundancy 

(mRMR) method is designed to identify the most relevant 

features while minimizing redundancy. This method, 

combined with Winner-Take-All (WTA) ensemble learning, 
has been leveraged to improve TSA [31]. Gradient boosting 

has also been effectively utilized for feature selection, with 

parallel convolution algorithms addressing input features akin 

to the data structure of digital images [32].  

A case study on the IEEE-39 bus system using the Vision 

Transformer (ViT) model demonstrates the efficacy of two-

stage monitoring for detecting unstable generators. This 

model outperforms traditional machine learning algorithms in 

TSA investigations, achieving an accuracy of 98.92% [33]. 

Furthermore, a novel framework presented in [34] enhances 

the accuracy of transient instability recognition using 
imbalanced learning techniques and data from Phasor 

Measurement Units (PMUs). Addressing data imbalance, the 

study in [35] introduces a hybrid simulation tool designed to 

generate realistic datasets, proposing a new method for data 

organization to enhance the performance of Machine Learning 

(ML) models in predicting transient stability. 

Further exploration into ensemble learning, specifically 

leveraging synchrophasor data for TSA, is detailed in the 

comparative analysis of the XGBoost model against other ML 

models. This analysis highlights how XGBoost addresses 

limitations inherent in traditional ML approaches [36]. 

Moreover, an innovative approach to TSA frameworks is 

introduced, incorporating an improved convolutional neural 

network augmented by an orthogonal weight modification 

algorithm. This enhancement significantly boosts the 
framework’s continual learning capabilities. Finally, the study 

in [37] employs machine learning techniques and grid 

topology for dynamic stability analysis of power systems, 

underscoring the advanced methodologies being developed in 

this domain. 

3.6. Deep Learning for TSA 

Using a Recurrent Neural Network (RNN) for its Time 
series data in combination with CNN enhances the 

spatiotemporal analysis of event signatures. The CNN-LSTM 

model accurately detects in PS TSA using historical data 

events (DigSILENT PowerFactory simulation of PMU 

measurements), with a 99% detection accuracy and Average 

Computational Time [38]. The LSTM-CNN-based TSA 

model improves speed and accuracy in transient stability 

assessment for spatial-temporal analysis, and it was tested on 

the IEEE 39 bus system [39].  

A Deep Belief Network (DBN) for transient stability 

prediction demonstrates significant improvements in 

prediction accuracy and computational efficiency [40]. 

Similarly, [41] developed a model integrating CNN and 

LSTM for transient stability assessment, achieving high 

accuracy in predicting system stability under various fault 

conditions. Another study proposed a Transformer-based 

model for TSA, which outperformed traditional methods in 

handling large-scale power systems with complex dynamics 

[42]. These advancements underscore the potential of deep 

learning techniques in enhancing the reliability and efficiency 
of transient stability analysis in power systems. 

4. WAMS - Enabled Machine Learning 

Approaches for Power System Voltage Stability 

Assessment 
Voltage control and stability are a source of concern to 

every PSO. Since the change in load’s nature and pattern are 

uncertain, it is causing trouble for any power system operator 

to establish a secure but also an optimally secure power plant. 

So, coordination information is essential for PSA. The 

information helps us to understand the mechanism of voltage 

patterns in existing power systems, allowing the Power 
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System Operators (PSO) to solve stability problems.  The 

main factors contributing to voltage instability are insufficient 

reactive power supply, uncertain load characteristics, poor 

coordination of control, and protective system, which 

influence the system conditions and characteristics towards 

voltage collapse. Consideration should be given to possible 
contingencies, margin, and tolerance for any critical interface, 

which depends on the load level, active and reactive flow and 

reactive power reserve.  

Generally, power systems are vulnerable to short-term 

voltage instability due to fast-acting dynamic equipment, 

which leads to uncertain reactive power demand within the 

power system. Furthermore, the integration of renewable 

energy sources, with their variable output, bypasses these 

stability challenges. Advanced monitoring and control 

technologies, such as Wide Area Monitoring Systems 

(WAMS) and Phasor Measurement Units (PMUs), are 

increasingly being deployed to provide real-time data and 
enhance the ability of PSOs to predict and mitigate voltage 

instability.  

By leveraging these technologies, operators can 

implement more sophisticated control strategies to manage 

reactive power more effectively and improve the overall 

resilience of the power grid. Continuous research and 

development in this field are crucial to developing innovative 

solutions that can adapt to the evolving demands and 

complexities of modern power systems. 

4.1. Overview of VSA Using Machine Learning 

The main focus of Power System Operators (PSOs) is to 
maintain the stability of the power system without resorting to 

load or generation shedding and to avoid altering control 

measures that incur operational costs and affect the optimal 

performance of the power system. The challenges in Voltage 

Stability Assessment (VSA) include predicting the final state 

of the network without the need for post-disturbance 

information and avoiding extensive online simulations to 

determine important feature sets for VSA. Sensitivity analysis 

and modal analysis are two methods used to assess voltage 

stability in a power system.  

Traditional methods for voltage stability in power 

systems have historically relied on statistical model-based 
approaches. Voltage stability indices estimate the proximity of 

a bus to instability. However, such simulations do not readily 

capture sensitivity information and the degree of stability. In 

steady-state security assessment, computing the voltage 

margin is required to predict bus voltage magnitudes under 

different loading scenarios. Developing software tools for 

real-time VSA is a time-consuming task. An online estimation 

of voltage magnitudes will help the system operator mitigate 

the possibility of voltage instability and identify weak areas in 

the power grid. The solution must be capable of providing the 

maximum loading margin of the system prior to any voltage 

collapses. In Figure 7, the categorization of various methods 

and approaches to evaluate and ensure voltage stability is 

represented in a taxonomy form. It typically includes steady-

state analysis, which examines voltage stability under constant 

load conditions, and dynamic analysis, which assesses how 

voltage stability is affected by time-dependent changes in the 
system, such as rapidly fluctuating loads or line outages. This 

classification helps identify appropriate tools and techniques 

for maintaining voltage stability under different scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Taxonomy of Voltage Stability Assessment  

Machine learning techniques, including Convolution 

Neural Networks (CNNs), RNNs, and Reinforcement 

Learning (RL), have enhanced the accuracy and efficiency of 

Dynamic Security Assessment (DSA). The fuzzy set theory 

supplements the traditional mathematical tools in solving 

power system stability problems. A fuzzy voltage stability 

index can highlight critical bus bars subjected to standard and 
contingent operations. 

4.2. Traditional Voltage Stability Indices 

Among 40 voltage stability indices, they are compared 

based on their performance, functionality, and applicability. 

Time domain simulations of the system models capture the 

chronology of the events. Using the Modern Voltage Stability 

Index (MVSI) on the IEEE 30-bus system, researchers were 

able to identify the maximum reactive power load before 

collapse and rank them in accordance with their vulnerability 

[43].  

Similarly, in [44], the performance of the Bus Voltage 
Stability Index (BVSI) involved a comparative analysis of 

BVSI against existing indices, utilizing IEEE 14 and IEEE 30 

bus systems and other existing stability indices in predicting 

voltage collapse were compared under several load conditions 

while ignoring line resistance partially. The BVSI was found 

to be more accurate, helping identify critical lines and 

potential weaknesses in the power grid.  
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4.3. Artificial Neural Network (ANN) 

Fuzzy Logic (FL) techniques have been effectively 

utilized for voltage and transient stability analysis. However, 

handling large-scale, uncertain data and identifying complex 

relationships can be challenging and require expert knowledge 

to interpret. The identification and adaptive nature of neuro-
fuzzy control systems (ANN) combined with linguistic 

knowledge of fuzzy logic control (fuzzy inference systems), 

which is known as the ANFIS model, is a widely used tool for 

power system stability assessment. Once an Artificial Neural 

Network (ANN) has been adequately trained, it can effectively 

interpolate any novel pattern covered by its input features.  

This paper [45] presents a surrogate control algorithm 

featuring a Back-Propagation Neural Network (BPNN) aided 

by NSGA-II, demonstrating computational efficiency in 

simplified Voltage Stability Margin (VSM) control on a 118-

bus system. A compact Artificial Neural Network (ANN) 

model has been shown to significantly reduce data 
requirements for efficient voltage stability assessment in 

power systems (2021) [46].  

An ANN-based method is developed to rapidly estimate 

long-term voltage stability margins, adequate under normal 

operating conditions and in N-1 contingency scenarios (2022) 

[47]. An ANN-based voltage stability index (L-index) for 

Voltage Stability Assessment (VSA) was developed and 

tested on the IEEE-14 bus system. The method identifies buses 

with high index values as vulnerable to voltage failures, 

indicating areas within the power system that require critical 

reactive support [48]. The proposed Adaptive Neuro-Fuzzy 
Inference System (ANFIS) based control scheme for Unified 

Power Quality Conditioner (UPQC) devices significantly 

enhances compensation capabilities. It effectively regulates 

serious voltage stability issues like voltage drops and 

harmonic distortion, thereby improving power quality [49]. 

4.4. Decision Tree (DT)  

The decision tree is reliable in performing extensive 

contingency simulation for a wide range of operating 

scenarios, where the objective is to find susceptible regions in 
multidimensional operating parameter state space. The 

Decision Trees (DTs) tested on the IEEE 118-Bus system have 

demonstrated better accuracy by employing adaptive boosting 

methods. This approach eliminates the need for manual 

selection of appropriate predictors.  

A novel strategy using Fuzzy-based Decision Trees (DTs) 

was applied to the IEEE 300 Bus test setup. This method 

effectively determined the power system’s Voltage Stability 

Index (VSI) [50]. This study utilizes Principal Component 

Analysis (PCA) for dimensionality reduction of data from 

various Phasor Measurement Units (PMUs). Correlation 

analysis is then used to categorize each feature with different 
stability indices, followed by Decision Trees classifying and 

assessing the security margin of power systems (2020) [51]. 

The implementation of the C4.5 algorithm in Decision Trees 

for real-time voltage stability assessment involves sample 

acquisition, selection of attributes, and DT construction [52]. 

Identifying Static Voltage Stability Margin with the 

Participation Factor Method and Relief-F Algorithm were 

developed and identified as practical tools for assessing static 
voltage stability margin [53]. 

4.5. Support Vector Machine (SVM)  

Support Vector Machine (SVM) is a supervised learning 

method extensively used for Voltage Stability Analysis (VSA) 

studies. SVM analyzes data for classification and regression 

tasks, including feature selection, multiclass classification, 

and time series analysis. Over the last ten years, there have 

been significant advancements in feature selection and 

optimization techniques utilizing various dataset types. A 

novel combination of Support Vector Regression (SVR) and 

the Dragonfly Optimization algorithm was proposed, 

enhancing the efficacy of traditional SVR approaches in 
various applications.  

This hybrid Dragonfly Optimization-Support Vector 

Regression (DFO-SVR) model was found to outperform the 

Adaptive Neuro-Fuzzy Inference System (ANFIS) model in 

terms of performance [54]. Furthermore, recent studies have 

introduced improved versions of support vector machines, 

namely Aggressive Support Vector Machine (ASVM) and 

Conservative Support Vector Machine (CSVM). These 

models aim to enhance real-time transient stability assessment 

in power systems and reduce the occurrence of false and 

missed alarms [55]. 

4.6. Ensemble Learning (ELM) 

The study demonstrates that Multi-objective 

Biogeography-Based Optimization (MOBBO) effectively 

reduces measurement data needs and misclassification rates in 

voltage stability assessment of power systems, outperforming 

other methods like NSBBO [56]. This study utilized the 

Extreme Gradient Boosting (XGB-CM) framework within 

ensemble learning-based classification models, yielding a 

significant improvement in slope stability estimation accuracy 

over traditional single-learning models [57]. This approach 

maintains high accuracy in short-term voltage stability 

assessments, outperforming existing methods even when a 
significant portion of measurement data is missing.  

In this context, the AdaBoost classifier achieved the 

highest classification accuracy (96.02%), surpassing other 

classifiers in monitoring voltage instability within electrical 

power systems [58]. Similarly, the paper [59] investigates the 

assessment of Short-Term Voltage Stability (STVS) in 

scenarios where PMU data is incomplete or partially available. 

By using ensemble learning, the model addresses the issue of 

class imbalance within limited training samples by employing 

the Random Under-Sampling Bagging (RUS-Bagging) 

method, which involves randomly selecting subsets of the 
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majority class samples to balance class distribution before 

training multiple models [60]. This method focuses on 

reconstructing PMU data sequences and extracting features 

using a combination of gated recurrent neural networks and 

transformer encoders. It aims to emphasize the minority class 

and balance sample classes through techniques like data 
augmentation and semi-supervised clustering. This approach 

performs better than LSTMs, Decision Trees (DTs), and 

Support Vector Machines (SVMs).  

4.7. Deep Learning for VSA 

Deep learning has gained preference over traditional 

machine learning-based stability analysis due to its ability to 

recognize complex patterns in large, high-dimensional 

datasets. It can handle temporal dynamics, learn from new 

data autonomously, and operate in real time. Deep learning 

requires less manual feature engineering and generally 

provides more accurate predictions. 

In the paper [61], a Long Short-Term Memory (LSTM) 
based assessment model was built for learning time series of 

post-fault trajectories. The authors proposed a semi-

supervised clustering algorithm to categorize instances of 

voltage stability. This methodology was validated using the 

IEEE 39-bus system, confirming its effectiveness. In another 

study [62], researchers proposed a transferable deep learning-

based STVS assessment by constructing physics-aware 

features such as reactive power flow and grid topology to 

indicate the voltage stability of the nodes in a power grid. The 

DL model achieved an accuracy of 99.68% and was tested 

under various Operating Conditions (OC) on the New England 
39-bus system. 

Further, in [63], deep learning was utilized alongside 

techniques such as temporal ensembling for data clustering 

and the use of the Least Squares Generative Adversarial 

Network (LSGAN) for data augmentation to leverage limited 

data with slight differences. This data augmentation also 

improves the adaptability of the subsequent model to 

topological changes. The approach of using temporal 

ensembling and LSGAN provided accurate results when 

implementing a transformer model for STVS. The 

effectiveness of the research was compared under different 

signal-to-noise ratios, topologies, and observation time 
windows.  

Similarly, in [64], an STVS framework was developed 

based on 1D-CNN to handle data anomalies. The objective 

was to detect collapse and simultaneously quantify the 

severity of a power system fault. Data preprocessing included 

anomaly detection and treatment. An ensemble-based 

anomaly detector, comprising linear regression, Chebyshev, 

and DBSCAN base detectors, was used for anomaly detection. 

The model was tested under IEEE 30 and IEEE 39-bus 

systems with and without bad data treatment. 

5. Advancements in Wide Area Monitoring 

Systems (WAMS) for Power Grid Stability 
 With the rise of synchrophasor technology, the future of 

big data is expected to be characterized by increased data 

generation, more diverse data sources, and advanced analytics 

capabilities. As synchrophasor technology continues to 

evolve, the amount of data created daily and the growth of 

significant data trends in upcoming years will be influenced 
by several factors:  With the growing need for efficient grid 

management and system reliability, the amount of data 

generated by synchrophasor devices and other sources is 

expected to increase. The global synchrophasor market size 

and value are projected to reach USD 383.61 million. Several 

nations began deploying synchrophasor technology in the 

2000s. China has invested extensively in synchrophasor 

systems in conjunction with its high-voltage power grid and 

Distributed Energy Resources (DERs).  

Finally, the challenges associated with synchrophasor 

technology implementation include communication, data 

quality, cybersecurity, cost, interoperability, standardization, 

scalability, and regulatory issues.  These challenges vary from 

country to country and need to ensure the effective integration 

of synchrophasor technology worldwide. As big data grows, 

organizations must focus on responsible data collection and 

management practices, ensuring the privacy and security of 

customer data AI and ML power automation and analytics. In 

summary, the future of big data with the rise of synchrophasor 
technology will be marked by increased data generation, 

diverse data sources, advanced analytics capabilities, and a 

focus on data privacy and security. These trends will shape the 

development and application of synchrophasor data in various 

industries, including power systems and grid management.  

5.1. Outcome of the Review 

Dense synchrophasor data provide crucial information on 

the power grid’s situational awareness. However, Due to 
practical constraints like communication and hardware 

malfunction, bad data can influence accuracy during power 

system analysis. A large amount of generated data is processed 

before any PSA, including data validation, filtering, 

aggregation, compression, storage, event detection, state 

estimation, model analysis, stability assessment, and 

contingency analysis.   

Later, Complex algorithms and computations are often 

required to extract meaningful insights from the data, which 

invites processing time and resource allocation challenges. 

The choice of data compression algorithm defies the trade-off 
between compression efficiency vs. computational 

complexity. Computationally intensive algorithms, such as 

waveform analysis, event detection, and dynamic state 

estimation, demand substantial processing power to perform 

complex numerical analyses when considering the operation 

time.  
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Hardware limitations and memory constraints are 

essential in determining the choice of algorithmic models and 

selecting relevant features from large PMU datasets. The 

benefits of machine learning in synchrophasor-based power 

system applications were discussed and compared to other 

alternative methods developed in the last two decades. From 
Rule-based systems to machine learning, Utility has been able 

to interpret power system data better, and the evolution of AI-

enabled energy systems. It is to get an insight into 

interoperability, standards and regulation, and scalability of 

synchrophasor technology. 

5.2. Challenges 

Synchrophasor measurement and other traditional data 

collected across vast geographical expanses are often wide and 
sparse, offering limited visibility. Effective sensor selectivity 

and intelligent data fusion are crucial to accommodate the data 

collected, which is frequently characterized by noise and gaps 

with various time and space-related patterns. Addressing 

challenges associated with Wide Area Measurement Systems 

(WAMS) data involves managing their sparse distribution, 

noise, incompleteness, and temporal and spatial dependencies. 

Estimating missing data is essential to prevent biased model 

estimates while simulating all possible contingencies in a 

natural power system is computationally challenging. 

Incorporating synchrophasor data into machine learning 

models for stability studies requires overcoming several 

challenges. The quality of data, feature extraction, and model 

training demand extensive simulations, data preparation, 

parameter tuning, and model validation. The wide and sparse 

nature of synchrophasor data poses a significant challenge for 

AI applications.  

Phasor Measurement Units (PMUs) generate vast 

amounts of irregular and discontinuous data from various 

locations across the power grid. Effective data interpolation 

and alignment techniques are crucial to ensure robust model 

performance. Managing this influx of data necessitates 

advanced storage, processing, and retrieval solutions, such as 

distributed databases and cloud storage, to handle the data load 

efficiently.  

Hardware limitations and memory constraints can hinder 

the deployment of AI algorithms, requiring high-performance 

computing resources and optimized algorithms that can 

operate within these constraints. Additionally, integrating 

machine learning models into existing power system 

monitoring frameworks involves ensuring compatibility with 

current systems and protocols, as well as the adaptability of 

models to evolving data patterns and system configurations. 

Continuous monitoring and updating of models are required 

to maintain their relevance and effectiveness in dynamic 

operating environments. 

6. Conclusion 
In conclusion, this comprehensive review article delves 

into combining synchrophasor technology with machine 

learning for enhanced power system stability monitoring. The 

paper has adeptly captured the essence of this evolution, 

showcasing how the advent of Wide Area Monitoring Systems 

(WAMS) and machine learning techniques is revolutionizing 

power system stability analysis.  

The challenges of managing, processing, and interpreting 

the vast data synchrophasors are thoroughly discussed. The 

paper emphasizes that, despite these challenges, the 
integration of machine learning models offers promising 

avenues for various power system analyses. These models can 

overcome limitations related to data quality, training 

complexity, and model selection.  

The evolution from rule-based systems to machine 

learning has significantly enhanced utilities’ capacity to 

interpret and utilize power system data more efficiently. 

Moreover, the paper also acknowledges the challenges that 

persist. These include the vast and sparse nature of 

synchrophasor measurements, the need for intelligent data 

fusion and sensor selectivity, and the necessity of handling 
data characterized by noise, gaps, and various patterns. The 

challenges extend to incorporating synchrophasor data into 

machine learning models for stability studies, including data 

quality issues, computational demands, and appropriate 

feature extraction and model training methods. 

In summary, However, Deep learning models automate 

the process of model building by removing system experts. 

Deep learning, Various Transfer learning, Semi-supervised 

learning, Ensemble methods, and Active feature selection 

have been employed throughout the last two decades. The 

main motive of DL models is to make more efficient use of 

limited labeled data in power system analysis, enabling 
improved performance. Further, these results must be verified 

and warranted with escalated penetration of corrupted data to 

validate the accuracy of specific AI models used for various 

power grid applications. Convincing results will aid utilities in 

mandating these findings and successfully deploying the 

model in a production environment.  
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