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Abstract - The channel estimation is crucial in the “millimeter Wave (mmWave) Massive Multiple-Input Multiple-Output 

(MIMO) and Non-Orthogonal Multiple Access (NOMA)” devices. Hybrid beamforming techniques are employed nowadays to 

minimize the complexity and equipment price. However, the absence of digital beam forming in mmWave affects the dynamic 

range and accuracy of the channel estimation. Previous research is concentrated mainly on predicting narrow-band mmWave 

channels using deep learning networks as the wideband channels of mmWave create a considerable amount of range and noise 

issues. Accurate channel estimation in the MIMO system is challenging because of the increased number of antennas and Radio-

Frequency (RF) chains. MIMO system communications using mmWave are frequently chosen because of their massive spectrum 

resources. Therefore, it is essential to tackle the obstacles obtained in the standard channel estimation framework by developing 
a MIMO-NOMA network with the help of deep learning methods. In this paper, an advanced tuning and prediction approach 

with a deep learning mechanism is designed to perform an accurate estimation of channels for the MIMO-NOMA system. 

Moreover, a hybridized optimization model called Wild Horse-Piranha Foraging Optimization Algorithm (WH-PFOA) is 

developed and utilized with Adaptive and Attention-based Convolutional Autoencoder (Ada-ACAE) for estimating the channels 

in mmWave-based MIMO-NOMA system. Furthermore, the complexity rate and the hardware cost of the MIMO-NOMA network 

are reduced by adapting the hybrid beam-forming mechanism. Initially, to perform channel estimation, the pilot symbols are 

tuned by the introduced WH-PFOA to enhance the channel estimation performance. Later, the channel estimation is carried out 

with the optimal pilot symbols and the channel coefficients are validated. Numerical results show that the proposed channel 

estimation and pilot estimation process outperforms the state-of-the-art approaches. 

Keywords - Millimeter wave network, Massive Multiple-Input Multiple-Output, Non-Orthogonal Multiple Access, Attention-

based convolutional autoencoder, Wild horse-piranha foraging optimization algorithm. 

1. Introduction  
MmWave MIMO and NOMA wireless communication is 

a significant innovation for the Sixth Generation (6G) wireless 

communications since they are capable of creating novel 

resources for spectrum and substantially raising the rate of 

wireless transmission [1]. However, the mmWave is 

associated with the high frequency band and transmits on 

the vacuum like a direct wave having a narrow beam and 
noticeable absorption features.  Therefore, path loss on 

mmWave becomes considerably greater than that in the low-

frequency band [2]. Through the utilization of a huge antenna 

array, visibility is boosted, and power is focused on the 

receiving device. Additionally, the expanded mmWave’s 

bandwidth boosts the system needs for the Analog-to-Digital 

Converter (ADC). Hence, during execution, building a 

receiving framework by combining a high-resolution ADC 
and a huge antenna array is too complex and they are highly 

expensive [3]. At present, the relevant research comprises two 

major options. The initial step is to employ a 

combined precoding framework [4]. An analog beam former 

can minimize the ADCs and RF chains count on the 

framework, which results in balancing the hardware expense 

[5]. Another option is the choice to employ low-resolution 

ADCs rather than high-resolution ADCs, which immediately 

minimizes the system’s power consumption and hardware 

expenses, although quantization noise remains an inevitable 

concern [6]. 

The estimation of channels has become an important topic 

in the area of mmWave interactions, and various channel 
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estimation approaches have been established over the recent 

time span [7]. Channel estimation strategies for mmWave 

devices are divided into two categories of beamforming 

frameworks, namely completely digital beamforming 

frameworks with poor resolution and hybrid beamforming 

frameworks with an optimal state (high-resolution) ADC for 
quantization [8]. In a complete digital beamforming 

framework, every antenna on the network is supplied with a 

related RF chain that enables the adaptable and effective 

creation of several adaptable beams, but the antenna count is 

frequently restricted because of hardware expenses [9]. The 

combined beamforming framework is comprised of two 

components, namely a “low-dimensional digital beamforming 

system with lesser RF chains and an analog beamforming 

system with an analog phase shifter” that is employed in 

situations with more antennas and resolves the issue of 

increased loss of data transfer on the mm bands [10]. 

Additionally, by assuming the effect of quantization noise 
during data transfer of signals while employing a low-

resolution ADC, the researchers suggested a mixed-ADC 

system [11]. This combined structure is cost-effective since it 

substantially decreases the cost of hardware and power 

consumption throughout this duration period [12]. 

Currently, mixed-ADC structure connected with 

mmWave massive MIMO is becoming a mainstream of 

communication, successfully tackling the problem of 

increased power usage as well as the expense related to Base 

Station (BS) circuits [13]. However, the issue raised due to 

channel estimation on mmWave massive MIMO 
framework using mixed-ADC structure remains to be 

examined [14]. Currently, the “Intelligent Reflective Surface 

(IRS)” has generated major interest in communications 

[15]. For the IRS-aided communication channel estimation 

issue, the investigators suggested a cell on/off state control-

aided channel estimation method that is capable of estimating 

the client’s reflected channel by avoiding interference caused 

by other IRS components’ transmitted signals [16]. Still, 

installing a significant amount of on/off switches is expensive 

since every IRS component should be separately controlled 

[17]. Assuming the network overhead issue, we developed a 

channel estimation approach.  

The key objectives of the introduced channel estimation 

model for MIM0-NOMA systems are discussed below.  

 To suggest an advanced and improved channel estimation 

framework for the mmWave networks to attain increased 

information rate, reliability, and efficiency through the 

usage of deep learning techniques.  

 To implement an advanced deep learning model named 

Ada-ACAE by integrating an attention module to the 

CAE framework to perform channel estimation. ACAE-

aided channel estimation allows the framework to record 

the temporal and spatial dependencies of the network and 
promotes exact estimation. 

 To generate an advanced tuning approach by embedding 

traditional WHO and PFOA strategy to attain the optimal 

pilot design and also to tune the parameters of the Ada-

ACAE framework to minimize BER and MSE.  

 To explore the efficacy of the introduced channel 

estimation mechanism via classic meta-heuristic 
strategies. 

The effective channel estimation scheme implemented is 

explained below. The merits and demerits of the traditional 

channel estimation networks are presented in Part 2. An 

overview of the channel estimation in MIMO-NOMA for the 

mmWave framework is discussed in Part 3. Part 4 provides a 

brief description of the implemented wild horse-piranha 

foraging optimization algorithm-aided hybrid beamforming 

for the channel estimation model. Part 5 deals with the 

implemented channel estimation model using adaptive and 

attention-based deep learning mechanisms. Part 6 conveys the 
results achieved by the implemented channel estimation 

network, and the conclusions of the suggested model are laid 

out in Part 7. 

2. Literature Survey 
2.1. Related Works 

Zhang et al. [18] have generated a novel “repetitive 

reweight based log-sum constraint channel 
estimation approach”. Employing log-sum as a constraint by 

tuning an objective via the technique of gradient descent 

approach, the suggested approach will repeatedly shift the 

channel estimated “Angle-of-Departures (AODs) and Angle-

of-Arrivals (AOAs)” and to the best possible outcomes 

substantially enhancing angle estimation efficiency. 

Additionally, in order to ensure channel estimate efficiency, 

an adaptive regularization element was developed to utilize 

channel estimation sparsity and information fitting error. 

Experimental results demonstrated that the recommended 

method has superior convergence than traditional approaches.  

In 2019, Kim and Choi [19] developed a “Fully 
Corrective Forward Greedy Selection-Cross Validation 

(FCFGS-CV)-based channel estimation approach” for 

multichannel mmWave-massive MIMO networks employing 

“low-resolution Analog-to-Digital Converters (ADCs)”. The 

sparse characteristic of the mmWave simulated channels in the 

delay and angular domains was employed to modify the 

“Maximum A Posteriori (MAP)” based estimation issue to a 

tuning issue via a sparsity constraint and concave objective 

function.  

The sparsity-constrained tuning problem had been 

resolved using the FCFGS algorithm, formerly referred to as 
the generalized “Orthogonal Matching Pursuit (OMP)” 

approach. Moreover, this technique was employed to predict 

the accurate situation of termination by determining the 

overfitting while the sparsity level was undefined. 
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In 2023, Zhang et al. [20] have initiated a sparse channel 

estimation method. Particularly, considering the usage of the 

sparsity on the mmWave channels, beam space-based channel 

estimation issues were converted into a sparse matrix recovery 

issue, along with the parameters of the channel improved by 

employing the Compressive Sensing (CS) approach. 
Experimental outcomes have demonstrated that this approach 

quantized via combined ADC exceeded the low-resolution 

ADC. If the “low-resolution ADC” in the combined ADC 

design attains five bits, the maximized performance was 

attained. 

In 2023, Ahmad and Young [21] recommended a 

mMIMO-NOMA network-based detection and channel 

estimation techniques that employ a deep learning approach to 

manage the problem due to incorrect signal recognition 

attained because of inaccurate user interference, channel noise 

and Channel State Information (CSI). Experimental analysis 

demonstrated that the introduced approach shows superior 
performance. 

In 2022, Chen et al. [22] introduced a “compressive 

channel estimation approach for IRS-assisted mmWave 

Multi-Input/Multi-Output (MIMO) network”. Employing 

Kronecker product features, the IRS-aided mmWave channel 

was transformed into a sparse signal detection issue 

comprising two opposing terms of the cost function. 

Traditional sparse recovery approaches tackled the integrated 

contradicting objectives by employing a regularization 

parameter, resulting in a suboptimal outcome. Experimental 

examination demonstrated that under a huge variety of 
simulation parameters, the suggested approach exhibited 

competitive error efficiency compared to the existing channel 

estimating approach. 

In 2018, He et al. [23] generated a “Learned Denoising-

aided Approximate Message Passing (LDAMP) system”. This 

neural framework can investigate channel topology and 

estimate the channel using a vast amount of training 

information. Moreover, the created network offered an 

analytical network for evaluating the channel estimator’s 

asymptotic efficiency. According to the simulation outcome, 

this network greatly exceeded traditional methods of 

compressed sensing-aided models even when the receiver has 
a smaller amount of RF chains. 

In 2022, Abdallah et al. [24] introduced a “frequency-

selective broadband mmWave model and developed two deep 

learning Compressive Sensing methods” for channel 

estimation. The developed strategy attains essential data from 

training data, resulting in extremely exact channel estimations 

with minimal expenses. The initial technique employed a deep 

learning and CS-aided strategy to estimate channels in the 

frequency domain that were subsequently employed to 

reconstruct the channel. Experimental analysis demonstrated 

that the proposed model outperformed the conventional 

Orthogonal Matching Pursuit (OMP) approach based on 

computational complexity, spectral efficiency, and NMSE.  

In 2021, Ma et al. [25] proposed a “Model-Driven Deep 

Learning (MDDL)-aided channel estimate and feedback 

strategy for broadband mmWave large hybrid MIMO 

network” for leveraging the scantness of angle-delay domain 
channels to reduce network overhead. Particularly through 

exploiting the structured scantiness of the channel from an 

existing network, learning the embedded trainable features 

from the sample information and developing the “Multiple-

Measurement-Vectors Learned Approximate Message 

Passing (MMV-LAMP) model”.  

2.2. Problem Statement 

Channel estimation in the MIMO-NOMA generates 

complicated issues when the receivers are provided with 

maximal counts of RF chains in the mmWave massive MIMO 

system. Furthermore, it is complicated to develop receiver 

architecture with higher-resolution ADC and antenna arrays in 
practical communication applications because they are 

expensive. Advancements and complications related to the 

ordinary channel estimation schemes in the MIMO-NOMA 

for the mmWave model are tabulated in Table 1.  

The gradient descent technique [18] utilizes the flexible 

regularization parameters to modify the trade-off among the 

data filling errors and sparse weighted sums.  However, 

selecting the learning is a complicated task and it is subjected 

to overfitting. FCFGS-CV and OMP [19] provide more 

accurate outcomes in a limited time period, and their 

implementation procedures are simple. Yet, it needs to rectify 
the time complexity issues in the encoder region. Mixed ADC 

[20] attains minimal estimation errors than the existing 

mechanism, while enormous frames are utilized. However, it 

did not provide better outcomes in the cascaded channel 

generation phase.  

DWT [21] effectively minimizes the noise rate and inter-

channel interference rate in the system, and it also has a good 

localization rate in the spatial frequency domain. However, it 

needs to tackle the shift variance issues, and it is also 

complicated to understand the implementation procedures. 

Hybrid evolutionary theory [22] minimizes the overhead 

issues when training is executed in the system. Yet, it requires 
effectual improvement in the receiver.  

Neural networks and LDAMP [23] easily study the 

structure of the channel and validate the channel from 

enormous training data and also it accurately provides the 

effectualness rate in minimal time. Yet, it needs to overcome 

the overfitting issues, and also it requires enormous labeled 

training data for the validations.  

OMP [24] offers a more precise channel estimation rate 

along with minimal training overheads. However, it needs to 
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enhance the spectral efficiency rate and also its 

implementation is expensive. MMV-LAMP [25] effectively 

resolves the uplink overhead issues to perform high-

dimensional channel estimation in the RF chains. Yet, it needs 

to minimize the overhead issues in the model. Hence, it is 

essential to develop an efficient channel estimation framework 
in the MIMO-NOMA structure by looking into the limitations 

of the existing techniques. 

3. Channel Estimation in MIMO-NOMA for 

mmWave Systems: Overview 
3.1. MIMO Channel Model 

Assume a massive MIMO network that uses a BS 

combined with RF chains Br
Rf and antennas Br to transfer the 

signals to one user equipped with RF chains Be
Rf and antennas 

Be. The phase shifters are utilized for connecting an enormous 

amount of antennas with considerably less number of RF 

chains from the consumer side and BS. Therefore, consider 

Br>>Br
Rf and Be>>Be

Rf. The Be x Br channel matrices among 

the recipient and the sender at the delay domain are presented 

in Equation (1). 
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Here, the term K represents the total amount of primary 

paths, the term αk≈XB(0,σα
2) indicates the transmission gain 

for kth channel with σα
2 indicating the mean power gain, the 

term τk denotes the delay on kth route, and the terms φ and 

ϕϵ[0,2π] are the azimuth angles of both departure and arrival 

(AoA/AoD) on the receiving end and transmitting device, 

correspondingly. The reaction matrices of a Uniform Linear 
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Here, the distance separating the neighboring carrier 

wavelength and antennas are denoted by the terms   and s  

correspondingly.  

3.2. NOMA Model 
During Power Domain (PD) NOMA, multiple clients 

utilize an identical orthogonal energy unit yet show varying 

power ratings. Customers with enhanced channel settings 

receive less power, and inversely. Figure 1 depicts the NOMA 

technique using a power domain multiplexer. 

Assume the situation of two individuals, namely User 1 

and User 2. Consider a User 1 employs an effective channel 

when compared with User 2, i.e.,|g1|>|h2| As an outcome, User 

1 gets a low power supply, whereas User 2 obtains a higher 

one. In the receiver end, User 2 immediately decodes the 

incoming signal by considering the User 1 signal as sound. 

Yet, in User 1, immediate identification cannot be feasible 
because the greater power supply is assigned to User 2, 

leading to substantial interference by User 2. As an outcome, 

User 1 initially identifies and decodes User 2’s signals before 

deleting them via Successive Interference Cancellation (SIC). 

Following SIC, User 1 recognizes their signal from noise. This 

approach demands CSI to be known by both the BS and the 

user. The basic NOMA network is presented in Figure 1. 

 
Fig. 1 Pictorial representation of the basis of the NOMA model 
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3.3. System Model: Overview 

In this proposed channel estimation scheme, the input 

information is fed to a converter, where a serial stream of the 

input information is transformed into parallel data. Later, the 

attained parallel data is offered to the 64-QAM block that 

employs a single radio wave in order to denote the six bits of 
the attained parallel data.  A modulator is linked with a 

subcarrier block to create the pilot blocks. Here, the signals 

are changed to the time domain by utilizing the “Inverse Fast 

Fourier Transform (IFFT)” technique. Further, Cyclic Prefix 

(CP) is also embedded in conflict multipath fading, where the 

length of the multipath fading exceeds the highest delay speed 

of the channel. An introduced WH-PFOA strategy is 

employed to tune the pilot symbol to attain the optimal pilot 

symbol. The attained optimal pilot symbol helps to enhance 

the channel estimation efficiency. Channel estimation is 

performed on the introduced Ada-ACAE framework by 
considering the CSI matrix as the input.   The key objective of 

the channel estimation is to reduce the error rate in the 

MIMONOMA framework by tuning the network parameters 

using WH-PFOA. The block diagram of the developed Ada-

ACAE-based channel estimation framework is in Figure 2. 

 
Fig. 2 Block diagram of the Ada-ACAE-based channel estimation framework 

4. Wild Horse-Piranha Foraging Optimization 

Algorithm-Based Hybrid Beamforming for 

Channel Estimation Model 
4.1. Hybrid Beamforming Model 

Let us assume a MIMO-NOMA in a macro cell of radii 

500m. BS offers the transmit power vaO and equivalently 

splits it between the antenna B . Thus, the BS sends the 

superimposed signal on the basis of NOMA features. Every 

UE N  is arbitrarily given to the cells to generate MIMO- 

NOMA conditions. Here, the power transmitted via a single 

antenna is denoted as ob=Ova/B. In the MIMO-NOMA model, 

the UE near the BS employs a SIC approach to eliminate the 

interference signals. Additionally, the BS is liable to perform 

clustering of the UE and also to identify the transmit power of 

the UE. “Additive White Gaussian Noise (AWGN)” and 

Rayleigh fading have an impact on the signals attained on 

every UE. The signal transferred by the BS is expressed in 

Equation (4). 
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J
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Here, the terms Ob, αb,j, and ab,j represent the power 

transmitted on every beam with J users, power allocation 

coefficient and transferred signals. The signals attained by 

UEb,j,  

j,bh
B

1b bj,bj,b bzqgt     (5) 

Here, the term gb,j denotes the Rayleigh fading channel 

vector, which is evaluated between BS to UEb,j, the term qb 

indicates the precoding vector and the term Q=[q1, q2,….qb] 
here qbϵX1xB, and the term bb,j  denotes the AWGN, and the 

term gb,j is numerically defined in Equation (6). 

 j,bj,bj,b sag  (6) 

Here, the term sb,j denotes the division between BS and 

UEb,j variable δ. The power allocation coefficient αb,j based on 

the NOMA principles is presented in Equation (7). 
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Here, the term  represents the group of feasible power 

allocation coefficients. The receiver end consists of B number 

of isotropic antenna components that are divided into K

subsets of the antenna array, where each subset has N number 

of antenna components.  

RF chain count, 
rfB is considered fewer than the antenna 

component’s count on the hybrid beam foaming. Every 
antenna array component is lined in a single RF chain as a 

substitute for the antenna components. The hybrid beam 

forming network receives a desired signal da(r)wh2πdxr with Өj 

as the Angle of Arrival (AOA) and j number of interference 

signals uj(r)wh2πdxr with a varying AOA Өk, where 

j=1,2,3,…,J. The attained signal zn(r) of the sub-array k in 

every nth antenna component comprises an AWGN signal c(r), 

desired narrow signal band, and interference signal. Thus, the 

outcome attained at kth sub-array zk(r) is presented in Equation 

(8). 
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Here, the term s denotes the distance among the nearest 

antenna array component assumed as 0.5τ. The variables τj 

and τs define the propagation delay of jth the interference signal 

and the desired signal, and the term x expresses the intensity 

of the light. On the basis of the calculated baseband signal on 

a matrix-vector notation, every subset is expressed in Equation 

(9). 
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Here, the term G

RfD describes the matrix diagonal, the term 

La(b) denotes the input of the analog beamforming phase, and 
the term c(b) indicates the noise vector. While applying the 

digital beamforming vector to the digital beamforming phase, 

Equation (9) is modified, as shown in Equation (10). 
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The phase and signal amplitude are differentiated by 

changing the digital beamforming vector Sd . Hybrid 

Beamforming is used in the model to enhance the spectral 

efficiency. The systematic form of the Hybrid beamforming 

model is presented in Figure 3. 

 

 

 

 

 

 

  

 

 

 
 

Fig. 3 Systematic form of the hybrid beamforming model 
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possess the features of both WHO and PFOA strategies.  In 

this introduced WH-PFOA, if (pcfit>Mdfit), then the position is 

amended using WHO, or else the position is amended using 

PFOA. Here, the terms Pcfit and Mdfit indicate the current 

fitness value and mean fitness value, respectively. 

Optimization on Pilot Designs: The training symbols are 
also transferred with the information bits to guarantee pilot 

symbol-based channel estimation. Transferred vector z[j] is 

arranged in a matrix format and they are expressed as 

ZϵXBrxBe. In order to guarantee effective pilot-based channel 

estimation, a minimum number of Br training symbols have to 

be transferred.  

The matrix form of the training symbol is created by a set 

of orthogonal sequences that is subjected to ZZr=µUBR, here; 

the term µ denotes the power of the signal related to the 

training symbol. The introduced WH-PFOA strategy is 

employed for tuning the pilot design to enhance the channel 

estimation performance.  

In addition it also optimizes the parameters such as 

“activation function, count of hidden neurons, and epoch” in 

the Ada-ACAE framework for reducing the BER and MSE.  

The pseudo code of the introduced WH-PFOA is depicted in 

Algorithm 1. 

Algorithm 1: WH-PFOA 

Setup the parameters and population 

While the criterion is not fulfilled 

 For t=1 to maxtier 

  For i=1 to Npop 

   If (Pcfit > Mdfit) 

    The position is upgraded via the WHO 
    Create an initial population 

    Perform grazing behaviour 

    Perform horse mating behaviour 

    Select the group leadership 

    Exchange and selection of leaders 

   Else 

   The position is upgraded via PFOA 

    Initialize the position vector 

    Define the predation intensity parameter 

    
Perform non-linear parametric control 

strategies 
    Perform reverse escape search strategy 

    Upgrade the proxy location formula 

     Execute localized group attack pattern 

     Execute bloodthirsty cluster attack pattern 

     Execute scavenging foraging patterns 

     
Execute piranha population survival 

strategies 

   End 

  End 

 End 

End 

The flowchart of the introduced WH-PFOA is presented 

in Figure 4. 

 
Fig. 4 Flowchart of  WH-PFOA 

4.3. Wild Horse Optimization Algorithm 

The WHO [26] consists of five main steps and they are 

described below. 

4.3.1. Creating an Initial Population 

The fundamental model for all tuning approaches remains 

similar. This method begins with (z̄) = {z̄1, z2,…..,z̄b} a 

beginning arbitrary populace. The objective function 

examines this arbitrary populace continually, which generates 

an objective value of (Ī) = {I1, I2,….,Ib}.  

In the beginning, the population of the horse is separated 

into various sets. If the total member’s count in the population 

is denoted as B, then the group count is indicated as 

F=[BxOA]. Stallion’s percentage OA on the entire population 

is assumed as the control parameter. 

4.3.2. Grazing Behavior 
The foals of the population generally graze near their 

group. The grazing behavior of the foal is numerically 

presented in Equation (11). This equation allows the members 

of the group to travel towards the leader and search nearby 

them at a distinct radius. 

    hh

F,,u

hh

F,,u StZStEM2cosM2Z 


  (11) 

 

Upgrade the solution (position) using 

PFOA 

 

No 

Yes 

No 

Initialize the population and parameter 

Start 

End 

Upgrade the solution (position) using 

WHO 

 

While (stopping condition) 

Determine the fitness value   

Get the optimal solution 

Yes 

If  fitfit Md >Pc  
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Here, the present location of the group member is denoted 

by the term Zu
h, F, the location of the stallion is represented by 

the term hSt , the identical arbitrary integer within the interval 

[-2,2] is indicated by the term E, and the constant value Pi is 

denoted by the term π. The cos function attained by integrating 

π and E allow the horse to graze at various radius. The term 

indicates the latest location of the group member z̄u
h, F, and 

the adaptive mechanism evaluated via Equation (12) is 

represented by the term M .  

 

 IdxEIdxEM

;0OIdx

;TdrEO

32

1











         (12) 

Here, the term O denotes the vector with the values 0 and 

1 that is equivalent to the size of the issue; the term Ē1 and Ē3 

indicates the arbitrary vectors within the interval [0, 1]. The 

term E1 represents the arbitrary integer that lies between them 

[0, 1], and the term Idx  indicates the indices of the arbitrary 

vector; the vector Ē1 fulfill the condition O==0, and the term 

Tdr  denotes the adaptive parameter, which begins with the 

value 1 and gradually minimizes at the time of implementation 

and attains 0. It is arithmetically expressed in Equation (13). 













itrM

1
itr1Tdr

x

       (13) 

Here, the present iteration is denoted by the term itr , and 

the term represents the highest iteration count Mxitr. 

4.3.3. Horse Mating Behavior 

In order to imitate the mating and departure nature of the 

horses, a cross-over operator is developed. It is arithmetically 

presented in Equation (14). 

 
MnCs

,endpo,jhuZ,ZCsZ

over

m

h,F

p

u,Fover

o

J,F




 (14) 

Here, the term Z°F,J indicates the location of the horse o 

from the set j, the term Zp
F,u indicates the location of the foal 

p from the set u, and the term Zm
F,u represents the horse m

from the set h. 

4.3.4. Group Leadership 

The group’s leaders have to direct the group to this water 

hole to utilize it if they are dominant; however, when another 

team is dominant, they have to move back. It is numerically 

presented in Equation (15). 

   
    













5.0EifQGStQGEM2cosM2

5.0EifQGStQGEM2cosM2
St

3Fu

3Fu

Fu
   (15) 

Here, the term FuSt  indicates the next location of the 

leader from the set u , and the term QG denotes the location of 

the water hole, the term StFu denotes the present position of the 

leader from the set u , the term E expresses the identical 

arbitrary integer that lies within the interval [-2,2], and the 
term M represents the adaptive mechanism evaluated via 

Equation (11). 

4.3.5. Exchange and Selection of Leaders 

At first, the leader is chosen arbitrarily to protect the 

random nature of this approach. In the succeeding phases, the 

leaders are selected on the basis of their fitness rate. If the 

fitness of the group member is higher than the leader, then the 

leader and the member are exchanged. It is mathematically 

presented in Equation (16). 

   
   













Fuu,FFu

Fuu,Fu,F

Fu StrcosZrcosifSt

StrcosZrcosifZ
St   (16) 

The pseudocode of WHO is given in Algorithm 2. 

Algorithm 2: Conventional WHO 

Setup the horse’s initial population arbitrarily 

Initialize the parameters 

Compute the fitness function  

Establish the foal set and choose the stallions 

Determine the optimal horse  

While the criterion is not fulfilled 

 Evaluate Tdr via Equation (13) 

 For stallion’s count 

  Compute M through Equation (12) 

  For the number of foals in any group 
   If rand > Pc 

    Upgrade the foal’s location via Equation (11) 

   Else 

    Upgrade the foal’s location via  Equation 

(14) 

   End 

  End 

  If 0.5rand   

   Upgrade the location of FuSt via Equation (15) 

  Else 

  Upgrade the location of FuSt through Equation (15) 

  End 

  If    stalliontcosSttcos Fu   

   
FuStstallion   

  End 

  Arrange the foals group based on the cost 

  Determine the foal with low cost 

  If    stalliontcosfoaltcos   

   Interchange the location of foal and stallion via 

Equation (14) 



Belcy D. Mathews & Tamilarasi Muthu / IJEEE, 11(7), 78-101, 2024 

86 

  End 

 End 

Upgrade the best solution 

End 

4.4. Piranha Foraging Optimization Algorithm 

PFOA [27] strategy describes the three different patterns. 

This approach includes several stages, such as population 

initialization, population evaluation, and parameter and agent 
upgrading. 

4.4.1. Population Initialization 

The location vector for every member of the piranha 

population is initialized based on according to Equation (17).  

 oooo AnIn1Anc       (17) 

Here, the position of oth member in the piranha candidate 

solution is denoted by the term co, and the upper and lower 
boundaries are represented by the terms Ano and Ino. An 

arbitrary integer within the range [0,1] is represented by the 

term β1. 

4.4.2. The Predation Intensity Parameter G 

The piranhas are highly responsive in blood detection. 

This feature is affected by the blood concentration Go and the 

distance fo. The piranhas will move towards the region 

with high blood concentrations, as shown in Equation (18). 

This characteristic is influenced by both the between the prey 

and the piranha. It is numerically expressed in Equation (18). 
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M
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
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  (18) 

Here, the term Go denotes the parameter of predation 

intensity for oth individual piranha, the term fo indicates the 

distance between oth piranha and the food, the term M 

indicates the intensity’s source, the term Mo denotes the source 

intensity perceived by oth search agent, and the term β2 

denotes an arbitrary integer within the range [0,1]. 

4.4.3. Non-Linear Parametric Control Strategies 

Nonlinear parametric control methods serve as helpful 
methods to manage time-varying random mechanisms and to 

avoid early population convergence while also preserving 

silky and smooth transitions between exploration and 

exploitation. At the beginning and mid phases, greater values 
D enable the search agent to execute an “auditory-based 

global search and prevent them from being trapped into local 

optimal”, but in the subsequent phases, PFOA could converge 

rapidly as D modifications, see Equation (19). 
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
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





   (19) 

Here, the term Mxitr denotes the highest iteration count, 

and the variable V denotes the constant value; the term  

denotes the product of the variable and value. 

4.4.4. Reverse Escape Search Strategy 

The reverse escaping search approach aims to employ a 

flag R to modify the path of the population’s search, 

preventing the candidate populace from getting stuck in the 

local region and diverting searching to an alternate location to 

enhance the solution. It occurs continually during the search 
procedure, offering the search agent further chances to 

precisely and strictly examine the search region, see Equation 

(20). 










5.031

5.031




R         (20) 

Here, the term β3 represents an arbitrary integer that lies 

between [0,1]. 

4.4.5. Update the Proxy Location Formula 

The Localized Group Attack Pattern 
Piranha attacks the prey that is near them. It is 

mathematically expressed via Equation (21). 

  
   

 






qv

1l
py

ol
o yc

qv

ycyA
11yc    (21) 

Here, the term co(y+1) indicates the search agent’s latest 

position, the term qv expresses a value that is created 

arbitrarily, and the term A1(y) represents the fraction of local 

population attacks, AϵC and the term C denotes the arbitrarily 

generated piranha’s count. The term co(y) denotes the present 
agent’s location, the term cpy(y) denotes the best agent’s 

position determined in the prior repetition, and the term ᵞ1 is a 

random number uniformly distributed [-2,2]. 

The Bloodthirsty Cluster Attack Pattern 

The piranha is capable of scene the presence of prey 

through the smell of blood. If the concentration of the blood is 

high, they travel rapidly. Modifying the direction of motion, 

they can determine the position of the prey as in Equation (22). 

   

  o4opy

py

2

o

GDRGRycH

ycr11yc



 

  (22) 

Here, the term ᵞ2 denotes the arbitrary integer lies 

between the range [-1/2,1/2] and the term β4 denotes an 

arbitrary integer within the range [0,1]. The term H indicates 

the coefficient of the foraging ability of piranhas. 
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The Scavenging Foraging Patterns 

Due to poor eyesight, they split the group and feed on 

seeds and carrion, as shown in Equation (23).  

      ycRycr
2

1
1yc 01V

2

o      (23) 

Here, the term R is a variable that updates the direction of 

movement, the term cv1(y) denotes the V1th agent location 

arbitrarily determined from the piranhas, c0(t) denotes oth 

agent’s location arbitrarily chosen from the agents, and V1≠o. 

The Piranha Population Survival Strategies 

To handle, the survival rate SvR of the piranha is 

determined via Equation (24). If, the survival rate is SvR≤1/4, 

then the population is renewed via Equation (25). 
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Here, the terms cv1(y), cv2(y), cv3(y) denote the positions 

of the agent V1, V2, V3 arbitrarily determined from the 

piranhas V1≠V2≠V3 correspondingly. 

The pseudocode of PFOA is given in Algorithm. 3. 

Algorithm 3: Traditional PFOA 

Initialize the parameters  

5.0K  , it denotes the possibility that piranha is hungry 

and the possibility that they are in the scavenging 

foraging pattern or attack pattern. 

75.0B  , it the possibility of blood concentration in the 

piranha to evaluate which attack pattern is performed 

(bloodthirsty cluster attack pattern or the localized group 

attack)  

Setup the  initial population  

While itrMiteration x do 

 If Krandom  then 

  Upgrade the non-linear cosine factor D  via 

Equation (19) 

   If Brandom  then 

    Evaluate the parameter of blood 

concentration oG through Equation (17) 

    Pattern 1: localized group attack pattern via 

Equation (21) 

   Else 

    Pattern 2: bloodthirsty cluster attack pattern 
via Equation (22) 

   End if 

Else 

 Pattern 3: scavenging foraging pattern via Equation 

(24) 

 End if 

 Upgrade the survival rate of the piranha, when is less 

through Equation (25) 

 Evaluate 
NwC , the latest search agent’s fitness 

function 

 If 
pyNw CC   then 

  Set Nwpy CC   

 End if 

 Set 1iterationiteration   

End while 

Stop criteria fulfilled 

Display PyC and the best value 

End 

5. Efficient Channel Estimation Using Adaptive 

and Attention-Based Deep Learning Mechanism 

in MIMO-NOMA for mmWave Systems 
5.1. Channel Attribute Generation 

The introduced Ada-ACAE-based channel estimation 

framework is performed with the channel matrix as the input 

for estimating the channel that is obtained under the 

environment, as discussed in Table 1. 

Table 1. Dataset creation parameters 

Parameters Values 

Number of Sub Carriers K = [2, 4, 6, 8, 10, 12] 

Number of Antennas [5, 10, 15, 20, 25] 

Total Bandwidth 5 

System Delay 

Requirement 

1 

Circuit Power 30 

Antenna Power 27 

Power Amplifier 

Coefficient 

0.38 

Maximum No. of Users 50 

Initial Energy 0.5 

Distances d1 = 500, d2 = 200 

Power Allocation 

Coefficients 

a1 = 0.75, a2 = 0.25 

Path Loss Exponent 4 

Target Rates R1 = 1, R2 = 3 

Transmit Power  

(in dbm) 

Pt = [-30, -25, -20, -15, -

10, -5, 0, 10, 20, 30] 

5.2. Convolutional Autoencoder 
An Auto Encoder (AE) is employed to attain the feature 

vector by employing an “encoder-decoder module”. The 

encoder compresses the input signal into significant features, 

and the decoder rebuilds the compressed information and 

offers an output that resembles the input signal. Auto-encoder 

is compressed of “input layer, hidden layer, and output layer”. 



Belcy D. Mathews & Tamilarasi Muthu / IJEEE, 11(7), 78-101, 2024 

88 

At the beginning, the input signal is offered into the encoder 

phase with less dimension and later given to the decoder.  

Dimension of the input signal is minimized via training the 

output layer and later, offered to the hidden layer. The input 

signal is denoted by the term Q , and the encoded outcome 

attained from the encoder phase is expressed by Equation (26). 

   xd bWXxtE    (26) 

In Equation (29), the activation function is denoted by the 

term . The input signal is then reassembled at the decoder 

phase via Equation (27). 

   y1 bWqgX    (27) 

In Equation (27), the sigmoid activation function of the 

decoder is indicated by the term , and the decoder variable’s 

biasing vectors are represented by the terms bx and by. During 

the reconstruction, there is a risk of data loss. To resolve this 

issue, the autoencoder is rained by the variables ϕ = (W, by, 

bx). It is numerically shown in Equation (28). 

     xfg,XLX,XL minmin
'


   (28) 

The frequent and random loss of information is evaluated 

by the cross-entropy function and also via square error value, 

correspondingly as shown in Equation (29). 
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Fig. 5 Architectural representation of convolutional auto encoder 

Employing auto-encoders in channel estimation offers 

certain merits by minimizing the challenges of the traditional 

channel estimation approaches and enhancing the accuracy 

during estimation. Information loss is a major demerit of the 

autoencoder. It can be resolved by embedding a convolution 

layer in the encoder phase of the auto-encoder. This layer is 

capable of attaining specific features from the signal that can 

be employed for channel estimation. The outcome attained 

from the convolutional layer is a feature map that can flatten 

and be associated with the decoder part of the auto encoder. 
The architectural illustration of the convolutional auto-

encoder is presented in Figure 5. 

5.3. Ada-ACAE-Based Channel Estimation 

In this introduced model, channel estimation is performed 

on the developed Ada-ACAE framework. The tuned pilot 

design is given to the Ada-ACAE model. The tuned pilot 

signals are employed to attain the parameters of the channel 

and also to train the framework by employing a deep learning 

technique.   

The Ada-ACAE model is developed by embedding an 

attention mechanism on the CAE. It improves the channel 

estimation by concentrating on the necessary features of the 
signal at the time of encoding and decoding procedure.  

By integrating the attention mechanisms, the 

convolutional auto-encoder is capable of attaining the difficult 

relations within the input data for effective estimation. The 

attention mechanism assists the auto-encoder in assigning its 

resources accurately and achieving the most relevant 

information necessary to implement channel estimation in 

MIMO-NOMA networks. In this implemented channel 

estimation framework, the CSI matrix is taken as the input for 

channel estimation.  

Next, the frequency feature vectors presented in the CSI 
matrix are extracted using the AE filters.  The Ada-ACAE 

model determines a channel response as an output for channel 

estimation. The introduced WH-PFOA is employed to 

upgrade the pilot symbols employed on the Ada-ACAE 

network to increase effective channel estimation. A 

diagrammatic illustration of the developed Ada-ACAE-aided 

Channel Estimation framework is shown in Figure 6. 

5.4. Objective of Channel Estimation Model 

In the proposed Ada-ACAE-aided channel estimation 

model, the optimal pilot designs tuned by the implemented 

WH-PFOA are employed to enhance the efficiency of channel 

estimation. The Ada-ACAE parameters, such as activation 
function, number of hidden neurons, and epoch, are tuned via 

the implemented WH-PFOA for minimizing the “Bit Error 

Rate (BER) and Mean Squared Error (MSE)”. The major 

objectives of the Ada-ACAE-based channel estimation model 

are described in Equation (30). 

 
Convolutional auto encoder  
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Reconstruction  

Input  
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Fig. 6 Diagrammatic illustration of Ada-ACAE-based channel estimation framework 

 
 MSEBERminargObj

ACAE-Ada
V

ACAE-Ada
N

ACAE-Ada
L Hn,Ec,Ac



 (30) 

Here, the hidden neuron’s count in the Ada-ACAE is 

represented by the term Hnv
Ada-ACAE that lies between in the 

interval [5,255], the activation function of the Ada-ACAE is 

indicated by the term AcL
Ada-ACAE that lies between [1,5], and 

the number of epochs in Ada-ACAE is denoted by the term 

EcN
Ada-ACAE that ranges between [5,50]. BER is the 

“calculation of the bit count that is attained in error compared 

to the overall bits transmitted on the communication model”. 

It is evaluated using Equation (31). 

bit

Bit

O

T
BER   (31) 

Here, the entire bit converted in the framework is 

indicated as Obit, and the total count of bits attained with error 

is expressed as TBit. MSE defines the “average square 

difference between the estimated and the actual value.” The 

MSE is arithmetically presented via Equation (32). 
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Here, the data point’s count is denoted by the term b and 

the value observed and predicted is expressed by the terms Tu 

and Ťu.  

6. Result and Discussion 
6.1. Experimental Setup 

The proposed Ada-ACAE framework was executed in 

MATLAB2020a. Particularly, the carrier frequency employed 
in the mmWave system is chosen as 28GHz, and the 

bandwidth’s standard value is taken as 1GHz for 

experimentation. This network considered the highest 
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iteration count as 50, population counts as 10, and length of 

chromosome as 3 for channel estimation.  

The efficiency of the developed channel estimation 

scheme is investigated with few optimization approaches like 

“Clouded Leopard Optimization (CLO) - Ada-ACAE [29], 

Walrus Optimization Algorithm (WOA) - Ada-ACAE [30], 
Wild Horse Optimization Algorithm (WHOA) - Ada-ACAE 

[26] and Piranha Foraging Optimization Algorithm (PFOA)-

Ada-ACAE [27] and estimation approaches like FCFGS-CV 

[19], Mixed ADC [20], LDAMP [23]. The simulation 

parameters employed in this developed model are depicted in 

Table 2. 

Table 2. Simulation parameters 

Parameters Values 

Symbol’s time period 171ms 

Channel Bandwidth 1 GHz 

CP Length 10 ms 

RF chains count 4 

Pilot count 200 

Carrier frequency 28 GHz 

The number of BS antenna 64 

Small cell coverage 500  

6.2. Performance Measure 

The performance metrics employed in this channel 

estimation model are discussed below. Performance indices 
like Mean Error Percentage (MEP), Symmetric Mean 

Absolute Percentage Error (SMAPE), Mean Absolute Scaled 

Error (MASE), Mean Absolute Error (MAE), and Root Mean 

Square Error (RMSE) were used to find the efficacy of the 

developed model.  

(a) MEP is derived via Equation (33). 
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(b) SMAPE can be expressed through Equation (34). 
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(c) MASE is expressed by Equation (35). 
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(d) MAE is defined through Equation (36). 
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(e) RMSE can be derived through Equation (37).  
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(f) L1-Norm is arithmetically derived via Equation (38). 
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(g) L2-Norm is derived by Equation (39). 
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(h) L-Infinity Norm can be numerically expressed by Equation 

(40). 

R
dqR1

JJ max


inf

      
(40) 

Here, the actual value is indicated by the term SV, and the 

forecasted value is denoted via gv
 
the calculation element that 

is integrated for all suited points is denoted by the term R, the 

matrix form is represented by the term N, and the matrix size 

is represented by the term dq,
 
where, R=1,2,…dq.

 

6.3. Efficiency Examination for Introduced Ada-ACAE-

Based Channel Estimation Network in Terms of Heuristic 

Approaches 

Figure 7 demonstrates the accuracy of the channel 

estimation network while comparing the generated model with 

various heuristic techniques. Figure 7(a) shows that the 

generated framework better CLO-Ada-ACAE, WOA-Ada-

ACAE, WHOA - Ada-ACAE, and PFOA Ada-ACAE by 

.57%, 30%, 53.33%, and 39.13%, respectively, by considering 
the value of step per epoch as 200. The RMSE and MASE 

values of the proposed framework are decreased at the 200th 

step per epoch. This proved that the channel estimation 

performance of the developed framework attained better 

results than the conventional techniques. The lower values of 

error metrics showed that the suggested model detect the 

effective channel that received information with no 

information loss and high BER. The detected channel, by 

using the developed model, helps the user to perform the 

lossless communication process. Thus, the introduced channel 

estimation model shows enhanced effectiveness in 
determining the exact channel with improved reliability. 
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(e) 

Fig. 7 Efficiency evaluation of introduced finger vein-based authentication framework on the basis of Heuristic  approaches in terms of (a) MAE,               

(b) MASE, (c) MEP, (d) RMSE, and (e) SMAPE.

6.4. Effectiveness Examination of the Developed Model 

Based on Channel Estimation Techniques 

Figure 8 represents the performance of the implemented 

model with various channel estimation mechanisms. Figure 

7(b) conveys that the proposed network exceeds the 

authentication models such as FCFGS-CV, Mixed ADC, 

LDAMP, and Ada-ACAE by 27.86%, 21.42%, 20.28%, and 

27.15% correspondingly, by considering the value of step per 

epoch as 200. When considering all error metrics like MAE, 

MASE, MEP, RMSE, and SMAPE, the proposed model 

attained very low values at all steps per epoch values. The 

lower error values eliminate the imperfect channel estimation, 
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and it satisfies the user requirement in the communication 

process. Here, the impact of the Ada-ACAE in the channel 

estimation is determined using various error metrics. When 

increasing the steps per epoch, the error values of the 

developed model show slight variation. However, the error 

values are comparatively lower than the existing techniques. 

These results showed that the developed Ada-ACAE provides 

excellent effects in the channel estimation process. Hence, the 

introduced channel estimation network offers more advanced 

performance than the traditional approaches. 
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Fig. 8 Effectiveness examination of the developed model based on authentication techniques for Dataset 1 and Dataset 2 in terms of (a) MAE,                                    

(b) MASE, (c) MEP, (d) RMSE, and (e) SMAPE.
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6.5. Convergence Performance of the Introduced Scheme 

Figure 9 demonstrates the convergence evaluation of the 

generated channel estimation model. On the basis of Figure 

9(a), the introduced model shows enhanced performance than 

CLO, WOA, WHOA, and PFOA by 4.34%, 8.33%, 5.17%, 

and 6.77%, respectively, by considering the iteration count 10. 
9. The convergence results showed that the cost function of 

the developed model is lower than existing algorithms and it 

achieved the global optimal solution at an earlier stage. The 

convergence results showed that the suggested model does not 

stick in the local optimal condition, and it converges faster 

than the traditional algorithm to provide an optimal solution. 

Therefore, the generated network attains enhanced 
performance than other traditional systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                (a)                                                                                                                        (b) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

                                                                 (c)                                                                                                                      (d)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e) 

Fig. 9 Convergence performance of the introduced model 
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6.6. Performance Evaluation of Channel Estimation by 

Considering the Maximum Power  

Figure 10 demonstrates the performance evaluation of 

channel estimation by considering the max power. Based on 

Figure 10(a), the introduced model shows enhanced 

performance than Gradient descent, FCFGS-CV, Mixed ADC, 
and LDAMP by 56.92%, 46.15%, 23.07%, and 12.30%, 

respectively, by considering the maximum power as 10.9. The 

proposed scheme’s spectral efficiency, BLER, throughput, 

and effective achievable rate are higher than the conventional 

techniques. The improved values of spectral efficiency, 

BLER, and throughput showed that the suggested model 

determines the ideal channel for performing the lossless 
communication process.  
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                                                                       (g)                                                                                                                      (h)  

Fig. 10 Performance evaluation of channel estimation by considering the max power in terms of (a) Spectral efficiency, (b) BER, (c) MSE,                                             

(d) Throughput, (e) NMSE, (f) Sum Rate (g) BLER, and (h) Effective achievable rate.
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Fig. 11 Performance evaluation of channel estimation  by varying SNR in terms of (a) Throughput, (b) NMSE, (c) BLER, and                                           

(d) Effective achievable rate.
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communication system. Therefore, the implemented model 

attains enhanced performance in channel estimation than other 

existing approaches. 

6.7. Performance Evaluation of Channel Estimation by 

Varying SNR 

Figure 11 demonstrates the performance assessment of 
channel estimation by varying SNR. Based on Figure 11(a), 

the introduced model shows enhanced performance than 

Gradient descent, FCFGS-CV, Mixed ADC, and LDAMP by 

1.36%, 2.77%, 5.71%, and 4.81%, respectively, by 

considering the SNR value -20. For different values of SNR, 

the NMSE and BLER of the proposed model is lower while 

the throughput and effective achievable rate of the proposed 

scheme is higher than the other techniques. These results 

confirmed that the developed model accurately detects the 

channel for enhancing the energy and the spectral efficiency 

values.  Therefore, the implemented model attains enhanced 

performance in channel estimation than other existing 
frameworks. 

6.8. Performance Evaluation of Channel Estimation by 

Considering User Count 

Figure 12 demonstrates the performance evaluation of 

channel estimation by considering the user count. Based on 

Figure 12(a), the introduced model shows enhanced 

performance than Gradient descent, FCFGS-CV, Mixed ADC, 
and LDAMP by 81.81%, 62.16%, 36.36%, and 

1.69%respectively, by considering the user count as 5. The 

spectral efficiency, throughput, and BLER are the positive 

metrics, and the enhancement in these positive metrics proved 

that the suggested model detects the channel for performing 

the efficient communication process with high spectral 

efficiency. The results showed that the developed model 

flexibly determines the channel with high accuracy, which 

enhances the communication performance. The obtained 

results showed that the suggested model accurately detects the 

channel and improves the capability of the wireless 

communication system. Therefore, the implemented model 
attains enhanced performance in channel estimation than 

traditional systems. 
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Fig. 12 Performance evaluation of channel estimation  by considering the User count in terms of (a) Spectral efficiency, (b) BER, (c) MSE,                                            

(d) Throughput, (e) NMSE, (f) Sum Rate (g) BLER, and (h) Effective achievable rate. 
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Fig. 13 Performance evaluation of channel estimation  by varying SNR in terms of (a) Spectral efficiency, (b) BER, (c) MSE, and (d) Sum rate. 

6.9. SNR-Based Comparative Analysis with Channel 

Estimation Techniques 

Figure 13 conveys the comparative analysis of the 

developed model by varying SNR. Based on Figure 13(a), the 

introduced model shows enhanced performance than Gradient 

descent,  FCFGS-CV, Mixed ADC,  LDAMP and 

BOLSTMEN by 65.51%, 60.344%, 58.62%, 10.34%, and 

6.89%, respectively, by considering the SNR value -20. The 

proposed model achieved higher spectral efficiency and sum 

rate values but it achieved lower MSE and BER values. These 

results proved that the channel estimation performance of the 

developed model is more sensitive than the other techniques. 
The estimated channel using the developed approach fulfils 

the growing need for wireless data traffic. The maximization 

of spectral efficiency enhances the reliability of the MIMO-

NOMA.  Therefore, the implemented model attains enhanced 

performance in channel estimation than other existing 

frameworks. 

6.10. Overall Efficiency Examination of the Generated 

Framework Based on Heuristic Approaches 

Table 3 presents the effectiveness of the generated 

channel estimation scheme with various heuristic approaches. 

On the basis of Table 3, the MEP of the introduced channel 

estimation network conveys enhanced performance than 

CLO-Ada-ACAE, WOA-Ada-ACAE, WHOA - Ada-ACAE, 

and PFOA Ada-ACAE by 38.94%, 30.36%, 30.80%, and 

33.62%, respectively. Thus, the generated channel estimation 
achieves superior performance than existing approaches. 

 

Table 3. Overall efficiency examination of the generated framework based on Heuristic approaches 

TERMS CLO [29] WOA [30] WHOA [26] PFOA [27] WH-PFOA 

MEP 47.71 41.83 42.10 43.89 29.13 

SMAPE 0.60 1.70 1.60 1.41 0.28 

MASE 131.49 146.81 141.09 142.89 119.63 

MAE 13.71 13.42 10.27 12.16 5.86 

RMSE 8.88 13.50 11.56 10.03 5.15 

L1-NORM 577.61 605.98 557.86 650.99 442.77 

L2-NORM 81.64 80.20 80.83 82.76 74.45 

L-INF-NORM 14.69 15.27 15.06 17.80 11.60 

6.11. Overall Performance Evaluation of the Proposed 

Scheme Based on Several Channel Estimation Techniques  

Table 4 presents the performance examination of the 

generated channel estimation model with various estimation 

approaches. The table shows that the introduced system 
exhibits improved accuracy than other authentication 

approaches like CFGS-CV, Mixed ADC, LDAMP, and Ada-

ACAE by 71.42%, 80.68%, 75.86%, and 72%, respectively. 

Therefore, the generated estimation model is more effective 

than the existing channel estimation models. 

6.12. Statistical Evaluation of the Developed Model  

Table 5 demonstrates the statistical evaluation of the 

introduced model. Based on the table, the best performance of 

the developed authenticated approach exceeds CLO, WOA, 

WHOA, and PFOA by 2.24%, 2.07%, 2.07%, and 2.66%, 
respectively. On the basis of the attained outcome, the 

developed estimation attains improved performance than 

other traditional models. 
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Table 4. Overall performance evaluation of the proposed model with existing Channel Estimation Techniques

TERMS FCFGS-CV [19] Mixed ADC [20] LDAMP [23] Ada-ACAE [28] WH-PFOA Ada-ACAE 

MEP 43.26 40.81 49.30 40.82 29.13 

SMAPE 0.98 1.45 1.16 1.00 0.28 

MASE 136.19 140.05 133.32 157.74 119.63 

MAE 12.77 12.31 13.72 13.92 5.86 

RMSE 9.28 11.09 13.88 9.27 5.15 

L1-NORM 569.91 654.89 633.82 665.87 442.77 

L2-NORM 85.09 85.01 82.72 82.20 74.45 

L-INF-NORM 14.40 15.17 16.14 16.50 11.60 

Table 5. Statistical evaluation of the proposed Channel Estimation Network 

Algorithms CLO [29] WOA [30] WHOA [26] PFOA [27] WH-PFOA 

Number of Nodes: 10 

Best 11.57 11.55 11.55 11.62 11.31 

Worst 12.32 12.14 16.25 12.13 12.74 

Mean 11.73 11.79 11.76 11.66 11.38 

Median 11.57 11.82 11.55 11.65 11.32 

Standard Deviation 0.28 0.16 0.54 0.06 0.26 

Number of Nodes: 20 

Best 11.68 11.61 11.60 11.61 11.42 

Worst 15.21 13.28 15.70 14.92 11.57 

Mean 11.94 11.75 11.71 11.84 11.44 

Median 11.74 11.61 11.60 11.72 11.42 

Standard Deviation 0.68 0.29 0.44 0.47 0.06 

Number of Nodes: 30 

Best 11.60 11.69 11.58 11.76 11.37 

Worst 14.75 15.09 12.10 13.57 11.43 

Mean 11.98 12.12 11.80 11.91 11.37 

Median 11.60 11.69 11.70 11.76 11.37 

Standard Deviation 0.88 0.84 0.18 0.35 0.02 

Number of Nodes: 40 

Best 11.60 11.55 11.57 11.57 11.30 

Worst 15.44 13.46 12.28 12.02 12.42 

Mean 11.97 11.76 11.75 11.72 11.38 

Median 11.60 11.61 11.82 11.77 11.32 

Standard Deviation 0.64 0.43 0.20 0.09 0.18 

Number of Nodes: 50 

Best 11.57 11.65 11.72 11.60 11.51 

Worst 16.53 14.15 15.88 15.36 14.68 

Mean 11.79 11.83 11.90 11.76 11.62 

Median 11.57 11.69 11.72 11.60 11.57 

Standard Deviation 0.56 0.43 0.59 0.55 0.44 
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7. Conclusion 
An effective channel estimation model for the mmWave 

networks to attain increased information rate, reliability, and 

efficiency through the usage of deep learning techniques. 

Initially, beam forming is performed based on the introduced 

WH-PFOA to minimize the network complexity and also to 

perform effective channel estimation on the MIMO network.   

The attained beam was fed into the introduced Ada-

ACAE network for channel estimation. The introduced WH-

PFOA strategy optimized the parameters obtained on the Ada-

ACAE model. The attained outcome was estimated via classic 

meta-heuristic strategies and various channel estimation 

models to showcase their effectiveness. The BER of the 

developed model is higher than Gradient descent, FCFGS-CV, 

Mixed ADC, and LDAMP by 84.28%, 84.05%, 75.55%, and 

45% respectively.  

The MAE of the developed model for channel estimation 

exceeds the performance of the traditional models such as 
CLO-Ada-ACAE, WOA-Ada-ACAE, WHOA-Ada-ACAE, 

and PFOA-Ada-ACAE by 57.25%, 56.33%, 42.94%, and 

51.80%, correspondingly. Thus, the suggested Ada-ACAE 

network achieved superior performance in effective channel 

estimation and also improved the reliability and performance 

of the mmWave network.  
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