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Abstract - The theoretical basis for describing both the process of electromagnetic radiation passing through a nonlinear film 

and its reflection from a thin-film coating with nonlinear properties is considered. The process of generating field harmonics at 

frequencies determined by the film properties and the characteristics of the incident signal is considered. This method of high-

frequency correction of the signal spectrum, using a nonlinear film electrodynamic structure, will allow changing the shape of 

the pulse, which is transmitted along the waveguide from the generator. Thus, the proposed theoretical basis will determine the 

possibilities of controlling the shape of pulses that are transmitted along the waveguides without additional energy losses. It is 

established that the decrease in the duration of the pulse fronts leads to an increase in the energy of high-frequency components 

in the spectrum of the radiated signal, which allows an increase in the efficiency of focusing the field of most antenna systems. 

To realize such energy transfer to high-frequency components of the spectrum, it is suggested to add elements with nonlinear 

characteristics to the antenna. 

Keywords - Electromagnetic waveguide, Nonlinear film antenna, Ultra-wideband communication, Soliton, Reflector.

1. Introduction  
In recent years, much attention has been paid to nonlinear 

waves in various media [1, 2], the properties of which can be 

used in the creation of new devices. In this case, as a rule, due 

to the complexity of the theoretical analysis of 
multidimensional systems, nonlinear waves in one-

dimensional systems are considered. Within the framework of 

electrodynamics problems, real structures of various 

frequency ranges have a three-dimensional geometry, and 

only for some types of waves can they be modeled by well-

known [3] flat, two-dimensional models.  

This significantly complicates the theoretical analysis of 

such systems and limits the possibilities of creating new 
electrodynamic devices that include elements with nonlinear 

characteristics. Waveguide systems with nonlinear films have 

a number of unique features compared to conventional linear 

waveguides and, in particular, allow the existence of nonlinear 

waves (solitons). The spectrum of intrinsic excitations of 

nonlinear waveguides can contain both solitons of the 

envelope of electromagnetic waves and stationary video 

pulses. Stable soliton solutions in nonlinear waveguides are 

formed by compensating for dispersion distortion of the signal 

by nonlinearity, which makes it possible to develop high-

speed information transmission systems based on nonlinear 

waveguide structures. The parameters of solitons depend both 

on the properties of the nonlinear element and on the 

dispersion characteristics of the waveguide structure. 

Modern studies [1, 5, 6] have shown that the properties of 

solitons of film waveguide structures in microwave 

frequencies have not been sufficiently studied, and the theory 

of soliton control of the shape of the emitted pulse of Ultra-
Wideband (UWB) antennas has not been considered.  

Consequently, it is necessary to develop theoretical 

foundations for constructing mathematical models for the 

formation of soliton pulse signals in nonlinear waveguide 

structures, as well as to determine ways to use such signals in 

antennas of various types effectively.Therefore, it is relevant 

to develop the theoretical foundations for the construction of 

thin-film nonlinear waveguide microwave systems, including 

UWB communication systems with controlled characteristics 

of pulsed radiation. 
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2. Literature Analysis and Problem Statement 
In [1-7], a soliton is defined as a structurally stable 

individual wave that propagates in a nonlinear delta and 

behaves like a particle (particle-like wave), which, when 

interacting with each other or with some other perturbations, 

does not collapse but continues to move, keeping its structure 

stable. It is proposed in [4-7] to utilize this property to transmit 

data over long distances without interference.  

However, in [4], it is pointed out that in multidimensional 

conditions, mathematically describing the stability of solitons, 

which is maintained by spatial modulation of nonlinearity, is 

a challenging problem for both theoretical and experimental 

studies.  

To study the problem of describing "soliton control" of 

wave propagation processes in [5, 6], it is proposed to use 

quartz matrices doped with ions of rare-earth elements, 

including the recording of single and coherent systems of 

optical waveguides in their thickness. In [6], it is proposed to 

build a model of the process of formation of solitons of ultra-

short duration, taking into account the dependences of material 

parameters of the medium on the spectral component of the 

passing pulse to use a partial solution of the nonlinear 

Schrödinger Equation. Thus, in [5, 6], the possibility of 

forming stationary solitons of the field, whose parameters can 
be controlled by an external wave of optical pumping, was 

theoretically proved. 

However, due to the specific features of soliton 

propagation in different media, a separate, unique solution to 

the problem of controlling the shape of the emitted (re-

emitted) soliton(s) in film microwave waveguides and 

reflector antennas is required. However, there are difficulties 

in describing the theoretical basis of "soliton signal control" in 

current-film waveguide and antenna systems, such as: 

 A complex mathematical description of the boundary 

conditions for the polarized electromagnetic field on the 

surface of a film with a stepped nonlinearity; 

 No mathematical model exists to describe the process of 

forming solitons of the electromagnetic wave envelope in 

waveguide structures, including the thin dielectric films 

with a diagonal tensor of dielectric permittivity with step 

nonlinearity; 

 Mathematical dependence of soliton parameters on the 

nonlinear film parameters and dispersion characteristics 

of the microwave structure (waveguides, antennas, etc.) 

has not been established to enable control of the shape of 

the soliton signal. 

To overcome these difficulties in this study, the 
theoretical basis for the electromagnetic analysis of soliton 

passage through thin-film waveguides and on the surface of 

antennas has been developed. On the basis of the proposed 

theoretical provisions, mathematical relations for calculating 

the parameters of solitons of the generalized structure of 

waveguide thin-film systems can be obtained, and the 

dependence of the parameters of such solitons on the 

parameters of the nonlinear film can be established.  

The mathematical models proposed here will provide for 
the creation of devices for controlling the shape of the signal 

on the basis of nonlinear waveguides and, in particular, will 

reduce the duration (sharpening) of the output pulse signal 

(“soliton signal control”).  

It is necessary to mathematically describe not only the 

process of creating solitons in films but also to consider 

methods of controlling the parameters (width, amplitude) of 

pulses in different waveguide elements and structures (fiber 

guides, antennas). 

2.1. Purpose and Objectives of the Study 

This work aims to theoretically describe the processes of 

excitation of soliton pulse signals in nonlinear waveguide thin-
film structures, as well as to determine the possibility of 

effective control of radiation of such signals by antennas of 

various types with film coating. To achieve the study's goal, it 

is necessary to solve the following tasks: 

 Perform the analysis of boundary conditions for the 

electromagnetic field on the surface of a nonlinear film; 

 Carry out spectral analysis of soliton perturbations and 

build a model of processes of excitation of soliton pulse 

signals in nonlinear waveguide structures, taking into 

account thin-film technologies; 

 Analyze the properties of broadband nonlinear excitations 
in a strip line and determine ways to control the 

parameters (duration and amplitude) of the radiation pulse 

by nonlinear antennas of various types with the use of 

solitons; 

 Determine possible ways to control the shape of the 

transmitted signal in a waveguide with thin-film walls or 

radiated by antennas with a film coating of the reflector. 

3. Materials and Methods 
3.1. Boundary Conditions for the Electromagnetic Field on 

the Surface of Thin Films with Nonlinear Characteristics 

Let us define the boundary conditions for the 

electromagnetic field on the surface of a thin film with 

nonlinear properties. Accounting for the influence of thin 

layers of different materials on the electrodynamic parameters 
of various structures due to the smallness of the thickness 

parameter kd (d – is the thickness of the layer, k=2/,  – 
wavelength), is effectively carried out by using equivalent 

boundary conditions [1, 8], which significantly simplify the 

analysis of structures. Consider a thin (kd<<1) layer of 

nonlinear dielectric located in the yz interface plane of two 

media with linear parameters (Figure 1). 
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Fig. 1 Toward the derivation of boundary conditions on a nonlinear film 

of thickness d 
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Where О(kd)2 – values of the second order of smallness. 

Considering the continuity of the tangential components Ey, 

Ez, Hy, Hz and normal components Bx, Dx of the fields in the 

interface planes x=0, x=d, and assuming that inside the thin 
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Without specifying the kind of nonlinear polarization and 

magnetization, which in the linear case pass into the known 

relations [10]. 

3.2. Solitons of the Electromagnetic Wave Envelope in 

Waveguide Structures with Nonlinear Films 

Let us now consider the spectrum of eigen excitations and 

the possibility of the existence of soliton solutions on the 

example of a regular waveguide structure (e.g., a rectangular 

waveguide with a multilayer dielectric) with a nonlinear film 

in the yz plane of the media interface. Such a structure can be 

represented for generality as a three-layer system: a thin 

nonlinear layer (Figure 1), described by (1), located between 

layered half-spaces I and II with linear parameters 

characterized by tensors of input impedances, known for a 

wide range of specific isotropic and anisotropic structures 
[13].  

In the absence of anisotropy in the yz plane, the tensors 

are diagonal; assuming d/dz=0, it is easy to see that 

independent propagation of E(Ex, Ey, Ez) and H(Hx, Hy, Hz) - 

waves is possible in the structure. Let us consider the H-

waves. Based on the definition of the input impedance, it can 
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Based on Maxwell's Equations and Equations 2 and 3, 

was obtained the following equation in terms of Ez(, k): 
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In the plane y, t - representation Equation 4 has the form:  

∬
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Moreover, describes the waveguiding properties of the 

structure at arbitrary nonlinearity PNL(y, t). The solution of the 

equation depends on the nonlinear term PNL. It will look for 
the solution of the equation in the form of momentum 
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Satisfying the slowness condition. 

|
𝑑𝑒(𝑦,𝑡)

𝑑𝑡
| ≪ 𝛺|𝑒(𝑦, 𝑡)|, |

𝑑𝑒(𝑦,𝑡)

𝑑𝑦
| ≪ 𝑄|𝑒(𝑦, 𝑡)|  (8) 
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from zero only in the region of, 
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−1 (9) 

Where s – pulse duration, v – pulse velocity.  

Assuming that at the spectral width of the pulse, i.e., in 

the region Equation 9, the function F(, k) changes slowly 
enough and its features lie outside this region when calculating 

the left part of Equation 6, then the decomposition will be used 

taking into account the spatial dispersion: 

2 2
2

2

2
2

2

( , ) ( , ) ( )

1
( ) ( ) ( )( )

2

1
( ) ... .

2

k Q

k Q k Q k Q

k Q

dF
F k F Q

d

dF d F d F
k Q k Q

dk d d dk

d F
k Q

d k



  



 


 
 




  
  




    

      

  

 (10) 

Substituting Equation 10 into 6, taking into account the 

decomposition terms written out and integrating taking into 

account the properties of Fourier transforms leads to the 

equation for the function e(y, t): 
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Which is a generalization of the nonlinear Schrodinger 

equation. If the relation, 
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Then, the solution of Equation 6, as it can be checked 

directly by substitution, is the function 

𝑒(𝑦, 𝑡) = 𝐸𝑠𝑐𝑛(𝑧, 𝑛)  (13) 

Where Es
 is the soliton amplitude, cn(z, n) is the elliptic 

Jacobi function, n(0,1 )– is the modulus, z=(t-y/v)s-1, 

v=d/dQ. 
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determining the duration of solitons. 
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In particular, at n=1, have a single envelope soliton 
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The relation between Q and  does not change, and the 
dispersion equation has the following form, 
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At n=1 have the case of the "darkening" soliton envelope. 

The analysis of the obtained relations shows that the 

propagation of solitons is possible in a regular waveguiding 

structure with nonlinear films, the character of which is 

determined by the sign of nonlinearity and dispersion 

characteristics of the structure. In the absence of a nonlinear 

film (d0, 0, k0) the dispersion equation goes to the 

well-known relation for a linear structure F(, k)=Y1(, k)- 

Y2(, k)=0 due to both the linear part of the dielectric 
permittivity of the film and the nonlinear part proportional to 

the signal level Es
2.  

The soliton parameters depend significantly on both the 

film parameter k, the signal level Es
2, and the steepness of the 

characteristics F(,k) of the frequency and wave number 
functions Es

2. Thus, by modulating the parameters of the linear 

part of the waveguide structure, e.g., by sub-magnetizing the 

introduced ferrite layers, the soliton parameters can be 

controlled. The obtained relations allow modeling different 

designs of waveguide systems based on the required soliton 

parameters for the available films with nonlinear parameters. 

A similar analysis is performed for E-waves. However, the 

soliton parameters of E-waves and H-waves in the same 

structure are different because the input impedances of such 

waves are different. In the presence of anisotropy in the yz 

plane and are tensors and, E-waves and H-waves are 

interconnected in the anisotropic region, the study of nonlinear 

waves in such structures is of independent interest. 

3.3. A Method for Analyzing the Properties of Broadband 

Nonlinear Excitations in a Film with Nonlinear Parameters 

Soliton Solutions in Microstrip Lines 

The processes of envelope soliton formation in 

waveguides with nonlinear parameters considered in the 

previous section may be of practical interest in the 

development of noise-resistant communication systems with 

increased information transmission rates. [7, 8] Waveguide 

nonlinear systems also allow the existence of broadband pulse 

excitations - video solitons. Broadband pulses can be 

generated, for example, with the help of size-quantum films of 

semiconductors, taking into account the peculiarities of their 

dispersion characteristics. It is considered a method for 
analyzing the properties of broadband nonlinear excitations 

and studying the properties of such excitations in a waveguide 

structure, including a film with nonlinear parameters. 

As a nonlinear waveguide, it is chosen a strip line 

including dielectrics with linear field parameters 2, 0, and 1, 

0, and a film between them described, in general, by the 
nonlinear polarization vector Pn(E). Let us consider the 

peculiarities of wave propagation in such a strip structure. The 

boundary conditions in the plane of the film are as follows 

𝐸𝑧1 (𝑥 =
𝛿

2
) = 𝐸𝑧2 (𝑥 =

𝛿

2
)  

𝐻𝑦1 (𝑥 =
𝛿

2
) − 𝐻𝑦2 (𝑥 = −

𝛿

2
) =

𝑒𝛿𝑑𝐸𝑧

𝑐𝑑𝑡
+

4𝜋𝛿𝑑𝑃𝑛(𝐸)

𝑐𝑑𝑡
 (24) 

Where  – film thickness;  – linear part of the dielectric 
permittivity of the film. 

The solution is sought in the form of the eigenfunction 
expansion of the linear part of the structure. 

𝐸𝑧𝑖(𝑥, 𝑦, 𝑡) = ∬
𝑑𝜔𝑑𝑘

(2𝜋)2  𝐸𝑧𝑖(𝜔, 𝑘)𝜑𝑖(𝑥)exp [𝑖(𝜔𝑡 − 𝑘𝑦)](25) 

Substituting Equation 4 into 2 gives the relation between 

E(y, t) and E(, k) (x0), 

2

2

2 2

( , ) ( , ) exp[ ( )]
(2 )

.
( )4





 

 

 
n

d dk
Y k Y k i t ky

P Ee d E

c dt c dt


  



 

       (26) 

Equation 26, together with the fourier transform of E(y, 

t), gives a nonlinear integro-differential equation with respect 
to the field distribution function in the film region with 

nonlinear parameters. 
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Equation 5 is very general and describes various 

waveguide structures. The function Y(, k) is determined by 
the boundary conditions, in particular, in a strip structure using 

an acceptable magnetic wall model at low frequencies. 

|
𝐻𝑦1(𝑥 = 𝑟) = 𝐻2𝑦(𝑥 = −𝑑) = 0

𝑌(𝜔, 𝑘)𝑝 sin(𝑝𝑟) + 𝑞𝑡𝑔(𝑞𝑑)cos (𝑝𝑟)
  (27) 

Where transverse wave numbers, 

2 2
2 2 2 21 2

2 2
; .p k q k

c c

   
   

 

To obtain analytical solutions to Equation 5 it is used the 

decomposition.  

 

3 5

3 5

2 4

( ) ( )
( , ) ...

3! 5!

( ) 2( )
...

3 15

( ) ( )
1 ... .

2! 4!

pr pr
Y k p pr

qd qd
q qd

pr pr


 

     
 

 
     

 

 
    
 

 (28) 

In this case, Equation 5 reduces to the nonlinear equation. 

2 2 4 4

1 2 3 42 2 4 2 2

4 6 6 6

5 1 2 34 6 4 2 2 4

22

2 2 2

...

( )4
( , ) ,


   


 

      
 

   n

d d d d

dt dy dt dt dy

d d d d
s s s

dy dt dt dy dt dy

d P Ee d E
E y t

c dt c dt

   



 

 (29) 

Where, 

2

1 1 2 2

2 3 2 2 2
41 1 2 2

3

3 2

2 1 2
4

( ) ; ;

;
3! 2 3

2 ( )
.

3 2

e r e d c r d

e r e e r d e d
c

e d e e r d

 









   

 
   
 

 
   
 

 

The solution of the equation describing the evolution of 

pulses in a structure with a nonlinear film depends on the type 

of nonlinearity. Here are the formulas for calculating the 

parameters of single stationary pulses at the most typical types 

of nonlinearity. At quadratic nonlinearity Pn(E)=E2 pulses of 
the type, 

𝐸(𝑦, 𝑡) = 𝐸𝑠𝑐ℎ−2[𝜏𝑠
−1(𝑡 − 𝑦/𝑣)]  (30) 

Where Es – amplitude; s – duration; v – pulse velocity: 

1

2

2

1 2

1

2
1

2 2 4

3 4 5

;

/ ( (8 / 3) )

2
.

( )

s

s
s

v

n e E

E

c v v






  




  



 

 
  

  
 

  

 
  

  

 

In the more general case of nonlinearities Pn(E)=E2+E3 
the character of the pulse does not change, and its parameters 

do not change: 

1

2

2

1 2

1

2
1

2 2 4

3 4 5

;

/ ( (8 / 3) )

2
.

( )

s

s
s

v

n e E

E

c v v






  




  



 

 
  

  
 

  

 
  

  

 (31) 

In the case of cubic nonlinearity Pn(E)=E3 along with 
Equation 6, the solution, depending on the excitation, can have 

the form, 

1 1( , ) ( / ) .s sE y t E ch t y v                 (32) 

Parameterized, 

1

2

2

2

1 2

1
2 2

1

2 2 4

3 4 5

;

( 2 ) .

2

( )

s

s
s

v

e E
c

E

c v v




 




  



 


  
     

  
 

 
  

    

         (33) 

In a constant electric field E0 in the case of cubic 

nonlinearity, it is possible to excite "dimming" pulses E(y, 

t)=th{s
-1(t-y/v)} parameterized. 
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1

2

2

2

1 2

1
2 2

1

2 2 4

3 4 5

;

( 2 ) .

2

( )

s

s
s

v

e E
c

E

c v v




 




  



 


  
     

  
 

 
  

    

         (34) 

The pulse duration and propagation speed are determined 

by the pulse amplitude Es, which is characteristic of nonlinear 

waves. Stationary pulses are formed due to the joint action of 

nonlinearity and dispersion, which leads to a qualitative 
change in the characteristics of waveguide structures and 

provides new opportunities in the technique of information 

transmission and processing: 

1. Compensation of dispersion distortions of signals allows 

for an increase in the speed of information transmission. 

2. High stability of pulses - reduce the requirements to the 

degree of inhomogeneity of the path. 

3. Interaction of broadband pulses with inhomogeneous 

parts of the structure allows one to realize on their basis 

broadband generators of coherent radiation. 

4. The phenomenon of bi-stability or multistability observed 

at higher orders of nonlinearity allows us to realize new 
devices of microwave range. 

At excitation in the structure of a periodic signal, its 

transformation into a periodic lattice of pulses described by 

elliptic functions with a periodic in time phenomenon of return 

to the initial state occurs. The described method can be used 

to calculate waveguide structures of various types. Higher 

types of nonlinearity (4th order, etc.) are similarly taken into 

account, but the relations for determining the parameters of 

pulses represent a system of equations requiring numerical 

investigation. 

3.4. Peculiarities of the Passage of Pulse Signals through 

Films with Nonlinear Parameters 

In this section it is considered the peculiarities of the 

passage of electromagnetic pulse signals through films with 

nonlinear properties. The passage of electromagnetic waves 

through interfaces is well investigated in the linear 

approximation.  

Due to the complexity of the analysis, the interaction of 

electromagnetic radiation with nonlinear boundaries is 

considered mainly in the analysis of harmonic generation and 

frequency interactions of monochromatic signals. The 

nonlinear nature of the boundary conditions makes it 

impossible to directly use the Fourier transform method to 
calculate the pulse shape by the nature of the passage of each 

spectral component separately. 

Therefore, the calculations are performed in the time 

domain and the pulse shape is determined as a result of solving 

the corresponding nonlinear equation. Here, it is considered a 

method for calculating pulse parameters using both frequency 

and time domain methods of analysis. The parameters of 

pulses are studied when they pass through the interface in free 
space or a waveguide with a nonlinear film oriented 

perpendicular to its axis. It has been established that at 

influences in the form of step functions, an approximate 

analytical solution of integrodifferential nonlinear equations 

describing the passage of pulses through a film with nonlinear 

parameters is possible. 

Let us consider, for simplicity a planar model of the 

structure (Figure 2), which models well the main types of 

waveguides (strip, coaxial, etc.). The wave equations in the 

regions of the structure with linear parameters 1 and 2 have 

the following form  

(−𝜀1,2𝜇1,2
𝜔2

𝑐2
) 𝐸(𝑥, 𝑦, 𝑧) = 0  (35) 

 
Fig. 2 Microstrip line with waveguide film 

Boundary conditions in the interface plane 

𝐸1𝜏(𝑦 = 0 −) − 𝐸2𝜏(𝑦 = 0 +) = 0  (36) 

𝐻1𝜏(𝑦 = 0 −) − 𝐻2𝜏(𝑦 = 0 +) =
𝑑

𝑑𝑡
(n ∗ 𝑃𝑛(E))   (37) 

Where the nonlinear polarization vector is represented as, 

𝑃𝑛(𝐸) = ∑ 𝑘𝑛𝐸𝑛
𝑛∞

𝑛=2   (38) 

For certainty, let us consider H(Hx, Hy, Hz) waves 
(d/dz=0). The solution of (2) is sought in the form of 

decompositions. 

𝐸𝑂,𝑅,𝑇(𝑥, 𝑦, 𝑧) = ∫
𝑑𝜔

2𝜋

∞

−∞
𝛷(𝑥)𝐸𝑂,𝑅,𝑇(𝜔)𝑒[𝑖(𝜔𝑡−𝑘1,2𝑦)]  (39) 
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 Where the indices O, R, and T correspond to the incident, 

reflected, and transmitted impulses through the interface. 

Substitution of (6) into (4) gives the relations between the 

spectral components, and substitution into (5) after 

multiplication by the transverse field distribution function (x) 
and integration over the cross-section of the structure gives an 

equation that reduces to a nonlinear integrodifferential 

equation with respect to the field distribution function with a 
nonlinear function included in the differential operator. For 

the main wave of the strip and coaxial wave (x)≈1. With a 
small dispersion of media in regions I and II defined by the 

functions i(), i() for the main wave, it is obtained a 
nonlinear ordinary differential equation. 

𝛼 ∑ 𝑘𝑛𝐸𝑇
𝑛−1(𝑦 = 0, 𝑡)∞

𝑛=2
𝑑𝐸𝑇(𝑦=0,𝑡)

𝑑𝑡
+ 𝐸𝑇(𝑦 = 0, 𝑡) = 𝐹0(𝑡)  

 (40) 

Where  

𝛼 = 4𝜋𝛿𝑐−1(𝜇2/𝜀2)
1

2, 𝐹0(𝑡) = 𝐸0(𝑦, 𝑡)(𝜀1𝜇2/𝜀2𝜇1)1/2  

In the steady-state regime (at dE0/dt=0) from (7) follows, 

𝐸𝑇(𝑡) = (𝜀1𝜇2/𝜀2𝜇1)
1

2𝐸0(𝑡)  (41) 

Which corresponds to the linear theory. Thus, the film 

with nonlinear parameters affects the transients during the 

pulse passage. Let the impact have the form of a rectangular 

pulse: 

0

0

, 0
( ) ,

0, 0,

 
 

 

F t T
F t

t t T
             (42) 

Then, in the region 0 < t < T, the solution (6) has the form: 

0 1 1 20
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2 0
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

 

Where 𝐸𝑇(𝑡) − is the initial value of the function at the 

moment of the influence pulse arrival 𝐶𝑛
𝑚 = 𝑛!/[𝑚! (𝑛 −

𝑚)!]. In the area of t>T function ET (t) is defined as, 

𝐸𝑇(𝑡) = 𝑇 + ∑
𝑘𝑛𝑛

𝑛−1
[𝐸𝑇

𝑛−1(𝑇) − 𝐸𝑇
𝑛−1(𝑡)]∞

𝑛=2   (43) 

  In particular, in the case of quadratic nonlinearity: 

|
𝐸(𝑡) = 2𝛼𝑘2 [𝐸𝑟(𝑡) − 𝐸𝑟(0) + 𝐹01𝑛

𝐹0−𝐸𝑟(𝑡)

𝐹0−𝐸𝑟(0)
]

𝐸𝑟(𝑡) = 𝐸𝑟(𝑇) − 2𝛼𝑘2𝑡  𝑡 > 𝑇
 0 < 𝑡 < 𝑇  (44) 

The degree of nonlinearity affects the steepness of the 

pulse edge and decline. The approximation of the input pulse 

E0(t) as a set of step functions allows us to use expressions (8) 

and (9) to determine the shape of the pulses passed through 

the film at arbitrary shapes of pulses E0(t). Films with other 

types of nonlinearity can be similarly considered. The case of 
higher wave types requires a separate description because of 

the interaction of modes in the region of the film with 

nonlinear parameters. Thus, along with the systems of 

stationary pulse formation in waveguide structures [1, 2, 13], 

films with nonlinear properties can be used in devices for the 

formation of pulse signals. 

3.5. Reflection of Electromagnetic Radiation from a 

Conductive Surface with a Nonlinear Film Coating 

Let us consider the peculiarities of the reflection of a 

pulse signal from a metallic surface with a coating having 

nonlinear characteristics. The problem in this formulation is 

of interest in the study of the possibility of controlling the 
shape of the pulse signal through the use of a nonlinear coating 

of the conductive surface of the antenna reflector. Let us also 

analyze regularities of change of the form of the pulse signal 

at the reflection from coverings with nonlinear dielectric and 

magnetic permeabilities. When deriving the boundary 

conditions for the electric and magnetic fields on an ideally 

conducting surface with a nonlinear coating (Figure 3) should 

take into account that on one of the sides of the film (on the 

surface of the metal), the condition ER=0. 

Suppose that an electromagnetic signal containing the 

field components Ez Hy in a vacuum falls on the surface under 
consideration. Let us also assume that the spectral components 

of the signal incident on the film satisfy the condition kd<<1, 

i.e., the film thickness is small compared to the characteristic 

wavelength of the pulse. Then the boundary conditions follow 

from Maxwell's equations with accuracy up to higher powers 

of the small parameters d/ and taking into account Ezx=0=0. 

Fig. 3 Two-dimensional model of a waveguide structure oriented 

perpendicular to the waveguide axis 
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(𝐸𝑧)|𝑥=𝑑 = −𝑑
𝜕𝐵̃𝑦

𝜕𝑡
+ 0((𝑘𝑑)2)  (45) 

𝐻𝑦|𝑥=𝑑 − 𝐻𝑦|𝑥=0 = 𝑑
𝐷̃𝑧

𝑑𝑡
+ 0((𝑘𝑑)2)  (46) 

Where 𝐵̃, 𝐷̃ - electric and magnetic permeabilities in the 

nonlinear film. The nonlinear character of the boundary 
conditions (2)-(3) corresponds to the presence of nonlinear 

field additives in the expressions for electric and magnetic 

induction. 

𝐵̃ = 𝜇𝐵̃ = 𝜇̅𝐻̃ + 𝑀𝑁𝐿  (47) 

𝐷̃ = 𝜇𝐸̃ = 𝑒̅𝐸̃ + 𝑃𝑁𝐿  (48)            

Let us denote the electromagnetic field components 

corresponding to the signal incident on the surface by (Ez
0, 

Hy
0), to the reflected signal through (Ez

-, Hy
-) and the passed 

signal (on a metal surface) - through the (Ez
+=0, Hy

+). 

Then, the boundary conditions (4) will be rewritten in the 

form: 

𝐸𝑧
0 + 𝐸𝑧

− = −𝑑
𝑑𝐵̃𝑦

𝑑𝑡
  (49) 

𝐻𝑦
0 + 𝐻𝑦

− = −𝑑
𝑑𝐵̃𝑦

𝑑𝑡
  (50) 

Consider first the reflection of a signal from a coated 

metal surface whose dielectric permittivity is a nonlinear 

function of the field strength, and there is no nonlinearity in 

the expression for the magnetic permeability (MNL=0). It will 

be assumed that the following relation determines the 

dielectric properties of the film: 

𝜀 = 𝜀̅ +  E|2  (51)|א

In this case, using the relations between the components 

of the electric and magnetic fields of the signal in vacuum 

Ez
0=ZBz

0, Ez
-=-ZBz

- (Z=(/) – impedance of the medium) 
and substituting the expressions for the electric and magnetic 

fields in the film it is obtained: 

𝐵̃𝑦 =
1

2
(𝐵𝑦|𝑥=0 + 𝐵𝑦|𝑥=𝑑)  (52) 

𝐸̃𝑦 =
1

2
(𝐸𝑦|𝑥=0 + 𝐸𝑦|𝑥=𝑑)  (53) 

Obtained the equations for determining the shape of the 

reflected signal Ez
- by the shape of a given incident signal Ez

0 

𝑑

2𝑧

𝑑𝐸𝑧
−

𝑑𝑡
−

𝑑

2

𝑑𝐵𝑦
+

𝑑𝑡
=

𝑑

2

𝑑𝐵𝑦
0

𝑑𝑡
+ 𝐸𝑧

− + 𝐸𝑧
0  (54) 

𝑑

4
א

𝑑(𝐸𝑧|𝐸𝑍|2)

𝑑𝑡
+

𝑑

2
𝜀

𝑑𝐸𝑧

𝑑𝑡
= 𝐵𝑦

0 −
1

𝑧
𝐸𝑧

− − 𝐵𝑦
+  (55) 

Where Ez=Ez
0+Ez

-.  

Expressing from the second equation By
- through the 

components of electric field strength, it is obtained the 

equation for the field Ez:  

2
2

_ _2

0

_ _
2

4
1

2

4 8
.

z z z

z z

d
E E E

dt
Zddt

E E

d Zdt

 

 

 
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 
 

 

    (56) 

As can be seen from (56), when using a coating with an 

electrical character of nonlinearity in the linear d/ 

approximation, the nonlinearity does not affect the shape of 
the reflected signal. This is due to the fact that due to the 

boundary condition (2), the value of the electric field strength 

in the film is proportional to the film thickness. The shape of 

the reflected signal can be determined from EQ. 

𝐸𝑧
− = −𝐸𝑧

0 −
2𝑑

𝑍

𝜇𝑑̅̅ ̅̅

𝑑𝑡
𝐸𝑧

0  (57) 

In the considered approximation, the shape of the 

reflected signal will not differ from the shape of the incident 

signal. The additive present proportional to the film thickness 

corresponds to the shift of the reflected signal for a time equal 

to the time of signal passage through the nonlinear film. Let 
us now consider the peculiarities of the reflection of pulse 

signals from a metal surface with a coating whose magnetic 

permeability is a nonlinear function of the magnetic field 

strength. 

𝜇 = 𝜇̅ +  B|2   (58)|א

Using the boundary conditions and performing 

calculations similar to those given above, it is obtained an 

expression for the electric field strength of the signal reflected 

from a perfectly conducting surface with a magnetic nonlinear 

coating. 

𝐸𝑧
− = −𝐸𝑧

0 −
2𝑑

𝑍

𝑑

𝑑𝑡
(𝑒̅𝐸𝑧

0 + 𝐸𝑧|א4
0|2𝐸𝑧

0  (59) 

The change in the waveform described by (59), similar to 

the previously considered case, can be interpreted as a shift in 

time. However, now due to nonlinearity, the shift will be 

different for the signal sections corresponding to different 

electromagnetic field strengths, which will be the cause of the 
signal fronts twisting. In this case, depending on the sign of 

the value of k, both the leading and trailing edges of the signal 

can be twisted. 

Figure 4 shows the shape of the reflected signal 

depending on the amplitude of the incident signal. The shape 
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of the incident signal was chosen to be Gaussian and is 

described by the expression.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
Fig. 4 Process of sharpening of the pulse signal reflected from the 

surface of the metal with nonlinear coating with increasing nonlinearity 

parameter 

𝐸𝑧
0(𝑡)|𝑥=0 = 𝐴𝑒−(𝑡−𝑡0)2

  (60) 

As can be seen from (Figure 4), the curvature of the signal 

edge increases with increasing amplitude of the incident 

signal. Thus, the above results show the possibility of using 

nonlinear coatings of antenna system elements to form signals 

with a given shape. 

4. Results and Discussion 
The results of the development of theoretical bases of 

electromagnetic signal shape control in nonlinear waveguides 

suggest there are both advantages and disadvantages. The 

advantages indicated by the conducted research are: 

1. The boundary conditions (1), (3), (24), (36) for the 

electromagnetic field on the surface of a thin film with 

nonlinear properties are formed; 

2. Using (10) and (11), a spectral analysis was performed on 

soliton perturbations in a three-layer structure. This 

structure has an inner layer that is a nonlinear film. The 

known input impedance tensors of isotropic and 

anisotropic structures characterize the outer layers;  
3. The theoretical bases for investigation of properties of 

broadband nonlinear excitations (solitons) in a strip line, 

including dielectrics with linear field parameters (10, 

20,), as well as a film between them, described in 

general, by the vector of nonlinear polarization Pn(E) 

(38), are presented; 
4. Both frequency and time methods are used to study the 

parameters of pulses as they pass through the interface 

between media in free space or a waveguide with a 

nonlinear film oriented perpendicular to its axis, in 

accordance with (39) and (41); 

5. The regularities, described by (57) and (59), of the pulse 

signal shape changes during reflection from coatings with 

nonlinear dielectric and magnetic permeabilities are 

investigated. 

However, there are disadvantages: 

a. The given boundary conditions for the electromagnetic 
field on the surface of a thin film with nonlinear 

properties do not take into account nonuniformities 

(surface roughness, defects of the crystal lattice of the 

film), which is especially necessary to take into account 

when used in Ultra-High Frequency (UHF) 

communication systems. 

b. When analyzing solitons in waveguide structures, the 

case of higher wave types requires a separate description 

because of the interaction of frequency modes in the film 

region with different types of nonlinearity. 

c. The work does not: 

 Analyze of amplitude-frequency characteristics of a strip 

waveguide with a nonlinear film; 

 Study the possible degradation of the nonlinear film 

during its long-term operation in the microwave range; 

 Investigate films with all existing types of nonlinearity, 

taking into account higher wave types; 

 Study soliton emergence processes when signals with 

complex frequency structure (frequency modulation, 
frequency-phase modulation, etc.) pass through various 

film nonlinear surfaces. 

However, the above disadvantages and technological 

problems do not limit the possibility of using the considered 

theoretical basis for the creation of nonlinear soliton structures 

for controlling the radiation of microwave devices and UHF 

structures. For example, now promising standards are being 
developed, such as IEEE 802.15 and, for example, for ultra-

wideband communication in the frequency band 7.5 GHz 

pulse length will be only 150-12 s. That is, each short soliton 

pulse can correspond to a small quantity of information that 

will greatly simplify the control of signal processing in the 

receiver. 

5. Conclusion  
 Boundary conditions for the polarized electromagnetic 

field on the surface of a nonlinear film have been 

formulated. 

 The principles of spectral analysis of soliton disturbances 

in a three-layer structure (the inner layer is a nonlinear 

film, and the outer layers are characterized by tensors of 

input known impedances of isotropic and anisotropic 

structures) have been developed.  

 The relationships obtained allow the modeling of various 

designs of waveguide systems based on the required 

soliton parameters for the available films with nonlinear 

parameters. 

-10 -5 0 5 10 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

A
(t

) 

t 



Nataliia Smyrynska et al. / IJEEE, 11(6), 156-166, 2024 

166 

 Analyze the properties of broadband, nonlinear 
excitations in a strip line, including dielectrics with linear 

field parameters and a conducting, nonlinear film. It is 

established that at pulse influences in the form of step 

functions, an approximate analytical solution of integro-

differential, nonlinear equations describing the passage of 

pulses through a film with nonlinear parameters is 

possible.  

 The developed theoretical foundations allow us to 
determine the ways of controlling the shape of the pulse 

signal by using a nonlinear film coating of the conductive 

surface of the antenna reflector. 
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