
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 5, 299-305, May 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I5P127 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Shortest Path Forwarding in Software-Defined Networks

Using RYU Controller

Kishan P. Patel1, Jıtendra P. Chaudhari2, Hiren K. Mewada3, Hardik S. Jayswal4, Rajeshkumar V. Patel5,
Dnyaneshwar K. Kirange6

1Department of Electrical Engineering, CSPIT, Charotar University of Science and Technology, Gujarat, India.
2Charusat Space Research and Technology Centre, E&C Engineering Department,

CSPIT, Charotar University of Science and Technology, Gujarat, India.
3Department of Electrical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia.

4,5Department of Information Technology, Devang Patel Institute of Advance Technology and Research,
Charotar University of Science and Technology, Gujarat, India.

6Department of Computer Engineering, SSBT’s College of Engineering and Technology, Maharashtra, India.

2Corresponding Author : jitendrachaudhari.ec@charusat.ac.in

Received: 16 March 2024 Revised: 16 April 2024 Accepted: 14 May 2024 Published: 29 May 2024

Abstract - The shortest path forwarding is not provided by OpenFlow. The benefit of using OpenFlow is that programmers can
control the network devices by writing different applications. This research paper deals with the design of the shortest path

algorithm using the RYU controller and OpenFlow. The datacenter topology with different network sizes is used for evaluating

various shortest-path algorithms. In this work, the RYU controller’s basic switch application is used. The network application

is divided into three parts, namely topology discovery, network view construction and forwarding. Mininet is used as an emulator

with an RYU controller for SDN. The performance depicts that Dijkstra’s algorithm gives better throughput as compared to

other shortest-path algorithms under consideration during this study.

Keywords - Dijkstra’s shortest path algorithm, Mininet, OpenFlow, RYU controller, SDN.

1. Introduction
The data and control plane are combined in a typical

network. The control plane of the devices is responsible for

providing information regarding the forwarding table.

Decisions regarding sending or receiving frames are taken by

the network device based on the forwarding table [1]. Figure

1 shows the control plane and data plane for a traditional

network.

SDN offers the following benefits over traditional

networks:

 Reduction of time for managing the network and
deployment of new resources or applications [3].

 Programmable Network: Applications can be linked to

the network using open APIs. Traditional networks lack a

standard set of APIs [4]. As a result, programming

applications directly to network resources is quite

challenging.

 Flexible network: A fault-tolerant network can be built

using SDN [5]. It can be configured from the central

location. In case if primary link fails, the network

connectivity can be restored using a backup link [6].

The separate control plane and data plane of SDN allow

easy creation and introduction of new abstractions in

networking. It simplifies the network management and

facilitates network evolution [7, 8]. SDN enables the use of

software to automate tasks and enhances the ability to modify
network policies dynamically [9]. SDN controller manages

the flow in the data plane. SDN controllers are based on

protocols like OpenFlow. This protocol is responsible for

forwarding packets through switches and routers [10].

Fig. 1 Traditional network

CONTROL PLANE
PROVIDES DATA TO BUILD FORWARDING TABLE

DATA PLANE
LOOKS TO FORWARDING TABLE FOR ROUTING DECISIONS FRAMES OUT FRAMES IN

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Jıtendra P. Chaudhari et al. / IJEEE, 11(5), 299-305, 2024

300

Fig. 2 SDN framework

One of the open-source SDN controllers written in Python

is RYU. Software components of RYU with well-defined API

allow the creation of various network management and control

applications. SDN is an innovative networking paradigm that

separates the network’s control plane from the data plane,

enabling centralized control and programmability.

RYU provides a flexible and scalable platform for

developing SDN applications, allowing network

administrators to define and enforce network policies,

orchestrate network resources, and implement various

network functions. RYU is responsible for the creation and
sending an OpenFlow messages, listening to asynchronous

events and handling incoming packets [11].

Shortest path forwarding is an important requirement in

Software-Defined Networking (SDN) because it allows for

efficient and optimal routing of network traffic. By

determining the shortest path between source and destination

nodes, SDN can minimize the number of network hops and

reduce latency.

This leads to improved network efficiency and faster data

transmission shortest path forwarding is not performed by

simple_switch.py of RYU. Therefore, we modified this file,
integrating the shiftest path forwarding to this file. For the

implementation of shortest path forwarding, the performed

steps are as follows.

 Topology discovery

 Network view construction

 Forwarding

This study aims to implement the datacenter topology

using the Mininet emulator. Using the RYU controller, track

the effectiveness of the datacenter topology for various

network sizes. Here, the modification is done in the

simple_switch.py of RYU for shortest path forwarding. If any

link fails, the packets will be forwarded along the next shortest
path of SDN. The overall contribution of the paper is as

follows:

 The study contributes by implementing a datacenter

topology using the Mininet emulator. This allows

researchers and practitioners to simulate and evaluate

network scenarios resembling real-world datacenter

environments.

 The study utilizes the RYU controller to evaluate the
effectiveness of the implemented datacenter topology

across various network sizes. This evaluation helps assess

the performance and scalability of the topology under

different conditions.

 The researchers modify the "simple_switch.py" module

of the RYU controller to incorporate shortest path

forwarding. By implementing this modification, the study

enhances the controller’s capabilities to compute and

enforce optimal routing paths based on the shortest path

algorithm.

Section 2 presents basic requirements for the shortest path

forwarding algorithm implementation. Later, the experiment

setup and its results are presented in Sections 3 and 4. Finally,

a conclusion is presented in Section 5.

2. Preliminaries
2.1. Dijkstra’s Shortest Path Algorithm

The Dijkstra algorithm [12] is used to determine the most

efficient routes between nodes in a graph, such as a network

of roads. The concept was conceived by scientist Edsger W.

Dijkstra in 1956 and subsequently published three years later.

Algorithm: The work started with the Initial node as the

node to begin with. Any node’s distance will be measured

from the starting node. There will be some initial distance

values assigned to all nodes, and these values will be improved
at each step.

1. All nodes are initially designated as unvisited. An

unvisited set refers to a collection of all unvisited nodes

set.

2. Each node is assigned a tentative distance value. The

initial value of the first node is zero, while all subsequent

nodes are assigned a value of infinity. The current node is

designated as the initial node.

3. Now considering the current node, get all its unvisited
nodes and get the distance from the current node. Update

the distance values of the nodes by comparing the newly

computed distance and assigning the smaller one. For

example, consider node X with an initial distance of 6,

and if the neighboring node Y has a distance of 2, then the

length of the path to Y through X will be 6+2 =8. Now,

compare this value with the previously assigned value. If

the newly computed path cost is less, then update it to 8.

Otherwise, the current value of the path is kept as it is.

4. The present node is marked as visited and deleted from

the unvisited set after all of its unvisited neighbours have

been visited. A node will never be checked again after
being visited.

SDN CONTROLLER

Open Flow Protocol

SWITCH RUNNING OPENFLOW

FORWARDS BASED ON SDN CONTROLLER DATA
FRAMES OUT FRAMES IN

Jıtendra P. Chaudhari et al. / IJEEE, 11(5), 299-305, 2024

301

5. The algorithm will stop after marking the destination

node as visited or after all nodes in the unvisited list are

visited.

6. Otherwise, get the new current node from the unvisited

node having the smallest tentative distance and go back

to step 3.

2.2. Bellman-Ford Algorithm

In this algorithm, each node can have only partial

knowledge of the network. The node must know its number

only, and each node should be able to compute the number of

its neighbours. To calculate the shortest path from the current

node to the destination, hope is done neighbor by neighbor

from each source to the destination [13].

2.3. Floyd-Warshall Algorithm

This algorithm can locate the shortest route on a graph

with edge weights that are either positive or negative [14]. The

solution matrix is initiated the same as the input graph matrix.

Then, all vertices are taken into account as intermediate
vertices, updating the solution matrix. All vertices are updated

gradually, and the shortest path is one by one.

Here, the current vertex is assigned to the shortest path as

an intermediate vertex. After picking vertex k as an

intermediate vertex, it is assumed that it is already considered

that all vertices from 0 to k-1 are intermediate vertices. There

are two possible situations for each pair (i,j). The route from i

to j does not include K. K is not an intermediate vertex in the

scenario. Dist[i][j] remains unchanged.

The distance value of dist[i][j] is updated and computed

as dist[k][j] + dist[i][k] if k is on the shortest route from I to j.
If dist[i][j] > dist[k][j] + dist[i][k].

2.4. A star Algorithm

A* is a best-first search or an informed search algorithm.

A* algorithm works in terms of weighted graphs [15]. A

specific node from the graph is marked as a start node. Finding

the shortest path between the starting node and the goal node

is the algorithm’s main objective [16]. This is achieved by

maintaining a tree of paths from the initial node to the

destination.

Algorithm:

1. Open list is initiated.

2. Closed list is initiated. The initial node is put on the open
list by leaving its f at 0.

3. Keep going until the open list is not empty

a. The node with the lowest f is found on the open list.

Call it “q”.

b. Take q out of the open list.

c. Locate the parents of 8 successors of q and set them

to q.

d. Repeat for each successor

4. If a successor is a target, cease looking.

successor.g = distance (successor, q) + q.g

successor.h = distance (goal, successor)

successor.f = successor.h + successor.g

5. If the node has a lower f than the successor is in the open

list and occupies the same place as the successor, avoid

the successor.
6. If the closed list node in the same place as the successor

has a low f value, do not include it. The node is moved to

the bottom of the open list.

7. Send q to the closed list.

2.5. Mininet

Mininet emulator [17] provides a simulation for a

complete network of hosts, links, and switches. It is very easy

to prototype OpenFlow-based network controllers in Mininet.

It is possible to run any code on the Mininet host, which any

Linux server can run. It is feasible to build a Mininet host that

only sees its interfaces and has a private network interface.

MiniNet allows rapid prototype creation with constrained
resources.

For network namespaces and virtualization features, it is

light. It also enables real-time debugging. OpenFlow switches,

sometimes referred to as open vSwitches, serve as the

forwarding devices [18]. Open vSwitch in the Mininet, as well

as OpenFlow reference switch in the Mininet, are software

based switches. It is possible to use any SDN-based controller

in Mininet [19].

2.6. RYU Controller

One of the most flexible open-source SDN controllers is

the RYU controller. The controller increases the agility of the
network. Using the RYU controller makes the network easy to

manage and easy to adapt to traffic flow. SDN controllers are

called as brains of the network because they are responsible

for communication between routers and switches and

southbound APIs and using northbound APIs, also up to the

applications and business logic [20, 21]. Many SDN-based

interference mitigation strategies, including ML-based

interference mitigation and NS in 5G, are implemented using

RYU [22].

Software components having well-defined APIs are

provided by the RYU controller [23]. Due to these API

developers can easily create a variety of network management
and control applications. Due to these modular programming

organizations are able to fulfill their specific needs by

deployment. Developers can quickly upgrade old modules and

construct new applications using these components,

guaranteeing that the underlying network can support the

varying requirements of their applications.

3. Experimental Setup
To conduct this experiment, we built a data centre

topology with various numbers of racks. The RYU

Jıtendra P. Chaudhari et al. / IJEEE, 11(5), 299-305, 2024

302

controller’s simple_switch.py application has been altered.

The application is divided into three steps: (1) Discovery of

network topology, (2) Construction of the network view, and

(3) shortest path forwarding.

For the discovery of network topology, the work uses a

RYU module called topology. Networkx is the Python graph
library providing different shortest-path algorithms. This

library is used for the construction of the network view and

shortest path computation. OpenFlow is used for forwarding.

3.1. Networkx for Network View and Shortest Path

Computation

NetworkX is a Python module for building, modifying,

and studying the dynamics, structure, and complex network

functions [24].

Command to create an edge-free, empty graph.

Import networkx as nx

G = nx.Graph()

G.add_node() is used for adding the nodes in the network,
and G.add_edge() for adding the edges in the network.

Networkx provides with various functions for shortest

path computations

shortest_path(G, source=None, target=None,

weight=None, method=‘Dijkstra’)

The function determines the shortest route between two

points. If the weight is None, then every edge has assigned the

weight as 1. The default method for shortest path computation

is Dijkstra’s. Bellman-Ford method is also supported.

floyd_warshall(G, weight=‘weight’)

This function extracts the graph’s shortest pathways for
all pairs.

astar_path(G, source, target, heuristic=None,

weight=‘weight’)

Using the a* algorithm, this function determines the

shortest route between the target and the source. Heuristic in

this case, is a function to assess the estimated distance between

a node and the goal.

3.2. Mininet and RYU Controller

In this work, the RYU application is developed to find the

shortest path in the SDN network. The application is named as

shortestpath.py. The command to run the RYU application is:

PYTHONPATH=../bin/ryu-managerryu/app/shortestpath.py

–observe-links

The datacenter topology script is written in Python using

the Mininet emulator. The command to run custom Mininet

topology is:

Sudo mn – custom datacenter.py –topo mytopo –
controller remote

3.3. Iperf for Evaluating the Performance of the Network

Iperf is used for basic performance evaluation over

mininet.

Open windows for h1 and h2 using xterm.

Initiate the Transmission Control Protocol (TCP) server

on host h2, utilizing port (-p) 5566. Additionally, continuously

observe the outcomes at a frequency of one second (-i).

Fig. 3 TCP server

Initiate the TCP client on host h1 using the -c option.

Additionally, please adjust the transmission duration (-t) to a
precise duration of 15 seconds.

Fig.4 TCP client

Observe results for host h1 as shown in Figure 5. It shows

that between 0 to 15 seconds, 14.2 Gbps average throughput

is received.

Fig. 5 Throughput

4. Performance Measure
Software tool Mininet is used as an emulator and the RYU

controller of SDN is used as a remote controller in our

experimentation. Our main goal is to use the shortest path

technique to improve network throughput.

Jıtendra P. Chaudhari et al. / IJEEE, 11(5), 299-305, 2024

303

This work uses an implementation of datacenter network

topology in Mininet and Python. Also, the network library is

used for writing shortest-path algorithms in the RYU

application. The iperf is used to measure the TCP throughput.

OpenFlow messages are sent between the nodes using RYU

handlers and decorators by the SDN controller. The h1r1 is
configured in client mode to carry out the TCP packet transfer

between two hosts, namely h1r1 and h10r10. TCP packets are

sent to the client node.

H10r10 is set to server mode. The server calculates the

bandwidth for the quantity of data transferred after receiving

the TCP packets. During this experimentation, the packets are

transmitted from client to server for 15 seconds, and

bandwidth is observed. In the network, the bandwidth of the

data decides the performance of the packet transmission from

source to destination.

The throughput tests are carried out on different shortest

path algorithms, including Bellman-ford Algorithm, Floyd-

Warshall Algorithm, Dijikstraw’s Shortest Path Algorithm,

and A* shortest path algorithm. Also, the results are compared

with the simple_switch.py application of RYU, which does

not include shortest path computation. The data centre

topology evaluates the performance for different network

scales. The throughput measured for all shortest paths under
consideration is depicted in Table 1.

As depicted in Table 1, Dijikstraw’s algorithm gives an

average better throughput of 7.293 as compared to other

shortest path algorithms. Figure 6 depicts the comparative

performance evaluation of different shortest path algorithms

for the datacenter topology. From the results, it has been

observed that the shortest path forwarding ensures that

network traffic follows the most efficient routes between

source and destination nodes. By computing the shortest paths

using Dijkstra’s algorithm, the implementation optimizes the

routing decisions made by the network devices. This reduces

the number of network hops, minimizes latency, and improves
overall network performance.

 Table 1. Throughput comparison for different algorithm

Data

Center

Scales

Shortest Path Algorithms

Simple Switch
Dijikstraw’s

Algorithm

Bellman-Ford

Algorithm

Floyd-Warshall

Algorithm

A Star

Algorithm

4 5.94 8.23 6.38 3.56 3.7

5 7.67 5.72 7.72 3.72 4.11

6 6.84 7.74 5.75 3.69 3.81

7 7.01 8.26 8.21 3.82 3.84

10 7.32 7.68 7.82 7.72 3.86

12 7.09 6.31 5.36 6.8 3.61

14 7.15 7.56 5.54 6.58 3.36

16 6.4 6.98 3.24 7.43 3.63

18 6.18 7.11 3.46 8.51 3.67

20 5.75 7.34 7.07 6.51 3.75

Average 6.735 7.293 6.055 5.834 3.734

Fig. 6 Performance evaluation for different datacenter topology scales

Fig. 7 Average network throughput

4 5 6 7 10 12 14 16 18 20 Average

9
8
7
6
5
4
3
2
1
0

Simple_switch
Bellman-ford Algorithm
A Star Algorithm

Dijikstraw’s Algorithm
Floyd-Warshall Algorithm

Throughput

8
6
4
2
0

Throughput

Jıtendra P. Chaudhari et al. / IJEEE, 11(5), 299-305, 2024

304

5. Conclusion
In this paper, different shortest-path algorithms have been

implemented in a Software Networking environment using

Mininet and RYU. Software-defined networking is a

relatively new field, yet it is expanding quickly.

Simple_switch.py application of RYU does not support

shortest path computation.

Hence, in this paper, the RYU application is modified by

incorporating Dijkstra’s SP Algorithm, Bellman-ford

Algorithm, Floyd-Warshall Algorithm and shortest path

algorithm A* from the network library. A mininet-based

Python script is written for generating datacenter topology.

For different scales of data centre topology, the calculation of

the performance of the SDN network with regard to

throughput is carried out in this work.

The Dijkstra’s’ Shortest path algorithm gives a better

average throughput as compared to other shortest path

algorithms under consideration. In future, the performance
evaluation can be done by using more performance measures,

including packet transfer rate, bandwidth utilization, packet

loss ratio etc. Also, an attempt can be made to investigate

dynamic routing using the shortest path in case of any link

failure. The comparative performance of average throughput

is depicted in Figure 7.

References
[1] Nachikethas A. Jagadeesan, and Bhaskar Krishnamachari, “Software-Defined Networking Paradigms in Wireless Networks: A Survey,”

ACM Computing Surveys (CSUR), vol. 47, no. 2, pp. 1-11, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[2] Murat Karakus, and Arjan Durresi, “Quality of Service (QoS) in Software-Defined Networking (SDN): A Survey,” Journal of Network

and Computer Applications, vol. 80, pp. 200-218, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[3] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui, “Software‐Defined Networking (SDN): A Survey,” Security

and Communication Networks, vol. 9, no.18, pp. 5803-5833, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[4] Kannan Govindarajan, Kong Chee Meng, and Hong Ong, “A Literature Review on Software-Defined Networking (SDN) Research Topics,

Challenges and Solutions,” Fifth International Conference on Advanced Computing (ICoAC), Chennai, pp. 293-299, 2013. [CrossRef]

[Google Scholar] [Publisher Link]

[5] A.U. Rehman, Rui. L. Aguiar, and Joao Paulo Barraca, “Fault-Tolerance in the Scope of Software-Defined Networking (SDN),” IEEE

Access, vol. 7, pp. 124474-124490, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Katayoun Bakhshi Kiadehi, Amir Masoud Rahmani, and Amir Sabbagh Molahosseini, “A Fault-Tolerant Architecture for Internet-of-

Things Based on Software-Defined Networks,” Telecommunication Systems, vol. 77, pp. 155-169, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[7] Junjie Xie et al., “Control Plane of Software-Defined Networks: A Survey,” Computer Communications, vol. 67, pp. 1-10, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Diego Kreutz et al., “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,

2015. [CrossRef] [Google Scholar] [Publisher Link]

[9] Rajat Chaudhary et al., “A Comprehensive Survey on Software‐Defined Networking for Smart Communities,” International Journal of

Communication Systems, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[10] Josep Batalle et al., “On the Implementation of NFV Over an OpenFlow Infrastructure: Routing Function Virtualization,” IEEE SDN for

Future Networks and Services (SDN4FNS), Italy, pp. 1-6, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[11] Danijel Cabarkapa, and Dejan Rancic, “Performance Analysis of RYU-POX Controller in Different Tree-Based SDN Topologies,”

Advances in Electrical & Computer Engineering, vol. 21, no. 3, pp. 31-38, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[12] David Walden, The Bellman-Ford Algorithm and Distributed Bellman-Ford, pp. 1-12, 2005. [Online]. Available: https://www.walden-

family.com/public/bf-history.pdf

[13] Dorit S. Hochbaum, Lecture Notes for IEOR 266: Graph Algorithms and Network Flows. [Online]. Available:

https://hochbaum.ieor.berkeley.edu/files/266Notes-F2020.pdf

[14] Vassilis Kaffes et al., “Finding Shortest Keyword Covering Routes in Road Networks,” Proceedings of the 30th International Conference

on Scientific and Statistical Database Management, pp. 1-12, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[15] Ouardi Amine, and Mestari Mohammed, “Generating A-Star Algorithm Admissible Heuristics Using a Dynamic Dataloader on Neural

Networks, Enhanced with Genetic Algorithms, on a Distributed Architecture,” IEEE Access, vol. 11, pp. 18356-18373, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[16] Dian Rachmawati, and Lysander Gustin, “Analysis of Dijkstra’s Algorithm and A* Algorithm in Shortest Path Problem,” Journal of

Physics: Conference Series, vol. 1566, no. 1, pp. 1-8, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[17] Bob Lantz, and Brian O'Connor, “A Mininet-Based Virtual Testbed for Distributed SDN Development,” ACM SIGCOMM Computer

Communication Review, vol. 45, no.4, pp. 365-366, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[18] Syed Hussain Ali Kazmi et al., “Routing-Based Interference Mitigation in SDN Enabled Beyond 5G Communication Networks: A

Comprehensive Survey,” IEEE Access, vol. 11, pp. 4023-4041, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/2655690
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software-defined+networking+paradigms+in+wireless+networks%3A+A+survey&btnG=
https://dl.acm.org/doi/abs/10.1145/2655690
https://doi.org/10.1016/j.jnca.2016.12.019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quality+of+service+%28QoS%29+in+software-defined+networking+%28SDN%29%3A+A+survey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804516303186
https://doi.org/10.1002/sec.1737
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software%E2%80%90defined+networking+%28SDN%29%3A+a+survey&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://dx.doi.org/10.1109/ICoAC.2013.6921966
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+literature+review+on+software-defined+networking+%28SDN%29+research+topics%2C+challenges+and+solutions&btnG=
https://ieeexplore.ieee.org/document/6921966
https://dx.doi.org/10.1109/ACCESS.2019.2939115
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault-tolerance+in+the+scope+of+software-defined+networking+%28sdn%29&btnG=
https://ieeexplore.ieee.org/abstract/document/8822707
https://doi.org/10.1007/s11235-020-00750-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+fault-tolerant+architecture+for+internet-of-things+based+on+software-defined+networks&btnG=
https://link.springer.com/article/10.1007/s11235-020-00750-1
https://doi.org/10.1016/j.comcom.2015.06.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Control+plane+of+software-defined+networks%3A+A+survey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366415002200
https://dx.doi.org/10.1109/JPROC.2014.2371999
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software-defined+networking%3A+A+comprehensive+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/6994333
https://doi.org/10.1002/dac.5296
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+on+software%E2%80%90defined+networking+for+smart+communities&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1002/dac.5296
https://dx.doi.org/10.1109/SDN4FNS.2013.6702546
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+implementation+of+NFV+over+an+OpenFlow+infrastructure%3A+Routing+function+virtualization&btnG=
https://ieeexplore.ieee.org/abstract/document/6702546
https://dx.doi.org/10.4316/AECE.2021.03004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Analysis+of+Ryu-POX+Controller+in+Different+Tree-Based+SDN+Topologies&btnG=
https://aece.ro/abstractplus.php?year=2021&number=3&article=4
https://www.walden-family.com/public/bf-history.pdf
https://www.walden-family.com/public/bf-history.pdf
https://hochbaum.ieor.berkeley.edu/files/266Notes-F2020.pdf
https://doi.org/10.1145/3221269.3223038
https://scholar.google.com/scholar?q=Finding+shortest+keyword+covering+routes+in+road+networks&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/3221269.3223038
https://dx.doi.org/10.1109/ACCESS.2023.3247773
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generating+A-Star+Algorithm+Admissible+Heuristics+Using+a+Dynamic+Dataloader+on+Neural+Networks%2C+Enhanced+with+Genetic+Algorithms%2C+on+a+Distributed+Architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/10050009
https://dx.doi.org/10.1088/1742-6596/1566/1/012061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+Dijkstra%E2%80%99s+algorithm+and+A*+algorithm+in+shortest+path+problem&btnG=
https://iopscience.iop.org/article/10.1088/1742-6596/1566/1/012061/meta
https://doi.org/10.1145/2829988.2790030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+mininet-based+virtual+testbed+for+distributed+SDN+development&btnG=
https://dl.acm.org/doi/abs/10.1145/2829988.2790030
https://dx.doi.org/10.1109/ACCESS.2023.3235366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Routing-based+interference+mitigation+in+SDN+enabled+beyond+5G+communication+networks%3A+A+comprehensive+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/10012366

Jıtendra P. Chaudhari et al. / IJEEE, 11(5), 299-305, 2024

305

[19] Daniela Sousa, Susana Sargento, and Miguel Luis, “A Simulation Environment for Software Defined Wireless Networks with Legacy

Devices,” Proceedings of the 18th ACM International Symposium on QoS and Security for Wireless and Mobile Networks, pp. 1-10, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[20] Saleh Asadollahi, Bhargavi Goswami, and Mohammed Sameer, “RYU Controller’s Scalability Experiment on Software-Defined

Networks,” 2018 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), India, pp. 1-5, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[21] Md. Tariqul Islam, Nazrul Islam, and Md. Al Refat, “Node to Node Performance Evaluation through RYU SDN Controller,” Wireless

Personal Communications, vol. 112, pp. 555-570, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] Mohammad Nowsin Amin Sheikh et al., “A Qualitative and Comparative Performance Assessment of Logically Centralized SDN

Controllers by Mininet Emulator,” Computers, vol. 13, no. 4, pp. 1-27, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[23] Himanshi Babbar, and Shalli Rani, “Performance Evaluation of QoS Metrics in Software-Defined Networking Using RYU Controller,”

IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, pp. 1-12, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[24] Aric Hagberg, Pieter J. Swart, and Daniel A. Schult, “Exploring Network Structure, Dynamics, and Function Using NetworkX,”

Conference: SCIPY 08, 2008. [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3551661.3561369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Simulation+Environment+for+Software+Defined+Wireless+Networks+with+Legacy+Devices&btnG=
https://dl.acm.org/doi/abs/10.1145/3551661.3561369
https://dx.doi.org/10.1109/ICCTAC.2018.8370397
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ryu+controller%E2%80%99s+scalability+experiment+on+software-defined+networks&btnG=
https://ieeexplore.ieee.org/abstract/document/8370397
https://doi.org/10.1007/s11277-020-07060-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Node+to+node+performance+evaluation+through+RYU+SDN+controller&btnG=
https://link.springer.com/article/10.1007/s11277-020-07060-4
https://doi.org/10.3390/computers13040085
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Qualitative+and+Comparative+Performance+Assessment+of+Logically+Centralized+SDN+Controllers+by+Mininet+Emulator&btnG=
https://www.mdpi.com/2073-431X/13/4/85
https://dx.doi.org/10.1088/1757-899X/1022/1/012024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+evaluation+of+QoS+metrics+in+software-defined+networking+using+ryu+controller&btnG=
https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012024/meta
https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012024/meta
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+network+structure%2C+dynamics%2C+and+function+using+NetworkX+%28No.+LA-UR-08-05495%3B+LA-UR-08-5495%29&btnG=
https://www.osti.gov/biblio/960616

