
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 7, 113-123, July 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I7P109 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Design and FPGA Implantation of SoC for Multimedia

Applications Using Deep Learning Based RNN

Architecture for Low Power and High Throughput

B.N. Mohankumar1, M.S. Kusuma2, H.V. Pallavi3, U. Rajashekhar4, Neelappa5

1Department of ECE, R.R. Institute of Technology, VTU, Karnataka, India.
2Department of ECE, Govt. S.K.S.J. Technological Institute, Karnataka, India.

3,5Department of E&C, Government Engineering College, Hassan, Karnataka, India.
4Department of ECE, Government Engineering College, Huvinahadagali, Karnataka, India.

1Corresponding Author : mohankumar4bn@gmail.com

Received: 04 May 2024 Revised: 07 June 2024 Accepted: 05 July 2024 Published: 26 July 2024

Abstract - Machine Learning (ML) techniques have become pivotal in the realms of customized integrated circuits are essential
components in modern electronics, with two prominent types being ASICs and FPGAs, particularly in applications such as

driverless vehicles, automotive electronics and big data analysis, where speed, power efficiency, and accuracy are paramount.

This paper acknowledges a novel reconstructed hardware architecture at the SOC system level, including M33 processor and

security to transfer steaming packets between processor and peripherals to meet the demands of modern ASIC and FPGA

designs, offering high accuracy, low power consumption and increased throughput. The proposed system integrates an ML-

based Support Vector Machine (SVM) with a fast-moving Advanced High-performance Bus (AHB) protocol, Floating Point (FP)

operations, and support for I2C and I2S communication protocols. To enhance throughput and minimize latency, an AHB

protocol and AHB to Advanced Peripheral Bus (APB) bridge have been implemented along with security algorithms, including

SHA-256 and AES that are integrated into the vigorously reconstructed multi-processor. For Deep Learning (DL) - Recurrent

Neural Networks (RNNs) based utilities, the system incorporates “Double-Precision Floating-Point (DPFP)” arithmetic

operations. Design is implemented in Verilog HDL, which undergoes quality checks using the LINT tool and “Clock Domain
Crossing (CDC)” analysis using Spyglass. Synthesis is carried out using a DC compiler for ASIC and Vivado Design Suite 2018

for FPGA execution and examination. The design architecture is connected with the SDK tool and Zynq processor to analyse

data transmitted between software along hardware. Experimental outputs demonstrate that the custom accelerator can

efficiently compute difficult ML classifiers for large datasets. Compared to state-of-the-art results, the proposed architecture

offers a 24% improvement in outturn, a 27% scaling down in power consumption, and a 32% decrease in latency.

Keywords - AHB, APB, SVM, I2C, I2S, RNN, DPFP, SoC.

1. Introduction
CNNs are widely used in image and video processing

tasks due to their ability to capture spatial hierarchies in data.

They are efficient in terms of both computation and memory

usage, making them suitable for deployment on resource-

constrained platforms like SoCs. RNNs are used for

sequential data processing tasks such as speech recognition,

natural language processing, and time-series analysis. They

have applications in SoCs for tasks like audio and sensor data

processing. Neuromorphic computing architectures mimic the

structure and function of the human brain, offering potential

advantages in terms of energy efficiency and real-time
processing. These architectures are being explored for SoC

implementations of DL algorithms. When selecting a DL

algorithm for SoC applications in VLSI, it is essential to

consider factors such as computational efficiency, memory

usage, power consumption, and the specific requirements of

the target application. Additionally, algorithmic optimizations

and hardware accelerators can be combined to achieve the

desired balance between performance and resource utilization

[1].

On-chip communication networks can greatly benefit

from executing Multi-processor with “Network-on-Chip

(NoC)” routing. This study proposes a method that

demonstrates significant reductions in energy consumption by

minimizing input/output buffers, all while maintaining

performance levels comparable to algorithms employing

buffered routing methods. This approach is particularly

suitable for real-world applications with low traffic volumes.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

114

Reducing the complexity of buffer allocation and management

techniques in multi-processors with NoC routing can enhance

router performance and decrease router latency. This method

simplifies router design, making it an attractive option for

interconnection networks aimed at consistently achieving

reduced peak throughput. However, it is essential to note that
reduced buffer network designs lack several functionalities

found in buffered networks, such as “Quality of Service

(QoS)”, support for different traffic classes, and management

of energy, congestion, and faults [2].

This study focuses on integrating support for buffer-less

routing algorithms into the design. Currently, Artificial

Intelligence (AI) is playing an increasingly significant role in

various applications, with Machine Learning (ML) being a

key sub-system. These technologies are particularly effective

in handling big data sets, using predictive systems to identify

patterns and make decisions based on data analysis.

Analogized to systems using all-around CPUs or GPUs for big
data analysis, reconfigurable hardware offers significant speed

advantages. Reconfigurable hardware allows for adapting

hardware architecture to specific attributes of real-world

problems, resulting in performance levels that surpass

software-based solutions while holding an increased degree of

pliability compared to traditional hardware implementations

[3].

“Field-Programmable Gate Arrays (FPGAs)” stand out as

a leading type of reconfigurable hardware device due to their

adaptability, high-speed hardware timing, reliability, and

parallel processing capabilities. These integrated circuits,
known as FPGAs, contain programmable logic blocks that

offer a range of benefits. Some FPGA families even allow for

the reconfiguration of part of the chip while other portions

remain operational, a feature widely utilized in accelerated

computing. Their programmable nature makes FPGAs a

versatile solution across various markets, particularly in the

field of human conduct recognition. One key lead of FPGAs

is their ability to respond quickly and save bandwidth by

completing computing tasks promptly.

Ensemble methods are often used to build a group of

classifiers, which enhance the classification of new data by

considering the predictions of individual classifiers. This
approach is known to outperform single classifiers and is

effective in combining less correct classifiers to create highly

errorless ones.

Human task recognition, a growing research area,

involves detecting current activities using sensor data from

accelerometers or wearable sensors. This technology is cost-

effective, energy-efficient, and widely accessible, thanks to

advancements in sensors and machine learning. Applications

of human activity recognition include healthcare, eldercare,

safe driving behaviour recognition, and military activity

detection [4].

The need for accurate classification of human behaviour,

along with reduced execution time and power consumption, is

crucial in these application domains. Designing feature

extraction and learning algorithms carefully is essential for

achieving suitable reaction times. However, the complexity of

executing these algorithms, along with the need for receivable
differentiation rates, poses a challenging device problem in

embedded systems. In the context of Network-on-Chip (NoC)

architecture, the performance and efficiency of routers play a

critical role.

This study proposes the utility of “Reduced Deflection

Chipper (ReDC)” for error less deflection routers, employing

double Programmable Data Networks (PDNs) with identical

inputs but different initialization. This design aims to

maximize output port efficiency, resulting in reduced flit

deflection rates and improved overall performance compared

to state-of-the-art buffer-less deflection routers. To address

complexity issues and improve classification speed while
maintaining low power consumption, it proposed to execute

and validate a hardware design [5]. This design will leverage

an FPGA-based, run-time reconfigurable architecture to ease

the vigorous deployment of multiple accelerator cores [6]. The

pivotal objectives of this paper shall divided into three distinct

goals:

 Develop an FPGA-based architecture capable of

supporting dynamically reconfigurable accelerator cores.

 Evaluate the scalability of the FPGA-based architecture

to accommodate a large number of vigorously

reconstructible accelerator cores.
 Facilitates hardware reconfigurability with parallelism of

an FPGA to enhance distinguished speed performance

analysed to traditional classifiers executing on usual-

purpose CPUs.

“Support Vector Machines (SVM)”are used in this

context to quest for hyperplane, which effectively classifies

data points in N-dimensional space, where N stands for a

number of features. Data points situated on opposite sides of

the hyperplane shall be classified into distinct categories by

utilizing judgemental boundaries. Support vectors are data

points situated nearer to the hyperplane, impact position and

orientation of the hyperplane.

The target is to find a plane that increases the boundary,

which is the distance between data points of different classes.

This enhances the accuracy of classifying future data points.

Classifiers evaluated are implemented based on prior

published work. The KNN method was tested with various

neighbor counts, with the best outcome observed.

When the number of neighbors was set to 18, with equal

weight given to each neighbor, a random forest ensemble

approach was also employed in addition to the “Decision Tree

Classifier (DTC)”. The random forest consisted of 70 DTCs,

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

115

with the class receiving the most votes becoming the

prediction of the model. Notably, each tree in a random forest

predicted a different class [7]. The Keras library was used to

construct a Multilayer Perceptron (MLP) with three hidden

layers. The Convolutional Neural Network (CNN) designed

for a Network-on-Chip (NoC) application consists of three
sets of maximum pooling layers, three convolutional layers,

and a fully connected layer preceding the output layer.

According to a previous study, Moore’s Law has largely

slowed down. While this may be a topic of debate, it is

undeniable that all technologies inevitably reach a point of

saturation. The growth in CPU performance and efficiency

follows Moore’s Law. To further enhance computer hardware

performance and efficiency, alternative architectures like

domain-specific hardware accelerators have emerged.

These accelerators utilize data specialization, parallelism,

optimized local memory, and reduced overhead to improve

performance and efficiency. By applying specialized
reasoning to domain-specific data, performance and efficiency

can be significantly enhanced, particularly in high-parallelism

scenarios [10].

2. Literature Survey
With the rapid advancements in cloud computing and the

Internet of Things (IoT), there is a growing need for high-
performance and power-efficient designs to handle enormous

amounts of data. Recent developments have focused on the

fundamentals, but there is a performance gap in processing

speed and the volume of data. Multi-processors with Network

on Chip (NoC) have been proposed to address these

challenges, utilizing packet-switched fabric for on-chip

communication. This approach is crucial for various

applications requiring energy-efficient systems and significant

congestion reduction [11].

In this proposed work, a hybrid MP-NoC framework is

designed, combining bufferless and buffered NoCs. This

framework is tailored to specific applications and their
performance demands, using trace-driven simulators to

generate data similar to big data applications. Compared to

traditional buffered Multi-processors with NoC, the proposed

hybrid approach shows a substantial performance

enhancement of up to seventeen percent on average and

twenty-four percent at most in mixed applications. It also

improves fairness by over thirteen percent and reduces power

consumption by thirty-eight percent [12].

The design also addresses power and area issues in on-

chip networks, using a MaS-based buffer-less Multi-processor

with NoC for delivery without huge buffering essentials. This
approach, compared to BLESS-Worm, reduces buffering

needs at the receiver end by up to eighty percent. Simulation

results demonstrate that MaS outperforms BLESS-Worm in

power consumption reduction by nine percent, average packet

latency by ten percent, and requiring fewer buffer resources

[13].

To improve on-chip communication, utility photonic

waveguides are suggested, leveraging nanophotonic

technology to combine high-radix MP-NOC waveguides for
higher output. The proposed Bufferless Photonic ClOs

Network (BLOCON) maximizes the composition of silicon

photonics. Additionally, fault tolerance mechanisms like

FTDR-H and FTDR routers are proposed, reducing chip area

consumption by twenty-seven percent in an 8x8 network and

achieving higher throughput compared to existing algorithms

under synthetic workload conditions [14].

In conclusion, the proposed approaches offer significant

advancements in on-chip communication, power efficiency,

and fault tolerance for multi-processor systems with NoCs,

addressing key challenges in handling big data and improving

overall system performance. More complex DL models
usually require large amounts of memory and processing

power, especially when working with State-of-the-Art

(SOTA) models. As a result, many apps that use these models

turn to cloud computing services, including Google

Colaboratory, which is a free service [15]. AWS DL AMIs and

Microsoft’s MLOps service are also well-liked substitutes that

expedite the training, deployment, and management of DL

projects on Azure-like platforms. Nevertheless, using a cloud

computing solution has several significant disadvantages.

Many computational processes are managed in the cloud

under the standard cloud computing paradigm, which may
cause network congestion and unacceptably long delays in

real-time situations [16].

Edge computing-related DL applications are common in

many areas, such as smart multimedia, smart transportation,

smart cities, and smart industries. When creating a DL

architecture for a particular activity, it is important to take into

account the limitations and restrictions that come with moving

from cloud computing to edge computing [17]. These

restrictions result from the intrinsic computational limitations

of edge computing, especially when using low-power

embedded devices with limited resources.

Two popular strategies are usually used to tackle this
problem:

1) Using various compression techniques on pre-existing

DL models, and

2) Optimizing the architecture right from the design phase.

In the first method, one or more compression methods

must be used in order to execute a DL model on embedded

devices. Examples of frequently utilized compression [18].

The methods include binarization, network distillation, neural

network pruning, and quantization of model parameters [19].

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

116

The second strategy, on the other hand, aims to create an

optimal architecture that eliminates the need for compression

techniques after training. Notably, designs such as

SqueezeNet, which achieve a limited number of parameters

with negligible influence on accuracy, have made noteworthy

contributions in this direction [20]. It is important to note that
inference tasks which require far less processing power than

training are the main applications for embedded devices.

General-purpose microcontrollers are among these embedded

devices, and they have been shown to be effective in a variety

of industries, including Internet of Things applications [21].

Over the past ten years, the industry has seen a

tremendous influx of specialized hardware devices that have

made dealing with computational limits easier. In the context

of DL, these hardware components also known as hardware

accelerators consist of specialized and optimized hardware

architectures designed to minimize system costs and power

consumption while optimizing performance. Tensor
Processing Units (TPUs) from Google, FPGAs, GPUs, and

ASICs are a few examples of this type of hardware accelerator

[22].

DL applications demand embedded systems to have a

high processing capability to accomplish tasks in real-time

and enough memory to store model data and parameters [23].

SoC devices are a promising option that combines a multitude

of peripheral devices that are required for the complex

requirements of DL applications with powerful computing

capabilities. Leading producers such as Texas Instruments,

Qualcomm, STM, and Samsung are creating AI-integrated
circuits for edge computing [24].

3. Materials and Methods Proposed Sub-System

Level Re-Configurable Architecture with RNN

and Security Algorithms
The outright suggested design, as illustrated in Figure 1,

features a Zynq software core processor coupled with a co-

processor serving as a required accelerator. To facilitate

constant observation and connection with the processor’s

stream, an instruction cache is used to turn Zynq on/off. In the
suggested architecture, the cache is internally located within

the Zynq, making direct connection access impossible. As a

result, the processor fetches data directly from cache memory

through instruction, rendering the relocation technique non-

applicable.

To address this, data is stored in external memory,

allowing the Zynq processor to approach and disable it as

needed. Additionally, the customized accelerator in this

architecture can access external cache memory instead of the

internally placed BRAM memory. To enhance accessibility

between the accelerator and DDR memory, a high-speed,
small-sized cache IP is added, establishing direct interfaces

between them. This setup enables efficient data access for

specific addresses between DDR and the accelerator. The

architecture also features an extra AHB, incorporating a

counter and timer, which interfaces with the Zynq and

peripherals to facilitate data transfer.

The AHB connects to the host interface for direct data

communication, providing benefits like burst length support,
power efficiency, low latency, system-level cache access, and

support for unaligned byte strobes and addresses. During

initialization, the boot image code is stored in SRAM with the

use of software and DMA. After completing the SHA

execution, the software retrieves the SHA HASH output via

the APB interface and saves the resulting SHA hash value

public key into memory.

Encryption keys, which are stored in plaintext as a “One-

Time Programmable (OTP)” feature, are managed by

hardware. These OTP keys undergo encryption using AES,

and the encrypted keys are then reserved in flash memory.

When needed, reserved keys are fetched from flash memory
using the APB protocol and made available to AES and SHA

for key exchange and decryption purposes.

The article is organized as shown in Figure 1, beginning

with an examination of the goals and difficulties associated

with putting RNN models into practice on embedded systems.

After that, an extensive model for RNN applications is

outlined, and several changes for the recurrent layers in RNN

models are discussed. Nevertheless, there are many obstacles

in the way of effectively executing RNN models in their

original form on embedded devices.

Thus, scientists have turned to optimizations that aim to
improve both the underlying platform and the RNN model.

Along with platform-specific optimizations targeted at

improving the hardware platform’s performance, the

optimizations done to the RNN model, referred to as

algorithmic optimizations, are analysed and discussed. After

that, a review of RNN hardware implementations suggested in

the literature is given. The performances attained by these

implementations, together with the implemented

optimizations, are examined closely.

3.1. RNN for SoC’s Applications

Recurrent Neural Networks (RNNs) are a type of artificial

neural network designed to handle sequential data. Unlike
feedforward neural networks, which process each input

independently, RNNs maintain a hidden state that captures

information about previous inputs in the sequence. This

recurrent nature enables RNNs to exhibit dynamic temporal

behavior and process sequences of varying lengths.

The defining characteristic of RNNs is the presence of

recurrent connections that allow information to persist over

time. At each time step ‘t’, the network receives an input xt

and produces an output yt while also updating its hidden state

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

117

ht. The hidden state ht serves as a memory that encapsulates

information from previous time steps and influences the

current output. The hidden state ht at time step t is computed

based on the current input xt and the previous hidden state

ht−1, along with model parameters (weights and biases). This

update equation can be formulated in Equation (1) as,

ℎ𝑡 = 𝑓(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏𝑛) (1)

Where,

 Whx and Whh are weight matrices governing the

transformations of the input and hidden state,

respectively.

 bh is a bias vector.

 f is an activation function, commonly a non-linear
function like the hyperbolic tangent (tanhtanh) or

Rectified Linear Unit (ReLU).

Fig. 1 Proposed top-level architecture of RNN models and SoC for ASIC & FPGA

=

SoftMax

FC Layers

Recurrent

FE

1. No of Recurrent Layers

2. Input/Output Layers
3. Processing data in RNN

Network

4. Deep RNN

ASIC’s FPGA’s

CPU’s Embedded GPU’s

Platform Specific

Optimizations

Algorithms

SoftMax

FC Layers

Recurrent

Layers

Features

Extraction (FE)

Optimization

Algorithms

+

ASIC’s FPGA’s

CPU’s Embedded GPU’s

RNN hardware

Implementation

1. RNN Design & Implementation

2. Efficiency

3. Increasing throughput

4. Optimization of energy

5. Meeting for real time

requirements

6. Flexibility for low power

optimization

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

118

The output yt at time step t is typically computed based

on the current hidden state ht and model parameters. This can

be expressed in Equation (2) as,

𝑦𝑡 = 𝑔(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦) (2)

Where,

 Wyh is a weight matrix connecting the hidden state to the

output.

 The by is a bias vector.

 g is an activation function, which may vary depending on

the task (e.g., softmax for classification, linear activation

for regression).

RNNs are trained using backpropagation through time, an

extension of the backpropagation algorithm adapted for

sequences. BPTT calculates gradients with respect to the

model parameters by unfolding the network through time and

applying the chain rule recursively. RNNs are versatile and

can be applied to various sequential data tasks, including tasks

such as language modeling, sentiment analysis, machine

translation, and named entity recognition benefit from RNNs’

ability to model dependencies in text data.

RNNs are effective in modeling and predicting temporal

patterns in time-series data, making them suitable for

applications like weather forecasting, financial market

analysis, and signal processing. Integrating a Recurrent Neural

Network (RNN) into a System on Chip (SoC) using Verilog,

a hardware description language, involves converting the

computational logic of the RNN into hardware modules that

can be synthesized and implemented on an FPGA or ASIC

within the SoC. Here is an overview of how an RNN can be

implemented in Verilog for SoC applications:

The basic building block of an RNN is the recurrent cell,

which computes the hidden state update at each time step. In

Verilog, you would design modules to represent these cells.

Each cell module would include input ports for the current

input xt, the previous hidden state ht−1, and output ports for

the updated hidden state ht and the current output yt. The

computation within the cell, including the activation functions

and weight matrices, would be implemented using Verilog

logic and arithmetic operators.

The weights and biases of the RNN are essential

parameters that need to be stored in the SoC’s memory or

registers. In Verilog, you would define registers or memory

blocks to hold these parameters, which would be accessible by

the RNN cell modules during computation. Verilog inherently

supports sequential execution, making it suitable for modeling

the iterative nature of RNNs.

The proposed RNN-based DL would use Verilog

constructs like always blocks to define the sequence of

operations within each time step of the RNN. The always

blocks would trigger the computation of the next hidden state

based on the current input and the previous hidden state. While

Verilog is primarily used for hardware description rather than

training neural networks, you could potentially implement

hardware accelerators or co-processors for Backpropagation

Through Time (BPTT) within the SoC.

These hardware modules would compute the gradients

and update the weights of the RNN based on training data. The

Verilog code implementing the RNN would need to be

integrated into the overall SoC architecture, which includes

other components such as processors, memory interfaces, and

peripheral devices. This integration involves connecting the

RNN modules to the SoC’s data and control buses,

configuring memory interfaces to access parameter storage,

and coordinating the execution of RNN computations with

other tasks running on the SoC.

As with any hardware design, verification and testing are

crucial steps in the development process. You would simulate

the Verilog code using tools like ModelSim to ensure correct

functionality and perform hardware-in-the-loop testing on

FPGA prototypes to validate the RNN’s performance in real-

world scenarios. Overall, implementing an RNN in Verilog

for SoC applications requires a solid understanding of both

neural network theory and digital hardware design principles.

It involves translating the mathematical operations of the
RNN into hardware logic while considering factors such as

resource utilization, timing constraints, and integration with

the broader SoC architecture.

4. Functionality of Proposed RNN and other

Peripherals Interface at Sysetm Level
The proposed dynamically reconfigurable multi-

processor core enhances performance by efficiently handling

data and address generation. It employs an AHB to APB

bridge to connect with moderate peripherals I2S and I2C. This

bridge is essential for efficiently transferring audio signals

amongst processors and various audio processing algorithms,

ensuring minimal latency. The PAB bridge optimizes clock
cycles throughout ‘setup’ and ‘access’ circumstances in APB,

aligning the speed of audio and connection elements to reduce

data/packet losses. It achieves this by storing 32-bit packets in

a “Transmit FIFO (Tx-FIFO)” with a minimum depth of 256,

enabling later retrieval by serial peripherals.

This microprocessor, based on the Cortex-based ARM

processor, integrates NoC routers and Security systems are

utilized to connect with all peripherals. Every peripheral

connects to the processor through AXI interconnects and
bridges, which enhance output and reduce latency. The Master

in serial protocols adheres to protocol standards, converting

data into serial bits transferred to GPIO via FPGA PMOD

connectors for interfacing with outer devices. It transmits

serial bits alongside a serial clock, which the slave utilizes as

an input clock to synchronize serial data bits. The slave

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

119

receives these bits, including start and stops bits, converts

them into parallel data, and stores them in the Receiver FIFO

(RX-FIFO) for access by the APB bridge as needed. The

proposed top-level design of an ML-based SVM accelerator

and audio signal transfer from processor to peripheral and its

simulated results are illustrated in Figure 2, incorporates
weights buffers and input/output buffers to buffer data for

subsequent processing efficiently. To reduce off-chip memory

traffic, a professional 3D MP-NOC redistributes output

packets via a multi-banked input buffer rather than sending

them to destination nodes in external memory. Operations of

3D-Multi-processor and SVM with NoC are carried out

independently using various Processing Elements (PEs).

The control module generates overall control signals for

the different modules, which are responsible for transmitting

and controlling streaming data and delivering it to the weight
buffers and multi-banked input for each PE. The I2C Slave

controller core serves as a bridge between an I2C master

device and a microprocessor. It features a customizable FIFO

depth and a measured FIFO. Its standard APB interface allows

seamless integration into any peripheral sub-system or SOC.

Additionally, it provides several status bit flags to Simplify

Software (SW) and IP bring-up processes.

These flags include FIFO Overrun/Underrun, Invalid

register access to configuration/status register space, receiving
a 19.2 MHz standard io_clock clock input, and a serial_clock

(scl) of maximum 5MHz from the I2C master. The I2C slave

supports 7/10-bit addressing and Clock Stretching only in an

open-drain configuration. The I2C slave acts as a bridge

between the microprocessor and the master device, receiving

data from the microprocessor to be sent to the I2C master and

vice versa.

5. Results and Discussion
The primary communication technique employed in this

System on Chip (SoC) is the 3D-Multi-Processor with NoC,

which facilitates all on-chip communications. The design aims

to investigate and execute a prototype of asynchronous MP-

NoCs on Field-Programmable Gate Arrays (FPGAs). The

challenging task involves implementing a system of

asynchronous MP-NoC on customary FPGAs, which

necessitates the development of a readjusting portion in
FPGAs to create design flow. This design represents a

comprehensive and victorious way to start MP-NoC for an

FPGA. During implementation, a 4-phased bundled data

handshake protocol is utilized.

The design of MP-NoC includes two main components:

network adapters along with router. The Open Core Protocol

(OCP) interface joins the cores of the network, while a mesh

topology is employed to create network connections in a small

MP processor, which validates the MP-NoC through

experimental results. Network on Chip (NoC) technology is
gaining traction worldwide for communicating between SoCs.

Table 1. Comparison between proposed and existing in terms of

slices and DSP of RNN

S.

No.

Structure

Details

No. of

Slice LUT

No. of Slice

Registers

No. of DSP

Blocks

01 RNN [8] 1890 1899 16

02 RNN [10] 2100 2150 23

03
Proposed

RNN
1350 1280 12

Furthermore, the replacement of the traditional RNN

architecture with the proposed RNN not only enhances its

performance but also optimizes hardware resources, power

consumption, and cost. In the proposed design, a significant

reduction of 50% in both area and power consumption has

been attained compared to other existing systems, as shown in

Table 1. Moreover, the proposed structure can be further

enhanced by integrating hybrid adders along with shared
LUTs, which find wide applications in cognitive radio

networks and other domains.

This research paper is centered on the modeling of

synchronous Multi-Processors with NoCs on Field-

Programmable Gate Arrays. The main objective is to plan a

synchronous circuit and later deploy it on standard FPGAs.

The process includes creating a trial flow, conducting tests,

and assessing its interpretation of FPGAs. A high-effort MP-

NoC is developed to fulfill the specified requirements and is

subsequently implemented on FPGAs. The use of an MP-NoC

involves circuit connectors, switches, UART, and memory,
which facilitate the primary handshake of MP-NoC in a 4-

stage system.OCP Interface stands out as the best widely used

protocol in this setup. To showcase the current plan in real-

time, a functional topological model is necessary. Planned

MP-NoC is validated on a minimum, versatile processor

model. 3x3 MP-NoC, including its UART protocol, is

architecture, and its Verilog HDL code replication is executed

and verified on the Artix-7 FPGA kit using the Chipscope

software tool.

Fig. 2 Simulated results for audio samples transmission from processor

to peripheral

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

120

The audio signal for the proposed System-on-Chip (SoC)

with RNN applications using the offered technique, aiming to

evaluate the effectiveness and utility of an extended top-level

design of the SoC. The evaluation involves employing high-

precision control signals with enhanced frequency response

and precise filtering operations in the filtration process. To
showcase transmit of data from an origin to a target, we

employ an Integrated Controller (ICON) and Virtual

Input/Output (VIO).

The efficiency of this data transmission is evaluated

through metrics such as latency, Packet Delivery Ratio (PDR)

and hardware resource utilization, including slices, Look-Up

Tables (LUTs), flip flops, and area. Packet generation is

achieved using a Traffic Pattern Generator. The outputs
indicate significant improvements, including a 23%

enhancement in LUTs, 14% in flip-flops, a 31% increase in

throughput, and a 29% reduction in delay.

5.1. Traffic Generator Design MP with MP-DL-SoC

A dedicated traffic generator was developed and deployed

to evaluate functionality, featuring sink signals and traffic

supply. The traffic supply sends pre-defined data packets to
fixed data storage, while the sink signal receives traffic data

and can manage the correct input and output pairing. In a

multi-processor with a NoC design, data packets traverse the

network according to the diagram in Figure 3. Every entry in

ROM data includes data information alongside a handshake

signal that activates the simplest router using a single NOR

gate.

A counter designed for asynchronous operation is clocked
with an acknowledgement signal and features a fixed address

with increased high values within the existing data size. The

fixed data memory is triggered by the request signal without

delay, ensuring proper low-level formatting of the fixed

storage output by gating clock input with a reset signal. A

demultiplexer is used for the output channel, with flit-type

control signals, enabling the sink signal of traffic to obtain

stored data packets for execution.

Fig. 3 Random data transfer from source to destination simulated

results

In FPGA-based processing, incoming data packets are

first stored in ROM. To extract and process this data, the

JTAG cable interface is utilized. ChipScope Pro, a tool that

interfaces via JTAG, is employed for verification. Its GUI-

based, user-friendly interface simplifies debugging and design

verification by allowing easy connection to any port for
monitoring and analysis. The ChipScope tool is utilised to

process and view data captured by cores. In sink design, the

VIO ChipScope core collects data. Data signals are captured

by the core on the falling edge of the request signal. When the

internal storage of the VIO core is full, data is sent to the

ChipScope program. Each signal requiring monitoring in the

plan needs a VIO core. These cores track and archive data

traces for any signal in FPGA during execution.

The design process for Chip Scope VIO core shall be

approached in both ways, which involves gathering

information from the programming environment. The first

approach follows a conventional method, programming the

core along a mechanically synthesized netlist. The second

method involves programming the core using the typical

Verilog HDL technique. However, the Verilog HDL

technique may not be suitable for the suggested plan, as it is a

finalised programming type and does not allow for dynamic

modifications. Therefore, the first technique is preferable for

gathering knowledge for vigorous programming.

In this approach, knowledge shall collected from the

synthesizer using the existing handshake data path. It is

important to note that the handshake signal is not a portion of

the data traffic channel and, thus, does not impact the netlist

synthesizer. In the suggested design of a multiprocessor with

a NoC router, the VIO core and ICON control are integrated.

ICON core oversees peripheral communication between

JTAG, Chipscope software, and optimization planning tools,

streamlining the design process. A clock signal synchronized

with the falling edge of any signal is utilized with an appeal

signal in the VIO core. The requested signal is channelled with

a netlist of corresponding clock signals, as depicted in Figure
4.

Fig. 4 FPGA validation of proposed work using Chipscope pro

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

121

The architectured MP-NOCs router is categorised into

different Verilog entities, among 9 entities, following a

structured approach with four different directions encoded in

the header as “00”, “01”, “10”, and “11” for north, east, south,

and west, respectively. An area chart illustrates various

parameters, listed in Table.1, highlighting 590 latches and
2378 LUTs used to achieve a countering delay of less than

29%. To modify the data content of the ROM, different HDL

data resources are used, achieved through Xilinx and Core

generator from HDL-based techniques. ROM programming is

accomplished using an accessible route lookup table in master

NA. The primary target of the current execution is to illustrate

MP-NoC in asynchronous mode on a customized FPGA.

In comparison to existing work on FPGA executed with

asynchronous systems, typically operating in synchronous

mode, this project is implemented with a general design flow

for asynchronous FPGA executions. Designed Multi-

processor with NoC operates in asynchronous mode,
providing best-effort service. The system comprises two

Network-on-Chip (NoC) Nodes executing in a master-slave

configuration with the router. The routing mechanism is

tailored to meet specific topology and routing needs, utilizing

mesh routing and wormhole techniques. Deadlock resolution

in multi-processor with NoC is achieved through a

combination of two-dimensional XY routing and supply

routing strategies.

In the intended design of a multiprocessor with a

Network-on-Chip (NoC) operating in packet-based switching

for data transfer, packets are uniquely identified using an
infinite number to indicate the beginning with end of data

packets. Additionally, data packets are encoded with extra

handshake signals to facilitate their identification. The OCP

interface is now part of the NAS, acting as the central hub for

network connectivity. Synchronization tasks are managed

through the bi-IP-op synchronizer. Operating at a frequency

of 594.229MHz, the router uses 9% of the 3201 available

LUTs and 542 latches for its components, potentially causing

delays. The miniature multi-processor prototypes designed in

asynchronous Multi-processor with NoC consist of 3 different

CPUs with identical peripheral units arranged in a 3x2 mesh

configuration. To prevent deadlocks depending on data
messages, a dedicated way for request and response modes is

implemented, ensuring infinite deadlock evasion.

While the approach may not completely address higher

strategic delays of FPGA deadlocks, it efficiently utilizes

FPGA’s logical resources. The goal is to utilize the existing

FPGA resources effectively to avoid deadlocks successfully.

Implementing asynchronous MP-NOCs to solve every issue,

including delay matching criteria, is challenging due to FPGA

prototyping techniques and a lack of supportive tools. To

minimize delay in FPGA circuits, a different data way for data

transmission is used.

This approach achieves relatively low detain to meet the

criteria of the MP-NoC, measuring down data packet path with

macros and design primitives. Despite challenges with

deadlock avoidance tools, the design optimizes operations in

real-time. For the complete design of Mp-NoC circuits,

alternative LUT mapping should be considered to address all
design issues effectively. Channel routing algorithms are

utilized to determine the optimal path among interconnected

sub-modules within an architectural framework, considering

their spatial arrangement. Research has demonstrated that

such algorithms significantly enhance Network-on-Chip

(NoC) efficiency and stability, particularly in mitigating

network congestion.

6. Conclusion
The machine learning-based Support Vector Machine

(SVM) represents the cutting edge in classification accuracy

for packets received from multiple processors to various

peripherals. It achieves this high accuracy while minimizing

computational complexity. Using MP and accelerator to

implement the ML-based SVM, we planned and evolved a

system through greater-level synthesis in Vivado Design Suite

2018. We evaluated its efficiency based on throughput,

latency and power consumption, comparing it with the current

state-of-the-art.

Our results demonstrate that the HLS-based

implementation is superior in performance, being 23.4 times

faster than a General Purpose Processor (GPP)-based design

and 12.6 times faster than a Graphics Processing Unit (GPU).

The suggested multiprocessor, integrated with various high-

speed protocols in a block-level hardware configuration

containing AXI interconnects and a Zynq processor was

targeted to the Zynq-7000 evolvement FPGA board. It was

then connected with the SDK environment, and the entire

design and functionality were examined and verified through

software programming.

The outcomes from our design show that the standard
loop accelerator generated could efficiently compute complex

machine learning classifiers with highly huge amounts of data.

The implemented plan is capable of measuring the architecture

of other PEs that is part of the 3D-NoC.

Our designed hybrid MP-NoC, depending on application-

aware design for big data loads and transmission, is highly

beneficial in enhancing energy efficiency and service quality

across magnificent heterogeneous application loads. To aid in

the selection of an efficient MP-NoC, we present a hybrid MP-

NoC consisting of a specific MP-NoC, a buffered MP-NoC,

and an application-aware technique in this research work.

This procedure significantly increases system efficiency.

Additionally, we built a unique hybrid MP-NoC congestion

optimization approach. By reallocating packets in congested

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

122

nodes and verifying the performance of different MP-NoCs’

congestion, this approach can significantly enhance the

overall system’s energy efficiency. The area and power used

by router buffers in NoC are major concerns in the submicron

domain. The performance of synthetic traffic situations can be

assessed utilising a flit-level, cycle-accurate network

simulator. Our computational outputs illustrate that the

designed routing algorithm maximizes power consumption by

19%, average latency by 24%, and area overhead by 47%

compared to other conventional algorithms.

References
[1] Rakesh Pandey, and Aryabartta Sahu, “Performance and Area Trade-Off of 3D-Stacked DRAM Based Chip Multiprocessor with Hybrid

Interconnect,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 1945-1959, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Makoto Nagata, Takuji Miki, and Noriyuki Miura, “Physical Attack Protection Techniques for IC Chip Level Hardware Security,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 1, pp. 5-14, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[3] Dipika Deb, Rohith M.K., and John Jose, “Flit Zip: Effective Packet Compression for NoC in MultiProcessor System-on-Chip,” IEEE

Transactions on Parallel and Distributed Systems, vol. 33, no. 1, pp. 117-128, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Hayate Okuhara et al., “A Fully Integrated 5-mW, 0.8-Gbps Energy-Efficient Chip-to-Chip Data Link for Ultralow-Power IoT End-Nodes

in 65-nm CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 10, pp. 1800-1811, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Tom B. Herbert et al., “An Active Bandpass Filter for LTE/WLAN Applications Using Robust Active Inductors in Gallium Nitride,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2252-2256, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[6] Biswajit Bhowmik et al., “AI Technology for NoC Performance Evaluation,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 68, no. 12, pp. 3483-3487, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Joshua Mack et al., “Performant, Multi-Objective Scheduling of Highly Interleaved Task Graphs on Heterogeneous System on Chip

Devices,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148-2162, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Kewen Zhu et al., “An RF On-Chip Transformer with Fe3O4/GO Nanocomposite Film,” IEEE Transactions on Magnetics, vol. 57, no.

2, pp. 1-5, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[9] R. Spiwoks et al., “CentOS Linux for the ATLAS MUCTPI Upgrade,” IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 2127-

2131, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Richard Fenster, and Sébastien Le Beux, “RELAX: A Reconfigurable Approximate Network-on-Chip,” 2021 IEEE 14th International

Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Singapore, pp. 381-387, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[11] Arup Ray, Arijit De, and Tarun Kanti Bhattacharyya, “A Package-Cognizant CMOS On-Chip Antenna for 2.4 GHz Free-Space and

Implantable Applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 11, pp. 7355-7363, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[12] Hannes Radner et al., “Field-Programmable System-on-Chip-Based Control System for Real-Time Distortion Correction in Optical

Imaging,” IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3370-3379, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Abhijit Das, John Jose, and Prabhat Mishra, “Data Criticality in Multithreaded Applications: An Insight for Many-Core Systems,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 9, pp. 1675-1679, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[14] Goeun Kim et al., “Impact of System-in-Package in Side-by-Side Discrete SoC-DRAM Configurations on SI, PI and Thermal

Performance,” 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, pp. 1805-1811, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[15] Zhe Jiang et al., “Brief Industry Paper: AXI-InterconnectRT: Towards a Real-Time AXI-Interconnect for System-on-Chips,” 2021 IEEE

27th Real-Time and Embedded Technology and Applications Symposium (RTAS), Nashville, TN, USA, 2021, pp. 437-440. [CrossRef]

[Google Scholar] [Publisher Link]

[16] Sergey A. Chusov et al., “Configurable Test Environment for RTL Simulation and Performance Evaluation of Network on Chip as Part

of SoC,” 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg,

Moscow, Russia, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[17] C. Sapna Kumari et al., “Performance Analysis of Cloud-based Health Care Data Privacy System Using Hybrid Techniques,” International

Journal of Biology and Biomedical Engineering, vol. 16, pp. 46-63, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TETC.2019.2946887
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+and+Area+Trade-Off+of+3D-Stacked+DRAM+Based+Chip+Multiprocessor+with+Hybrid+Interconnect&btnG=
https://ieeexplore.ieee.org/abstract/document/8865144
https://doi.org/10.1109/TVLSI.2021.3073946
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Physical+Attack+Protection+Techniques+for+IC+Chip+Level+Hardware+Security&btnG=
https://ieeexplore.ieee.org/abstract/document/9424027
https://ieeexplore.ieee.org/abstract/document/9424027
https://doi.org/10.1109/TPDS.2021.3090315
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FlitZip%3A+Effective+Packet+Compression+for+NoC+in+MultiProcessor+System-on-Chip&btnG=
https://ieeexplore.ieee.org/abstract/document/9459512
https://doi.org/10.1109/TVLSI.2021.3108806
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fully+Integrated+5-mW%2C+0.8-Gbps+Energy-Efficient+Chip-to-Chip+Data+Link+for+Ultralow-Power+IoT+End-Nodes+in+65-nm+CMOS&btnG=
https://ieeexplore.ieee.org/abstract/document/9537900
https://doi.org/10.1109/TCSII.2021.3054739
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Active+Bandpass+Filter+for+LTE%2FWLAN+Applications+Using+Robust+Active+Inductors+in+Gallium+Nitride&btnG=
https://ieeexplore.ieee.org/abstract/document/9345382
https://ieeexplore.ieee.org/abstract/document/9345382
https://doi.org/10.1109/TCSII.2021.3124297
https://scholar.google.com/scholar?q=AI+Technology+for+NoC+Performance+Evaluation&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/9596597/
https://doi.org/10.1109/TPDS.2021.3135876
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performant%2C+Multi-Objective+Scheduling+of+Highly+Interleaved+Task+Graphs+on+Heterogeneous+System+on+Chip+Devices&btnG=
https://ieeexplore.ieee.org/abstract/document/9653796/
https://doi.org/10.1109/TMAG.2020.3037839
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+RF+On-Chip+Transformer+With+Fe3O4%2FGO+Nanocomposite+Film&btnG=
https://ieeexplore.ieee.org/abstract/document/9257391/
https://doi.org/%2010.1109/TNS.2021.3084246
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CentOS+Linux+for+the+ATLAS+MUCTPI+Upgrade&btnG=
https://ieeexplore.ieee.org/abstract/document/9442756/
https://doi.org/10.1109/MCSoC51149.2021.00063j
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RELAX%3A+a+REconfigurabLe+Approximate+Network-on-Chip&btnG=
https://ieeexplore.ieee.org/abstract/document/9691984
https://doi.org/10.1109/TAP.2021.3076555
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Package-Cognizant+CMOS+On-Chip+Antenna+for+2.4+GHz+Free-Space+and+Implantable+Applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Package-Cognizant+CMOS+On-Chip+Antenna+for+2.4+GHz+Free-Space+and+Implantable+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9424458
https://doi.org/10.1109/TIE.2020.2979557
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Field-Programmable+System-on-Chip-Based+Control+System+for+Real-Time+Distortion+Correction+in+Optical+Imaging&btnG=
https://ieeexplore.ieee.org/abstract/document/9037191
https://ieeexplore.ieee.org/abstract/document/9037191
https://doi.org/10.1109/TVLSI.2021.3092218
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Criticality+in+Multithreaded+Applications%3A+An+Insight+for+Many-Core+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/9481340
https://ieeexplore.ieee.org/abstract/document/9481340
https://doi.org/10.1109/ECTC32696.2021.00285
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Impact+of+System-in-Package+in+side-by-side+discrete+SoC-DRAM+configurations+on+SI%2C+PI+and+thermal+performance&btnG=
https://ieeexplore.ieee.org/abstract/document/9501890
https://doi.org/10.1109/RTAS52030.2021.00046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Brief+Industry+Paper%3A+AXI-InterconnectRT%3A+Towards+a+Real-Time+AXI-Interconnect+for+System-on-Chips&btnG=
https://ieeexplore.ieee.org/abstract/document/9470482
https://doi.org/10.1109/ElConRus51938.2021.9396634
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Configurable+Test+Environment+for+RTL+Simulation+and+Performance+Evaluation+of+Network+on+Chip+as+Part+of+SoC&btnG=
https://ieeexplore.ieee.org/abstract/document/9396634
https://doi.org/10.46300/91011.2022.16.7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Analysis+of+Cloud-based+Health+Care+Data+Privacy+System+Using+Hybrid+Techniques&btnG=
https://npublications.com/journals/articles.php?id=126

B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024

123

[18] P. Loktongbam et al., “Design of a Wide Band Antenna with Defected Ground Structure for mm-Wave System on Chip

Applications,” Microsystem Technologies, vol. 28, pp. 2487-2497, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Le-Le Li et al., “SOCA-DOM: A Mobile System-on-Chip Array System for Analyzing Big Data on the Move,” Journal of Computer

Science and Technology, vol. 37, pp. 1271-1289, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[20] Sujin Cho, Sumi Lee, and Song Ih Ahn, “Design and Engineering of Organ-on-a-Chip,” Biomedical Engineering Letters, vol. 13, pp. 97-

109, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[21] Amitesh Singh Rajput, and Balasubramanian Raman, “Example Based Privacy-Preserving Video Color Grading,” Handbook of

Multimedia Information Security: Techniques and Applications, pp 63-87, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[22] Nasir N. Hurrah, Shabir A. Parah, and Javaid A. Sheikh, “A Secure Medical Image Watermarking Technique for E-Healthcare

Applications,” Handbook of Multimedia Information Security: Techniques and Applications, pp. 119-141, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[23] Cong Ma et al., “Design and Evaluation of an FPGA-ADC Prototype for the PET Detector Based on LYSO Crystals and SiPM Arrays,”

IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 6, no. 1, pp. 33-41, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[24] Asokan Bakhirathan, Raveendar Giridhar, and Gangadhara Kiran Kumar Lachireddi, “Heat Transfer Enhancement for On-Chip Cooling

Application Using Novel Composite Heat Sink-Comparative Numerical Study,” IEEE Transactions on Components, Packaging and

Manufacturing Technology, vol. 11, no. 8, pp. 1197-1205, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s00542-022-05357-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+a+wide+band+antenna+with+defected+ground+structure+for+mm-wave+system+on+chip+applications&btnG=
https://link.springer.com/article/10.1007/s00542-022-05357-x
https://doi.org/10.1007/s11390-022-1087-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SOCA-DOM%3A+A+Mobile+System-on-Chip+Array+System+for+Analyzing+Big+Data+on+the+Move&btnG=
https://link.springer.com/article/10.1007/s11390-022-1087-z
https://doi.org/10.1007/s13534-022-00258-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+engineering+of+organ-on-a-chip&btnG=
https://link.springer.com/article/10.1007/s13534-022-00258-4
https://doi.org/10.1007/978-3-030-15887-3_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Example+Based+Privacy-Preserving+Video+Color+Grading&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-15887-3_4
https://doi.org/10.1007/978-3-030-15887-3_6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Secure+Medical+Image+Watermarking+Technique+for+E-Healthcare+Applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Secure+Medical+Image+Watermarking+Technique+for+E-Healthcare+Applications&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-15887-3_6
https://doi.org/10.1109/TRPMS.2021.3062362
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+Evaluation+of+an+FPGA-ADC+Prototype+for+the+PET+Detector+Based+on+LYSO+Crystals+and+SiPM+Arrays&btnG=
https://ieeexplore.ieee.org/abstract/document/9364276
https://ieeexplore.ieee.org/abstract/document/9364276
https://doi.org/10.1109/TCPMT.2021.3086184
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heat+Transfer+Enhancement+for+On-Chip+Cooling+Application+Using+Novel+Composite+Heat+Sink%E2%80%94Comparative+Numerical+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/9446839

