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Abstract - The ever-increasing volume of data necessitates an effective monitoring system to support decision-making processes. 

In the Industry 4.0 landscape, Artificial Intelligence (AI) is reshaping manufacturing by leveraging Internet of Things (IoT) 

technologies and machine learning methods.  In this paper, a data-driven predictive maintenance system for conveyor belt 

systems in manufacturing using IoT technologies and machine learning methods is proposed. The system uses real-time data 
from IoT devices such as accelerometers, temperature, and current sensors deployed on conveyor belts integrated with ESP32 

and AWS cloud infrastructure. The study evaluates the efficacy of the developed predictive maintenance system using real-world 

IoT data from manufacturing environments and machine learning.  The top-performing algorithm is the extra trees classifier 

with the highest accuracy, which shows superior performance across multiple metrics. The results demonstrate the system's 

success in identifying potential failure indicators, thereby mitigating production downtimes. The paper highlights the significance 

of the belt conveyor system in various industries and the need for efficient maintenance methods to ensure smooth operation. 

Keywords - Internet of Things (IoT), Machine Learning, Conveyor belt, Predictive maintenance, Extra trees. 

1. Introduction  
Belt conveyor systems are highly effective in transporting 

a diverse range of materials, including those with varying 

shapes, sizes, and weights, economically and expeditiously. 

These systems are noteworthy for their capacity to convey 

materials directly on the belt surface, making them an 

indispensable component in industries that handle bulk 

materials. In manufacturing, transportation, warehouses, and 

other contexts where the movement of bulk materials is 

necessary, belt conveyor systems play a crucial role [1, 2].  

The conveyor belt system is a vital component in bulk 

material handling systems, characterized by the presence of 

rollers and chains that can be customized to meet specific 

requirements. The selection of conveyor systems depends on 

factors such as material size, distance, and speed 

requirements. The ongoing demand for increased tonnages 

over longer routes has prompted technological advancements 

in the system's design, analysis, and simulations.  

The extensive applications of the belt conveyor system 

extend to various industries, including mining, cement, power 

plants, and other production sectors. Different design 

parameters are employed to cater to specific application 

contexts, such as coal mines, cement, and the food industry 

[3]. In the realm of material handling systems, the efficiency 

of conveyor systems greatly depends on the proper 

functioning of essential components, including belts, pulleys, 

and electric motors. Traditional methods of detecting faults in 
these systems have proven to be unreliable and time-

consuming, necessitating extensive maintenance efforts. 

Conveyor belt mis-tracking, slippage, and seized rollers are 

common issues that can result in unexpected downtime and 

maintenance challenges.  

To alleviate these challenges, the use of belt sway 

switches as a preventive measure against mis-tracking and 

potential malfunctions is recommended. To address slippage 

concerns, it is necessary to remove material build-up and 

adjust tension to prevent excessive stretching and audible 

squeals. Regular maintenance is essential in avoiding the 

consequences of seized rollers, which can lead to mis-tracking 
and other operational issues [4].   

The Conveyor belt system plays a vital role in numerous 

industries, yet traditional methods for identifying faults in 

these systems are often untrustworthy and lengthy, requiring 

extensive maintenance efforts. Thus, an efficient method for 

predicting faults in conveyor belt systems is sorely needed. In 

steel plants, where each component plays a vital role, the 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dr.pswapna@andhrauniversity.edu.in


P. Swapna et al. / IJEEE, 11(6), 224-233, 2024 

225 

implementation of a dedicated condition monitoring system 

for conveyors emerges as a strategic solution with the 

potential to enhance their reliability and overall operational 

efficiency significantly [1].  The research highlights a gap in 

the efficiency of existing fault detection methods within 

conveyor systems. This gap underscores the need for 
advancements in fault detection techniques. The problem 

statement emphasizes the crucial importance of enhancing the 

reliability of conveyor systems to ensure smooth operations 

across various industries. Addressing this imperative is 

essential for optimizing productivity and minimizing 

downtime in industrial processes reliant on conveyor systems. 

2. Literature Review  
The Internet of Things (IoT) has significantly impacted 

industries by enabling the connection of a multitude of devices 

to cloud services, thereby offering cost-effective solutions. By 

utilizing the internet, IoT facilitates the interconnection of a 

diverse range of electrical appliances and objects, thereby 

forming a network of hardware, software, and data storage 

systems. The Internet of Things can be applied in the domains 

of manufacturing, industrial automation, and machine 

condition monitoring [5].   

The application of Industry 4.0 and IoT in predictive 

maintenance and reliability enhancement has been a focal 
point, particularly in manufacturing, yet research on applying 

these concepts to baggage handling systems remains limited 

[6]. Studies have delved into transforming airport baggage 

systems by emphasizing continuous maintenance 

improvement using condition monitoring techniques, 

specifically at Heathrow's Destination-Coded Vehicle (DCV) 

baggage cart system [6].   

Companies like JFE Steel have developed innovative belt 

conveyor monitoring systems utilizing ICT at their raw 

material yard, employing wireless networks for large-scale 

data collection and an image judgment system to detect belt 

shape defects. Early detection of abnormalities is crucial, 
particularly in integrated steel plants, due to varying 

equipment levels, necessitating different maintenance needs 

[7].  

Moreover, the integration of IoT technology in belt 

conveyor systems has paved the way for various 

advancements, such as a smart belt conveyor speed control 

system that employs embedded web and microcomputer 
technologies for monitoring and adjusting speeds between 

conveyor stages, reducing energy loss [8]. Similarly, 

innovative online diagnostic technologies based on motor 

current signature analysis have demonstrated effectiveness in 

detecting belt mistracking issues, offering promise for diverse 

industries like airports, mining, manufacturing, and 

transportation [9]. The integration of Machine Learning (ML) 

models has significantly impacted fault detection and 

monitoring systems in conveyor belts. Studies have 

showcased the utilization of Radio Frequency Identification 

(RFID) sensing technology in crack detection in conveyor 

belts, particularly in mining operations. Structural Health 

Monitoring (SHM) models using machine learning and IoT 

connectivity have shown high accuracy in detecting crack 

attributes, ensuring safe and efficient operations [10]. IoT 
technology has also been instrumental in maintaining optimal 

yarn quality in spinning mills, integrating various sensors to 

oversee moisture and temperature levels, ultimately reducing 

yarn breakage and improving quality [11].   

Additionally, IoT-based fault diagnosis systems have 

been developed for conveyor belts in coal production, offering 

timely warnings to prevent accidents and revolutionize fault 

diagnosis in the coal industry [12]. Machine learning has 

revolutionized maintenance strategies by leveraging 

predictive analytics to avoid production disruptions due to 

equipment failures [13]. Computer vision, employed to 

monitor conveyor belt alignment, has shown promising 
results, offering safer and more efficient conveyor operations 

[14]. Furthermore, fault detection in belt conveyor idlers using 

sound signals and machine learning models has demonstrated 

high accuracy in diagnosing issues [15].  

The adoption of a novel maintenance decision-making 

framework for belt conveyor idlers has shown improved 

predictability and accuracy in diagnosing idler roll failures, 

calling for further research to refine inspection interval models 

[16]. Machine learning methods have been employed to create 

classification models for assessing damage in rubber textile 

conveyor belts, indicating the potential efficiency of using 
repaired or renovated belts [17].  

Moreover, the application of Distributed Optical Fibre 

Sensors (DOFS) for monitoring mining conveyors has 

exhibited promising capabilities in detecting and classifying 

damage under various conveyor speeds, contributing to 

economic loss prevention and enhanced personnel safety [18].  

The integration of IoT and machine learning in fault detection 

systems for conveyor belts across various industries has 

shown immense potential in improving operational efficiency 

and ensuring safety [10, 12, 18].  

In summary, the combination of IoT, machine learning, 

and Industry 4.0 has had a significant impact on the 
improvement of conveyor belt maintenance and fault 

detection in various industries, resulting in the emergence of 

predictive maintenance and improved operational 

performance. This paper proposes the development of a 

predictive maintenance system for conveyor belts that 

incorporates IoT, Cloud, and machine learning technologies to 

monitor crucial parameters such as vibration, temperature, and 

current measurements. This system aims to proactively 

identify potential faults, enabling timely maintenance 

interventions and improving the dependability and efficiency 

of conveyor belt systems in industrial environments. 
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3. Materials and Methodology  
3.1. Predictive Maintenance System Architecture 

A method for continuously monitoring the health of a 

conveyor belt system has been developed, which makes it easy 

to maintain the system by monitoring its temperature, 

vibration, and current. The overall system architecture of the 

conveyor belt predictive maintenance system is shown in 

Figure 1. The proposed system comprises three main 

components:  

 A sensor node design that includes an ESP32 

development board, vibration sensor, current sensor, and 

temperature sensor for gathering sensor data;  

 Amazon Web Services (AWS) for collecting, storing, and 

analysing the data;  

 And machine learning algorithms for developing a 

conveyor belt fault prediction model.  

The data flow process begins with the ESP32 

development board, which records temperature, vibration, and 

current readings from the sensors connected to it. The ESP32 

then sends this data to AWS IoT Core via Wi-Fi, using the 

MQTT messaging protocol. The data is stored in AWS 

DynamoDB. This data is then used to create a dataset, which 

is used to build a machine learning model for predicting 

conveyor belt faults. 

3.2. Sensor Node Design 

The construction of the sensor node entails the integration 

of three components: the LIS2DW12 accelerometer sensor, 
the DFRobot Gravity I2C Non-contact IR temperature sensor 

for Arduino (MLX90614-DCC), and the WCS1700 hall 

current sensor. These sensors were integrated with an ESP32 

development board, and a schematic diagram depicting this 

process is provided in Figure 2. The acquisition of sensor data 

from the ESP32 was facilitated by programming the firmware 

using the Arduino Integrated Development Environment. 

3.2.1. ESP32 Development Board 

The ESP32 development board serves as the central 

component of the system, functioning as a high-performance 

microcontroller that is widely utilized in IoT, smart home 

automation, and embedded systems. The ESP32 is 
distinguished by its dual-core architecture, expanded GPIO 

pins, and enhanced cryptographic capabilities, making it a 

suitable replacement for the ESP8266.

 

 

 

 

 

 

 

 
 

 
Fig. 1 Architecture of conveyor belt predictive maintenance system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 IoT device schematic representation
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The ESP32 offers a multitude of built-in sensors and 

supports FreeRTOS, enabling seamless integration with the 

Arduino platform and facilitating rapid prototyping and task-

oriented processing. This study focuses on the potential of the 

ESP32 to present real-time data on various screens rather than 

its conventional web server applications. The versatility and 
extensive range of applications of the ESP32 make it a 

promising area for innovative exploration across multiple 

industries and research domains [19, 20]. 

3.2.2. LIS2DW12 Accelerometer Sensor 

The LIS2DW12 accelerometer sensor incorporates 

MEMS technology and capacitive sensing to detect 

acceleration in three axes (X, Y, Z). It measures changes in 

capacitance due to movement and converts them into a digital 

signal, which it communicates to a host system via the I2C or 

SPI protocols. This high-precision acceleration data is suitable 

for applications such as motion detection, orientation sensing, 

and impact analysis. Its configurable settings make it 
adaptable to various use cases. To interface the LIS2DW12 

accelerometer sensor with the ESP32 using the I2C protocol, 

it is necessary to link the SDA and SCL pins of the LIS2DW12 

to the corresponding pins on the ESP32. The LIS2DW12 has 

a default I2C address of 0x19. By utilizing the ESP32's I2C 

library and functions, the microcontroller can initialize 

communication by specifying the I2C address of the 

LIS2DW12 (0x19 in this instance) and then request 

acceleration data using specific commands. The ESP32 can 

then receive and interpret the data transmitted by the 

LIS2DW12 accelerometer sensor. This method demonstrates 
the steps involved in establishing a connection between the 

ESP32 and the LIS2DW12 accelerometer via the I2C 

protocol, allowing for the retrieval and utilization of 

acceleration data for various applications [21].  

3.2.3. Non-Contact IR Temperature Sensor 

The DFRobot gravity I2C non-contact IR temperature 

sensor, which is equipped with the MLX90614-DCC, is a 

sophisticated and adaptable device designed for precise, non-

contact temperature measurement. This sensor employs 

infrared technology to accurately measure temperatures 

without any physical contact with the target object. The I2C 

interface also enables seamless compatibility with Arduino 
and other microcontrollers, allowing for easy integration into 

various applications, including industrial temperature 

monitoring, thermal imaging, and non-invasive temperature 

measurement in medical and consumer electronic devices. 

This sensor serves as a reliable and efficient solution for 

temperature sensing and caters to a wide range of research and 

development needs. The ESP32 microcontroller was 

successfully interfaced with the MLX90614-DCC IR 

temperature sensor using the I2C protocol. By connecting the 
SDA and SCL pins of the MLX90614 to the corresponding 

pins on the ESP32 and recognizing the sensor's default I2C 

address of 0x5A, the ESP32 was able to communicate 

effectively to request and retrieve non-contact temperature 

measurements. This integration highlights the potential for 

diverse applications using non-contact temperature sensing 

and demonstrates a promising avenue for further research in 

sensor integration and data acquisition methodologies [22, 

23]. 

3.2.4. WCS1700 Hall Current Sensor 

The WCS1700 Hall Current Sensor with over current 

protection is a groundbreaking innovation in the realm of 
current sensing technology. This sensor, based on the hall 

effect principle, offers precise and non-invasive measurement 

of current flow within electrical systems. The integrated over-

current protection feature ensures the safety and longevity of 

the monitored systems by promptly detecting and responding 

to excessive current levels.  

The WCS1700 sensor is a robust solution for accurate 

current measurement in various applications, including power 

supplies, motor control, and energy management systems. Its 

ability to accurately measure current, along with built-in 

protective mechanisms, makes it an indispensable tool for 
research, addressing the need for reliable, high-performance 

current sensing in diverse industrial and scientific settings. By 

connecting the ESP32 microcontroller with the WCS1700 hall 

current sensor by linking their respective signal and power 

pins, the ESP32 is able to interpret the sensor's output.  

The ESP32's Analog-to-Digital Converter (ADC) 

functionality is employed to efficiently read the WCS1700's 

output, converting it into measurable current values. This 

integration showcases the WCS1700's capacity for precise 

current sensing and its potential applications in energy 

monitoring and power management. Upon interfacing the 

sensors and uploading the program into the esp32 using the 
Arduino IDE, the sensor data is obtained in the serial monitor, 

as illustrated in the accompanying   Figure 3. 

 
Fig. 3 Visualization of data in Arduino serial monitor 
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3.3. AWS Cloud Platform 

Once the ESP32 has acquired sensor data, it must connect 

to the internet using Wi-Fi to enable the transmission of this 

data to the cloud. Upon establishing an internet connection, 

the ESP32 transmits the sensor data to Amazon Web Services 

(AWS) IoT Core using the MQTT protocol. AWS IoT core 
provides five key services tailored to IoT devices, ensuring 

seamless connectivity, cloud-based management, OTA 

updates, and robust security measures. These core services 

encompass rules, topics, shadow service, AWS IoT device 

defender, and AWS IoT device management.  

The rules functionality within AWS IoT core regulates 

IoT device behavior by enabling integration with various 

AWS services. These rules enable various functionalities, 

such as data filtering, categorization, real-time processing, and 

triggering alerts based on specified thresholds or exceptional 

events. The MQTT protocol is used in the AWS IoT core 

system, which offers a flexible and efficient process where 
rules are analysed, actions are performed, and messages are 

routed based on topic streams.  

Regarding security measures, AWS IoT device defender 

plays a crucial role by assigning digital identities to IoT 

devices, guaranteeing authentication, authorization, and 

encryption. It conducts ongoing monitoring of IoT device 

configurations, promptly alerting users and services to any 

deviations from the anticipated behavior. Additionally, AWS 

IoT device management enables remote management of IoT 

devices, effectively handling issues related to device behavior 

anomalies by managing and updating firmware and software.  

The AWS IoT Core framework offers a robust foundation 

for the secure, scalable, and efficient management of IoT 

devices, regardless of the specific application domain. AWS 

IoT core acts as an intermediary to efficiently store the sensor 

data in a DynamoDB table [24]. DynamoDB, a cloud-based 

NoSQL database service managed by Amazon Web Services 

(AWS), securely maintains the data within the AWS 

infrastructure, ensuring both accessibility and scalability.  

This AWS infrastructure provides a dependable and 

sturdy platform for managing and processing incoming sensor 
data. Thereafter, the collected data from DynamoDB can be 

accessed for analysis, visualization, and further processing. 

Researchers and developers can extract this stored information 

for various applications, such as data analytics, visualization 

tools, statistical analysis, and the development of machine 

learning models. The integration of AWS IoT Core and 

DynamoDB presents an efficient method for securely storing 

and managing sensor data in a scalable cloud environment. 

This methodology not only focuses on organizing and storing 

data but also emphasizes its seamless retrieval and utilization 

for a wide range of analytical, visualization, and machine-

learning purposes. 

3.4. Experimental Setup for Conveyor System Evaluation 

The experimental setup was carefully designed with 

precise specifications in order to ensure optimal performance, 

as shown in Figure 4. The integration of the ESP32 

development board, micro USB cable, DC motor with a 

rectangular gearbox, power supply, bearings, pulley, conveyor 

stand, conveyor belt, and conveyor test bed was carried out 

with great care. The motor's power characteristics were 

specifically chosen to match the conveyor's load requirements, 

ensuring efficient operation. The bearings, selected for their 

uniform size, contribute to the system's reliability and 
longevity. The high-efficiency belt mechanism facilitates 

smooth motion transfer and enhances overall effectiveness. 

Our project also features advanced sensor integration, 

including a triple-axis accelerometer and temperature sensors 

near the motor and bearing arrangement. 

Fig. 4 Experimental setup: conveyor belt system and IoT device testbed 
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The conveyor system incorporates precise data from 

vibration, WCS1700 hall current sensor, and temperature 

sensors, which are processed using Python and essential 

machine learning algorithms both in real-time and offline. The 

assembly comprises essential components such as a roller 

shaft, bolt, bearing chock, and adjusting bracket. 

The adjusting bracket securely fastens to the conveyor 

frame, effectively enclosing the roller shaft within the bearing 

chock. This arrangement allows for precise adjustments to the 

roller shaft's position via a bolt connected to the bearing chock 

through a nut. Such adjustments are critical for ensuring the 

accurate and controlled functioning of the system.  

Our IoT system is integrated with the test bed, which 

encompasses the physical configuration, including the 

conveyor system and its constituent components, while the 

IoT system comprises interconnected devices and software for 

data collection and analysis. The Internet of Things (IoT) 

system collects information from the test bed via sensors and 

transmits it to cloud services, including Amazon Web Services 

(AWS).  

As illustrated in Figure 5, the sensor data from the IoT 
device is visualized using the MQTT Test client in AWS IoT 

Core. Developed a real-time node-red dashboard that utilizes 

an MQTT subscribe node and node-red dashboard nodes. The 

data is obtained from AWS IoT Core by subscribing to it, 

which is then in JSON format.  

Using function nodes in node-red, the data was separated 

into temperature current vibration along the X-axis, Y-axis, 

and Z-axis. The data is then visualized using gauges and chart 

widgets, as shown in Figure 6.

Fig. 5 The sensor data in AWS IoT cloud via MQTT test client 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Fig. 6 Visual representation of sensor data in node-red dashboard 
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The data is subsequently processed stored, and can be 

utilized for analysis and predictive maintenance. The 

integration enables real-time data acquisition, remote 

monitoring, and the fusion of physical and digital data for 

comprehensive analysis and enhancements in the test bed's 

functionality. The dataset for this research was obtained from 
AWS IoT Core and was subsequently loaded into a panda data 

frame for analysis.  

The data was collected with and without fault, which was 

created using a bearing fault. Preliminary preprocessing steps 

were performed, which included dividing the data into two 

subsets, labelled as data1 and data2, and categorized as labels 

0 and 1, to form a binary classification dataset. Next, the 

features and target data were extracted for analysis. A train-
test split was performed to create training and testing sets, 

designated as xtrain, xtest, ytrain, and ytest. An array of 

diverse machine learning models was employed to address the 

classification task in this study. 

3.5. Machine Learning 

The construction of the predictive maintenance system 

involved the utilization of several machine learning models, 
including the Decision Tree Classifier (DTC), K-Nearest 

Neighbors (KNN), Logistic Regression (LRG), Support 

Vector Machines (SVM) and extra-trees classifier. Decision 

Tree Classifier (DTC) is a type of tree-like structure in which 

each internal node signifies a “decision” based on a feature, 

leading to various branches that represent potential outcomes.  

On the other hand, K-Nearest Neighbors (KNN) is a 

classification algorithm that does not rely on predefined 
parameters and labels data points according to the majority 

label of the closest neighboring points in the feature space. 

Logistic Regression (LRG) is a linear classification algorithm 

that predicts the probability of a binary outcome based on one 

or more independent variables. Support Vector Machines 

(SVM) is a classification method that finds the hyperplane that 

best separates different classes while maximizing the margin 

between them in a high-dimensional space. Finally, the extra-

trees Classifier is an ensemble learning technique that 

improves accuracy and controls over-fitting by averaging the 

predictions of multiple randomized decision trees fitted on 

different subsets of the dataset. 

4. Results and Discussions 
Multiple machine learning models were employed for the 

accurate classification of conveyor belt fault detection, 

including decision tree classifier, K-nearest neighbors, logistic 

regression, support vector machines, and extra-trees classifier. 

These models were trained using the Scikit-learn framework. 
The study aimed to assess the performance metrics of these 

classifiers across different datasets, including accuracy, 

balanced accuracy, precision, recall, F1 score, and ROC AUC 

score. Confusion matrices were generated to assess each 

model's classification performance. Table 1 provides an 

accurate comparison of the various classification models' 

performance, including their precision, recall, F1 score, and 

ROC AUC.  

Bar plots were utilized to visually compare the 

performance metrics of the trained classifiers, providing a 

clear understanding of how each model performed in the 

context of conveyor belt classification.  In this study, a 
comprehensive evaluation was conducted to assess the 

performance of various machine learning models. The 

results, as depicted in Figure 7, indicate a remarkable 
trend in the accuracy of these models. The decision tree 

classifier and the KNN models demonstrated noteworthy 

performance in our classification task, with accuracy scores of 

98.765% and 96.26%, respectively. The extra-trees classifier, 

however, achieved the highest accuracy rate of 100%, 

showcasing its exceptional capabilities. Meanwhile, the SVM 

model exhibited an accuracy of 95.06%. These results act as 
an essential benchmark, offering a detailed assessment of each 

model's performance. The findings emphasize the superior 

accuracy of several models while also highlighting the varying 

levels of performance across the models assessed. The results 

indicate that the Decision Tree Classifier (DTC) and Support 

Vector Machines (SVM) achieved the highest precision scores 

of 0.97368 and 0.94595, respectively.

Table 1. The summarized model outcomes 

Classification Model Accuracy Score Balanced Accuracy Precision Recall F1 Score ROC_AUC 

Decision Tree 

Classifier [DTC] 
0.98765 0.9886 0.97368 1.0 0.98667 0.9886 

K-Nearest Neighbour 

[KNN] 
0.96296 0.9616 0.97222 0.94595 0.9589 0.9616 

Logistic Regression 

[LRG] 
0.81481 0.8123 0.80556 0.7837 0.79452 0.8123 

Support Vector 

Machines [SVM] 
0.95062 0.9502 0.94595 0.94595 0.94595 0.9502 

Extra Trees classifier 

[EXT] 
1.0 1.0 1.0 1.0 1.0 1.0 

Naïve Bayes 

classifier [NVB] 
0.92593 0.9275 0.89744 0.94595 0.92105 0.9275 
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Fig. 7 Accuracies of different machine learning models 

Conversely, the Logistic Regression (LRG) model 

obtained the lowest precision score of 0.80556. The Extra 

Trees (EXT) model demonstrated perfect precision, while the 

Naive Bayes (NVB) model attained a moderate precision 

score of 0.89744. Furthermore, the table showcases the recall 

scores of different models, with the DTC and EXT models 

achieving perfect recall scores of 1.0. The K-Nearest Neighbor 

(KNN) and SVM models exhibited a recall score of 0.94595, 

while the LRG model had a slightly lower recall score of 
0.7837. The F1 scores of the models are also displayed, with 

the DTC, KNN, SVM, and NVB models being the top 

performers.  

The DTC achieved an impressive F1 score of 0.98667, the 

KNN model demonstrated a commendable score of 0.9589, 

the SVM model displayed its ability with an F1 score of 

0.94595, and the NVB classifier attained an impressive F1 

score of 0.92105. The scores offer a comprehensive overview 

of the models' overall performance, highlighting their ability 

to balance precision and recall effectively. Table 1 provides 

an in-depth analysis of the ROC AUC scores of various 
machine learning models, offering significant insights into 

their capacity to distinguish between positive and negative 

classes.  

Each of the classifiers, including the decision tree 

classifier, K-nearest neighbor model, logistic regression 

model, support vector machines model, extra trees classifier, 

and naive bayes classifier, was subjected to rigorous 

evaluation. The decision tree classifier achieved the highest 

ROC AUC score of 0.9886, followed by the K-nearest 

neighbor model with a score of 0.9616 and the logistic 

regression model with a score of 0.8123. The support vector 

machines model and extra trees classifier both attained scores 
of 0.9502 and 1.0, respectively, reflecting exceptional 

performance in class discrimination. The naive bayes 

classifier achieved a score of 0.9275, suggesting reasonable 

effectiveness in class discrimination. The examination of the 

performance metrics for the models provides valuable insights 

into their effectiveness in classifying faults in conveyor belts. 

The Extra Trees (EXT) model stands out with an impressive 

precision score, which suggests its ability to classify positive 

instances without any false positives accurately. This 

precision is crucial because it helps to minimize the risk of 
false alarms and unnecessary maintenance interventions, thus 

ensuring the reliability of the fault detection system. 

Furthermore, the EXT model achieves a perfect recall score, 

indicating that it can successfully identify all positive 

instances, which further affirms its robustness in fault 

detection. 

On the other hand, the Naive Bayes (NVB) model 

demonstrates moderate precision but still achieves a 

respectable F1 score, which suggests a balance between 

precision and recall. Although not as precise as the EXT 

model, the NVB classifier proves to be effective in detecting 
positive instances while minimizing false alarms. 

Additionally, the analysis of the ROC AUC scores reveals the 

discriminative ability of each classifier in distinguishing 

between positive and negative classes.  

The EXT classifier achieves a perfect score of 1.0, 

indicating excellent discrimination capability, followed 

closely by the Decision Tree Classifier (DTC), with a score of 

0.9886. These high ROC AUC scores highlight the models' 

ability to effectively separate fault and non-fault instances, 

thereby enhancing the overall reliability of the fault detection 

system. Overall, the comprehensive evaluation of precision, 

recall, F1 score, and ROC AUC score showcases the strengths 
of each classifier in balancing accuracy and robustness in fault 
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detection. The EXT model emerges as a top performer, 

demonstrating exceptional precision, recall, and 

discrimination capability, making it a promising choice for 

practical applications in conveyor belt fault detection systems. 

The Extra Trees Classifier (EXT) demonstrated superior 

performance in the research due to its ensemble learning 
approach, which effectively mitigates overfitting and handles 

noisy data.  

By constructing multiple decision trees from random 

subsets of the training data and selecting the best split at each 

node, EXT achieves robust generalization to unseen data. Its 

ability to randomly select thresholds for each feature enhances 

resilience to noise and outliers, ensuring accurate capture of 

complex relationships within the dataset while maintaining 

computational efficiency. These attributes establish EXT as a 

top performer in classification tasks, making it an ideal choice 

for predictive maintenance systems, particularly evident in its 

outstanding performance across multiple evaluation metrics 
compared to other machine learning models. Therefore, the 

Extra Trees Classifier emerges as the top performer in the 

context of the conveyor belt classification project, 

demonstrating its effectiveness and versatility in real-world 

applications.  

5. Conclusion 
The research highlights the significant influence of IoT 

and AI, particularly in predictive maintenance systems, on the 

manufacturing industry in the Industry 4.0 era. The predictive 

maintenance system for conveyor belt systems, utilizing IoT 

devices and machine learning techniques, has proven to be a 

valuable resource in proactively identifying potential failures. 

The study's results show that the system is effective in a real-

world manufacturing setting, where it successfully detects 

warning signs of impending failures, allowing for timely 

intervention to prevent production disruption. 

Table 2 presents a comparative analysis of the proposed 

methodology and existing approaches is shown in Appendix. 

The proposed method shows good accuracy compared to other 

existing methods. The integration of the proposed method into 

the manufacturing process further enhances the system's 

reliability and effectiveness. The comprehensive analysis, 

encompassing metrics such as accuracy, precision, recall, F1 

score, and ROC AUC score, provides a nuanced 

understanding of the models' performance.  

The consistent superiority of the extra trees classifier 

across diverse evaluation criteria solidifies their status as 

robust and versatile solutions for conveyor belt classification 
in predictive maintenance systems. In the era of Industry 4.0, 

with ongoing advancements in manufacturing, this study adds 

valuable insights to the practical integration of AI-driven 

solutions. The success of the predictive maintenance system 

suggests not only improved operational efficiency but also a 

potential paradigm shift in how manufacturing enterprises 

approach equipment monitoring and maintenance. The 

insights gained from this research pave the way for broader 

applications of similar AI-driven systems, fostering a more 

resilient and adaptive manufacturing ecosystem.
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Appendix 
Table 2. Comparative analysis of the proposed methodology and existing approaches

Paper Application Sensors ML Algorithms Accuracy 

[10] 

ML and IoT-Based Model for 

Monitoring the Structural Health of 

Conveyor Belts 

RFID based Crack 

sensor 

Artificial Neural 

Network (ANN) 
95.50% 

[12] 

An IoT and Machine Learning-Based 
System for Diagnosing Faults in Belt 

Conveyors 

Speed, Current and 
Temperature sensors 

Light Gradient 
Boosting Machine 

(LGBM) model 

97.00% 

[15] 

Utilizing ML for Fault Detection in Belt 

Conveyor Idlers Based on Acoustic 

Signals 

Microphone 
Gradient Boost 

Decision Tree 
94.53% 

Proposed Method 
Predictive Maintenance of conveyor belt 

system using IoT and ML 

Temperature, 

Vibration and 

Current 

Extra Trees 

Classifier 
100% 
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