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Abstract - Machine Learning (ML) techniques have become pivotal in the realms of customized integrated circuits are essential 
components in modern electronics, with two prominent types being ASICs and FPGAs, particularly in applications such as 

driverless vehicles, automotive electronics and big data analysis, where speed, power efficiency, and accuracy are paramount. 

This paper acknowledges a novel reconstructed hardware architecture at the SOC system level, including M33 processor and 

security to transfer steaming packets between processor and peripherals to meet the demands of modern ASIC and FPGA 

designs, offering high accuracy, low power consumption and increased throughput. The proposed system integrates an ML-

based Support Vector Machine (SVM) with a fast-moving Advanced High-performance Bus (AHB) protocol, Floating Point (FP) 

operations, and support for I2C and I2S communication protocols. To enhance throughput and minimize latency, an AHB 

protocol and AHB to Advanced Peripheral Bus (APB) bridge have been implemented along with security algorithms, including 

SHA-256 and AES that are integrated into the vigorously reconstructed multi-processor. For Deep Learning (DL) - Recurrent 

Neural Networks (RNNs) based utilities, the system incorporates “Double-Precision Floating-Point (DPFP)” arithmetic 

operations. Design is implemented in Verilog HDL, which undergoes quality checks using the LINT tool and “Clock Domain 
Crossing (CDC)” analysis using Spyglass. Synthesis is carried out using a DC compiler for ASIC and Vivado Design Suite 2018 

for FPGA execution and examination. The design architecture is connected with the SDK tool and Zynq processor to analyse 

data transmitted between software along hardware. Experimental outputs demonstrate that the custom accelerator can 

efficiently compute difficult ML classifiers for large datasets. Compared to state-of-the-art results, the proposed architecture 

offers a 24% improvement in outturn, a 27% scaling down in power consumption, and a 32% decrease in latency. 

Keywords - AHB, APB, SVM, I2C, I2S, RNN, DPFP, SoC. 

1. Introduction 
CNNs are widely used in image and video processing 

tasks due to their ability to capture spatial hierarchies in data. 

They are efficient in terms of both computation and memory 

usage, making them suitable for deployment on resource-

constrained platforms like SoCs.  RNNs are used for 

sequential data processing tasks such as speech recognition, 

natural language processing, and time-series analysis. They 

have applications in SoCs for tasks like audio and sensor data 

processing. Neuromorphic computing architectures mimic the 

structure and function of the human brain, offering potential 

advantages in terms of energy efficiency and real-time 
processing. These architectures are being explored for SoC 

implementations of DL algorithms. When selecting a DL 

algorithm for SoC applications in VLSI, it is essential to 

consider factors such as computational efficiency, memory 

usage, power consumption, and the specific requirements of 

the target application. Additionally, algorithmic optimizations 

and hardware accelerators can be combined to achieve the 

desired balance between performance and resource utilization 

[1]. 

On-chip communication networks can greatly benefit 

from executing Multi-processor with “Network-on-Chip 

(NoC)” routing. This study proposes a method that 

demonstrates significant reductions in energy consumption by 

minimizing input/output buffers, all while maintaining 

performance levels comparable to algorithms employing 

buffered routing methods. This approach is particularly 

suitable for real-world applications with low traffic volumes. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Reducing the complexity of buffer allocation and management 

techniques in multi-processors with NoC routing can enhance 

router performance and decrease router latency. This method 

simplifies router design, making it an attractive option for 

interconnection networks aimed at consistently achieving 

reduced peak throughput. However, it is essential to note that 
reduced buffer network designs lack several functionalities 

found in buffered networks, such as “Quality of Service 

(QoS)”, support for different traffic classes, and management 

of energy, congestion, and faults [2]. 

This study focuses on integrating support for buffer-less 

routing algorithms into the design. Currently, Artificial 

Intelligence (AI) is playing an increasingly significant role in 

various applications, with Machine Learning (ML) being a 

key sub-system. These technologies are particularly effective 

in handling big data sets, using predictive systems to identify 

patterns and make decisions based on data analysis. 

Analogized to systems using all-around CPUs or GPUs for big 
data analysis, reconfigurable hardware offers significant speed 

advantages. Reconfigurable hardware allows for adapting 

hardware architecture to specific attributes of real-world 

problems, resulting in performance levels that surpass 

software-based solutions while holding an increased degree of 

pliability compared to traditional hardware implementations 

[3].  

“Field-Programmable Gate Arrays (FPGAs)” stand out as 

a leading type of reconfigurable hardware device due to their 

adaptability, high-speed hardware timing, reliability, and 

parallel processing capabilities. These integrated circuits, 
known as FPGAs, contain programmable logic blocks that 

offer a range of benefits. Some FPGA families even allow for 

the reconfiguration of part of the chip while other portions 

remain operational, a feature widely utilized in accelerated 

computing. Their programmable nature makes FPGAs a 

versatile solution across various markets, particularly in the 

field of human conduct recognition. One key lead of FPGAs 

is their ability to respond quickly and save bandwidth by 

completing computing tasks promptly.  

Ensemble methods are often used to build a group of 

classifiers, which enhance the classification of new data by 

considering the predictions of individual classifiers. This 
approach is known to outperform single classifiers and is 

effective in combining less correct classifiers to create highly 

errorless ones.  

Human task recognition, a growing research area, 

involves detecting current activities using sensor data from 

accelerometers or wearable sensors. This technology is cost-

effective, energy-efficient, and widely accessible, thanks to 

advancements in sensors and machine learning. Applications 

of human activity recognition include healthcare, eldercare, 

safe driving behaviour recognition, and military activity 

detection [4]. 

The need for accurate classification of human behaviour, 

along with reduced execution time and power consumption, is 

crucial in these application domains. Designing feature 

extraction and learning algorithms carefully is essential for 

achieving suitable reaction times. However, the complexity of 

executing these algorithms, along with the need for receivable 
differentiation rates, poses a challenging device problem in 

embedded systems. In the context of Network-on-Chip (NoC) 

architecture, the performance and efficiency of routers play a 

critical role.  

This study proposes the utility of “Reduced Deflection 

Chipper (ReDC)” for error less deflection routers, employing 

double Programmable Data Networks (PDNs) with identical 

inputs but different initialization. This design aims to 

maximize output port efficiency, resulting in reduced flit 

deflection rates and improved overall performance compared 

to state-of-the-art buffer-less deflection routers. To address 

complexity issues and improve classification speed while 
maintaining low power consumption, it proposed to execute 

and validate a hardware design [5]. This design will leverage 

an FPGA-based, run-time reconfigurable architecture to ease 

the vigorous deployment of multiple accelerator cores [6]. The 

pivotal objectives of this paper shall divided into three distinct 

goals: 

 Develop an FPGA-based architecture capable of 

supporting dynamically reconfigurable accelerator cores. 

 Evaluate the scalability of the FPGA-based architecture 

to accommodate a large number of vigorously 

reconstructible accelerator cores. 
 Facilitates hardware reconfigurability with parallelism of 

an FPGA to enhance distinguished speed performance 

analysed to traditional classifiers executing on usual-

purpose CPUs. 

“Support Vector Machines (SVM)”are used in this 

context to quest for hyperplane, which effectively classifies 

data points in N-dimensional space, where N stands for a 

number of features. Data points situated on opposite sides of 

the hyperplane shall be classified into distinct categories by 

utilizing judgemental boundaries. Support vectors are data 

points situated nearer to the hyperplane, impact position and 

orientation of the hyperplane.  

The target is to find a plane that increases the boundary, 

which is the distance between data points of different classes. 

This enhances the accuracy of classifying future data points. 

Classifiers evaluated are implemented based on prior 

published work. The KNN method was tested with various 

neighbor counts, with the best outcome observed.  

When the number of neighbors was set to 18, with equal 

weight given to each neighbor, a random forest ensemble 

approach was also employed in addition to the “Decision Tree 

Classifier (DTC)”. The random forest consisted of 70 DTCs, 



B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024 

 

115 

with the class receiving the most votes becoming the 

prediction of the model. Notably, each tree in a random forest 

predicted a different class [7]. The Keras library was used to 

construct a Multilayer Perceptron (MLP) with three hidden 

layers. The Convolutional Neural Network (CNN) designed 

for a Network-on-Chip (NoC) application consists of three 
sets of maximum pooling layers, three convolutional layers, 

and a fully connected layer preceding the output layer.  

According to a previous study, Moore’s Law has largely 

slowed down. While this may be a topic of debate, it is 

undeniable that all technologies inevitably reach a point of 

saturation. The growth in CPU performance and efficiency 

follows Moore’s Law. To further enhance computer hardware 

performance and efficiency, alternative architectures like 

domain-specific hardware accelerators have emerged.  

These accelerators utilize data specialization, parallelism, 

optimized local memory, and reduced overhead to improve 

performance and efficiency. By applying specialized 
reasoning to domain-specific data, performance and efficiency 

can be significantly enhanced, particularly in high-parallelism 

scenarios [10]. 

2. Literature Survey 
With the rapid advancements in cloud computing and the 

Internet of Things (IoT), there is a growing need for high-
performance and power-efficient designs to handle enormous 

amounts of data. Recent developments have focused on the 

fundamentals, but there is a performance gap in processing 

speed and the volume of data. Multi-processors with Network 

on Chip (NoC) have been proposed to address these 

challenges, utilizing packet-switched fabric for on-chip 

communication. This approach is crucial for various 

applications requiring energy-efficient systems and significant 

congestion reduction [11].  

In this proposed work, a hybrid MP-NoC framework is 

designed, combining bufferless and buffered NoCs. This 

framework is tailored to specific applications and their 
performance demands, using trace-driven simulators to 

generate data similar to big data applications. Compared to 

traditional buffered Multi-processors with NoC, the proposed 

hybrid approach shows a substantial performance 

enhancement of up to seventeen percent on average and 

twenty-four percent at most in mixed applications. It also 

improves fairness by over thirteen percent and reduces power 

consumption by thirty-eight percent [12].  

The design also addresses power and area issues in on-

chip networks, using a MaS-based buffer-less Multi-processor 

with NoC for delivery without huge buffering essentials. This 
approach, compared to BLESS-Worm, reduces buffering 

needs at the receiver end by up to eighty percent. Simulation 

results demonstrate that MaS outperforms BLESS-Worm in 

power consumption reduction by nine percent, average packet 

latency by ten percent, and requiring fewer buffer resources 

[13]. 

To improve on-chip communication, utility photonic 

waveguides are suggested, leveraging nanophotonic 

technology to combine high-radix MP-NOC waveguides for 
higher output.  The proposed Bufferless Photonic ClOs 

Network (BLOCON) maximizes the composition of silicon 

photonics. Additionally, fault tolerance mechanisms like 

FTDR-H and FTDR routers are proposed, reducing chip area 

consumption by twenty-seven percent in an 8x8 network and 

achieving higher throughput compared to existing algorithms 

under synthetic workload conditions [14].  

In conclusion, the proposed approaches offer significant 

advancements in on-chip communication, power efficiency, 

and fault tolerance for multi-processor systems with NoCs, 

addressing key challenges in handling big data and improving 

overall system performance. More complex DL models 
usually require large amounts of memory and processing 

power, especially when working with State-of-the-Art 

(SOTA) models. As a result, many apps that use these models 

turn to cloud computing services, including Google 

Colaboratory, which is a free service [15]. AWS DL AMIs and 

Microsoft’s MLOps service are also well-liked substitutes that 

expedite the training, deployment, and management of DL 

projects on Azure-like platforms. Nevertheless, using a cloud 

computing solution has several significant disadvantages. 

Many computational processes are managed in the cloud 

under the standard cloud computing paradigm, which may 
cause network congestion and unacceptably long delays in 

real-time situations [16]. 

Edge computing-related DL applications are common in 

many areas, such as smart multimedia, smart transportation, 

smart cities, and smart industries. When creating a DL 

architecture for a particular activity, it is important to take into 

account the limitations and restrictions that come with moving 

from cloud computing to edge computing [17]. These 

restrictions result from the intrinsic computational limitations 

of edge computing, especially when using low-power 

embedded devices with limited resources.  

Two popular strategies are usually used to tackle this 
problem:  

1) Using various compression techniques on pre-existing 

DL models, and  

2) Optimizing the architecture right from the design phase.  

In the first method, one or more compression methods 

must be used in order to execute a DL model on embedded 

devices. Examples of frequently utilized compression [18]. 

The methods include binarization, network distillation, neural 

network pruning, and quantization of model parameters [19].  



B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024 

 

116 

The second strategy, on the other hand, aims to create an 

optimal architecture that eliminates the need for compression 

techniques after training. Notably, designs such as 

SqueezeNet, which achieve a limited number of parameters 

with negligible influence on accuracy, have made noteworthy 

contributions in this direction [20]. It is important to note that 
inference tasks which require far less processing power than 

training are the main applications for embedded devices. 

General-purpose microcontrollers are among these embedded 

devices, and they have been shown to be effective in a variety 

of industries, including Internet of Things applications [21].  

Over the past ten years, the industry has seen a 

tremendous influx of specialized hardware devices that have 

made dealing with computational limits easier. In the context 

of DL, these hardware components also known as hardware 

accelerators consist of specialized and optimized hardware 

architectures designed to minimize system costs and power 

consumption while optimizing performance. Tensor 
Processing Units (TPUs) from Google, FPGAs, GPUs, and 

ASICs are a few examples of this type of hardware accelerator 

[22].  

DL applications demand embedded systems to have a 

high processing capability to accomplish tasks in real-time 

and enough memory to store model data and parameters [23]. 

SoC devices are a promising option that combines a multitude 

of peripheral devices that are required for the complex 

requirements of DL applications with powerful computing 

capabilities. Leading producers such as Texas Instruments, 

Qualcomm, STM, and Samsung are creating AI-integrated 
circuits for edge computing [24]. 

3. Materials and Methods Proposed Sub-System 

Level Re-Configurable Architecture with RNN 

and Security Algorithms 
The outright suggested design, as illustrated in Figure 1, 

features a Zynq software core processor coupled with a co-

processor serving as a required accelerator. To facilitate 

constant observation and connection with the processor’s 

stream, an instruction cache is used to turn Zynq on/off. In the 
suggested architecture, the cache is internally located within 

the Zynq, making direct connection access impossible. As a 

result, the processor fetches data directly from cache memory 

through instruction, rendering the relocation technique non-

applicable.  

To address this, data is stored in external memory, 

allowing the Zynq processor to approach and disable it as 

needed. Additionally, the customized accelerator in this 

architecture can access external cache memory instead of the 

internally placed BRAM memory. To enhance accessibility 

between the accelerator and DDR memory, a high-speed, 
small-sized cache IP is added, establishing direct interfaces 

between them. This setup enables efficient data access for 

specific addresses between DDR and the accelerator. The 

architecture also features an extra AHB, incorporating a 

counter and timer, which interfaces with the Zynq and 

peripherals to facilitate data transfer.  

The AHB connects to the host interface for direct data 

communication, providing benefits like burst length support, 
power efficiency, low latency, system-level cache access, and 

support for unaligned byte strobes and addresses. During 

initialization, the boot image code is stored in SRAM with the 

use of software and DMA. After completing the SHA 

execution, the software retrieves the SHA HASH output via 

the APB interface and saves the resulting SHA hash value 

public key into memory.  

Encryption keys, which are stored in plaintext as a “One-

Time Programmable (OTP)” feature, are managed by 

hardware. These OTP keys undergo encryption using AES, 

and the encrypted keys are then reserved in flash memory. 

When needed, reserved keys are fetched from flash memory 
using the APB protocol and made available to AES and SHA 

for key exchange and decryption purposes. 

The article is organized as shown in Figure 1, beginning 

with an examination of the goals and difficulties associated 

with putting RNN models into practice on embedded systems. 

After that, an extensive model for RNN applications is 

outlined, and several changes for the recurrent layers in RNN 

models are discussed. Nevertheless, there are many obstacles 

in the way of effectively executing RNN models in their 

original form on embedded devices.  

Thus, scientists have turned to optimizations that aim to 
improve both the underlying platform and the RNN model. 

Along with platform-specific optimizations targeted at 

improving the hardware platform’s performance, the 

optimizations done to the RNN model, referred to as 

algorithmic optimizations, are analysed and discussed. After 

that, a review of RNN hardware implementations suggested in 

the literature is given. The performances attained by these 

implementations, together with the implemented 

optimizations, are examined closely. 

3.1. RNN for SoC’s Applications 

Recurrent Neural Networks (RNNs) are a type of artificial 

neural network designed to handle sequential data. Unlike 
feedforward neural networks, which process each input 

independently, RNNs maintain a hidden state that captures 

information about previous inputs in the sequence. This 

recurrent nature enables RNNs to exhibit dynamic temporal 

behavior and process sequences of varying lengths.  

The defining characteristic of RNNs is the presence of 

recurrent connections that allow information to persist over 

time. At each time step ‘t’, the network receives an input xt 

and produces an output yt while also updating its hidden state 
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ht. The hidden state ht serves as a memory that encapsulates 

information from previous time steps and influences the 

current output. The hidden state ht at time step t is computed 

based on the current input xt and the previous hidden state 

ht−1, along with model parameters (weights and biases). This 

update equation can be formulated in Equation (1) as, 

ℎ𝑡 = 𝑓(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏𝑛) (1) 

Where,  

 Whx and Whh are weight matrices governing the 

transformations of the input and hidden state, 

respectively. 

 bh is a bias vector. 

 f is an activation function, commonly a non-linear 
function like the hyperbolic tangent (tanhtanh) or 

Rectified Linear Unit (ReLU). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed top-level architecture of RNN models and SoC for ASIC & FPGA 
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The output yt at time step t is typically computed based 

on the current hidden state ht and model parameters. This can 

be expressed in Equation (2) as, 

𝑦𝑡 = 𝑔(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦) (2) 

Where, 

 Wyh is a weight matrix connecting the hidden state to the 

output. 

 The by is a bias vector. 

 g is an activation function, which may vary depending on 

the task (e.g., softmax for classification, linear activation 

for regression). 

RNNs are trained using backpropagation through time, an 

extension of the backpropagation algorithm adapted for 

sequences. BPTT calculates gradients with respect to the 

model parameters by unfolding the network through time and 

applying the chain rule recursively. RNNs are versatile and 

can be applied to various sequential data tasks, including tasks 

such as language modeling, sentiment analysis, machine 

translation, and named entity recognition benefit from RNNs’ 

ability to model dependencies in text data.  

RNNs are effective in modeling and predicting temporal 

patterns in time-series data, making them suitable for 

applications like weather forecasting, financial market 

analysis, and signal processing. Integrating a Recurrent Neural 

Network (RNN) into a System on Chip (SoC) using Verilog, 

a hardware description language, involves converting the 

computational logic of the RNN into hardware modules that 

can be synthesized and implemented on an FPGA or ASIC 

within the SoC. Here is an overview of how an RNN can be 

implemented in Verilog for SoC applications: 

The basic building block of an RNN is the recurrent cell, 

which computes the hidden state update at each time step. In 

Verilog, you would design modules to represent these cells. 

Each cell module would include input ports for the current 

input xt, the previous hidden state ht−1, and output ports for 

the updated hidden state ht and the current output yt. The 

computation within the cell, including the activation functions 

and weight matrices, would be implemented using Verilog 

logic and arithmetic operators.  

The weights and biases of the RNN are essential 

parameters that need to be stored in the SoC’s memory or 

registers. In Verilog, you would define registers or memory 

blocks to hold these parameters, which would be accessible by 

the RNN cell modules during computation. Verilog inherently 

supports sequential execution, making it suitable for modeling 

the iterative nature of RNNs.  

The proposed RNN-based DL would use Verilog 

constructs like always blocks to define the sequence of 

operations within each time step of the RNN. The always 

blocks would trigger the computation of the next hidden state 

based on the current input and the previous hidden state. While 

Verilog is primarily used for hardware description rather than 

training neural networks, you could potentially implement 

hardware accelerators or co-processors for Backpropagation 

Through Time (BPTT) within the SoC.  

These hardware modules would compute the gradients 

and update the weights of the RNN based on training data. The 

Verilog code implementing the RNN would need to be 

integrated into the overall SoC architecture, which includes 

other components such as processors, memory interfaces, and 

peripheral devices. This integration involves connecting the 

RNN modules to the SoC’s data and control buses, 

configuring memory interfaces to access parameter storage, 

and coordinating the execution of RNN computations with 

other tasks running on the SoC.  

As with any hardware design, verification and testing are 

crucial steps in the development process. You would simulate 

the Verilog code using tools like ModelSim to ensure correct 

functionality and perform hardware-in-the-loop testing on 

FPGA prototypes to validate the RNN’s performance in real-

world scenarios. Overall, implementing an RNN in Verilog 

for SoC applications requires a solid understanding of both 

neural network theory and digital hardware design principles. 

It involves translating the mathematical operations of the 
RNN into hardware logic while considering factors such as 

resource utilization, timing constraints, and integration with 

the broader SoC architecture. 

4. Functionality of Proposed RNN and other 

Peripherals Interface at Sysetm Level 
The proposed dynamically reconfigurable multi-

processor core enhances performance by efficiently handling 

data and address generation. It employs an AHB to APB 

bridge to connect with moderate peripherals I2S and I2C. This 

bridge is essential for efficiently transferring audio signals 

amongst processors and various audio processing algorithms, 

ensuring minimal latency. The PAB bridge optimizes clock 
cycles throughout ‘setup’ and ‘access’ circumstances in APB, 

aligning the speed of audio and connection elements to reduce 

data/packet losses. It achieves this by storing 32-bit packets in 

a “Transmit FIFO (Tx-FIFO)” with a minimum depth of 256, 

enabling later retrieval by serial peripherals.  

This microprocessor, based on the Cortex-based ARM 

processor, integrates NoC routers and Security systems are 

utilized to connect with all peripherals. Every peripheral 

connects to the processor through AXI interconnects and 
bridges, which enhance output and reduce latency. The Master 

in serial protocols adheres to protocol standards, converting 

data into serial bits transferred to GPIO via FPGA PMOD 

connectors for interfacing with outer devices. It transmits 

serial bits alongside a serial clock, which the slave utilizes as 

an input clock to synchronize serial data bits. The slave 
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receives these bits, including start and stops bits, converts 

them into parallel data, and stores them in the Receiver FIFO 

(RX-FIFO) for access by the APB bridge as needed. The 

proposed top-level design of an ML-based SVM accelerator 

and audio signal transfer from processor to peripheral and its 

simulated results are illustrated in Figure 2, incorporates 
weights buffers and input/output buffers to buffer data for 

subsequent processing efficiently. To reduce off-chip memory 

traffic, a professional 3D MP-NOC redistributes output 

packets via a multi-banked input buffer rather than sending 

them to destination nodes in external memory. Operations of 

3D-Multi-processor and SVM with NoC are carried out 

independently using various Processing Elements (PEs).  

The control module generates overall control signals for 

the different modules, which are responsible for transmitting 

and controlling streaming data and delivering it to the weight 
buffers and multi-banked input for each PE. The I2C Slave 

controller core serves as a bridge between an I2C master 

device and a microprocessor. It features a customizable FIFO 

depth and a measured FIFO. Its standard APB interface allows 

seamless integration into any peripheral sub-system or SOC. 

Additionally, it provides several status bit flags to Simplify 

Software (SW) and IP bring-up processes.  

These flags include FIFO Overrun/Underrun, Invalid 

register access to configuration/status register space, receiving 
a 19.2 MHz standard io_clock clock input, and a serial_clock 

(scl) of maximum 5MHz from the I2C master. The I2C slave 

supports 7/10-bit addressing and Clock Stretching only in an 

open-drain configuration. The I2C slave acts as a bridge 

between the microprocessor and the master device, receiving 

data from the microprocessor to be sent to the I2C master and 

vice versa. 

5. Results and Discussion 
The primary communication technique employed in this 

System on Chip (SoC) is the 3D-Multi-Processor with NoC, 

which facilitates all on-chip communications. The design aims 

to investigate and execute a prototype of asynchronous MP-

NoCs on Field-Programmable Gate Arrays (FPGAs). The 

challenging task involves implementing a system of 

asynchronous MP-NoC on customary FPGAs, which 

necessitates the development of a readjusting portion in 
FPGAs to create design flow. This design represents a 

comprehensive and victorious way to start MP-NoC for an 

FPGA. During implementation, a 4-phased bundled data 

handshake protocol is utilized.  

The design of MP-NoC includes two main components: 

network adapters along with router. The Open Core Protocol 

(OCP) interface joins the cores of the network, while a mesh 

topology is employed to create network connections in a small 

MP processor, which validates the MP-NoC through 

experimental results. Network on Chip (NoC) technology is 
gaining traction worldwide for communicating between SoCs. 

Table 1. Comparison between proposed and existing in terms of 

slices and DSP of RNN 

S. 

No. 

Structure 

Details 

No. of 

Slice LUT 

No. of Slice 

Registers 

No. of DSP 

Blocks 

01 RNN [8] 1890 1899 16 

02 RNN [10] 2100 2150 23 

03 
Proposed 

RNN 
1350 1280 12 

 

Furthermore, the replacement of the traditional RNN 

architecture with the proposed RNN not only enhances its 

performance but also optimizes hardware resources, power 

consumption, and cost. In the proposed design, a significant 

reduction of 50% in both area and power consumption has 

been attained compared to other existing systems, as shown in 

Table 1. Moreover, the proposed structure can be further 

enhanced by integrating hybrid adders along with shared 
LUTs, which find wide applications in cognitive radio 

networks and other domains. 

This research paper is centered on the modeling of 

synchronous Multi-Processors with NoCs on Field-

Programmable Gate Arrays. The main objective is to plan a 

synchronous circuit and later deploy it on standard FPGAs. 

The process includes creating a trial flow, conducting tests, 

and assessing its interpretation of FPGAs. A high-effort MP-

NoC is developed to fulfill the specified requirements and is 

subsequently implemented on FPGAs. The use of an MP-NoC 

involves circuit connectors, switches, UART, and memory, 
which facilitate the primary handshake of MP-NoC in a 4-

stage system.OCP Interface stands out as the best widely used 

protocol in this setup. To showcase the current plan in real-

time, a functional topological model is necessary. Planned 

MP-NoC is validated on a minimum, versatile processor 

model. 3x3 MP-NoC, including its UART protocol, is 

architecture, and its Verilog HDL code replication is executed 

and verified on the Artix-7 FPGA kit using the Chipscope 

software tool. 

 
Fig. 2 Simulated results for audio samples transmission from processor 

to peripheral  
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The audio signal for the proposed System-on-Chip (SoC) 

with RNN applications using the offered technique, aiming to 

evaluate the effectiveness and utility of an extended top-level 

design of the SoC. The evaluation involves employing high-

precision control signals with enhanced frequency response 

and precise filtering operations in the filtration process. To 
showcase transmit of data from an origin to a target, we 

employ an Integrated Controller (ICON) and Virtual 

Input/Output (VIO).  

The efficiency of this data transmission is evaluated 

through metrics such as latency, Packet Delivery Ratio (PDR) 

and hardware resource utilization, including slices, Look-Up 

Tables (LUTs), flip flops, and area. Packet generation is 

achieved using a Traffic Pattern Generator. The outputs 
indicate significant improvements, including a 23% 

enhancement in LUTs, 14% in flip-flops, a 31% increase in 

throughput, and a 29% reduction in delay. 

5.1. Traffic Generator Design MP with MP-DL-SoC 

A dedicated traffic generator was developed and deployed 

to evaluate functionality, featuring sink signals and traffic 

supply. The traffic supply sends pre-defined data packets to 
fixed data storage, while the sink signal receives traffic data 

and can manage the correct input and output pairing. In a 

multi-processor with a NoC design, data packets traverse the 

network according to the diagram in Figure 3. Every entry in 

ROM data includes data information alongside a handshake 

signal that activates the simplest router using a single NOR 

gate.  

A counter designed for asynchronous operation is clocked 
with an acknowledgement signal and features a fixed address 

with increased high values within the existing data size. The 

fixed data memory is triggered by the request signal without 

delay, ensuring proper low-level formatting of the fixed 

storage output by gating clock input with a reset signal. A 

demultiplexer is used for the output channel, with flit-type 

control signals, enabling the sink signal of traffic to obtain 

stored data packets for execution. 

 
Fig. 3 Random data transfer from source to destination simulated 

results 

In FPGA-based processing, incoming data packets are 

first stored in ROM. To extract and process this data, the 

JTAG cable interface is utilized. ChipScope Pro, a tool that 

interfaces via JTAG, is employed for verification. Its GUI-

based, user-friendly interface simplifies debugging and design 

verification by allowing easy connection to any port for 
monitoring and analysis. The ChipScope tool is utilised to 

process and view data captured by cores. In sink design, the 

VIO ChipScope core collects data. Data signals are captured 

by the core on the falling edge of the request signal. When the 

internal storage of the VIO core is full, data is sent to the 

ChipScope program. Each signal requiring monitoring in the 

plan needs a VIO core. These cores track and archive data 

traces for any signal in FPGA during execution. 

The design process for Chip Scope VIO core shall be 

approached in both ways, which involves gathering 

information from the programming environment. The first 

approach follows a conventional method, programming the 

core along a mechanically synthesized netlist. The second 

method involves programming the core using the typical 

Verilog HDL technique. However, the Verilog HDL 

technique may not be suitable for the suggested plan, as it is a 

finalised programming type and does not allow for dynamic 

modifications. Therefore, the first technique is preferable for 

gathering knowledge for vigorous programming.  

In this approach, knowledge shall collected from the 

synthesizer using the existing handshake data path. It is 

important to note that the handshake signal is not a portion of 

the data traffic channel and, thus, does not impact the netlist 

synthesizer. In the suggested design of a multiprocessor with 

a NoC router, the VIO core and ICON control are integrated. 

ICON core oversees peripheral communication between 

JTAG, Chipscope software, and optimization planning tools, 

streamlining the design process. A clock signal synchronized 

with the falling edge of any signal is utilized with an appeal 

signal in the VIO core. The requested signal is channelled with 

a netlist of corresponding clock signals, as depicted in Figure 
4.  

 
Fig. 4 FPGA validation of proposed work using Chipscope pro 



B.N. Mohankumar et al. / IJEEE, 11(7), 113-123, 2024 

 

121 

The architectured MP-NOCs router is categorised into 

different Verilog entities, among 9 entities, following a 

structured approach with four different directions encoded in 

the header as “00”, “01”, “10”, and “11” for north, east, south, 

and west, respectively. An area chart illustrates various 

parameters, listed in Table.1, highlighting 590 latches and 
2378 LUTs used to achieve a countering delay of less than 

29%. To modify the data content of the ROM, different HDL 

data resources are used, achieved through Xilinx and Core 

generator from HDL-based techniques. ROM programming is 

accomplished using an accessible route lookup table in master 

NA. The primary target of the current execution is to illustrate 

MP-NoC in asynchronous mode on a customized FPGA.  

In comparison to existing work on FPGA executed with 

asynchronous systems, typically operating in synchronous 

mode, this project is implemented with a general design flow 

for asynchronous FPGA executions. Designed Multi-

processor with NoC operates in asynchronous mode, 
providing best-effort service. The system comprises two 

Network-on-Chip (NoC) Nodes executing in a master-slave 

configuration with the router. The routing mechanism is 

tailored to meet specific topology and routing needs, utilizing 

mesh routing and wormhole techniques. Deadlock resolution 

in multi-processor with NoC is achieved through a 

combination of two-dimensional XY routing and supply 

routing strategies. 

In the intended design of a multiprocessor with a 

Network-on-Chip (NoC) operating in packet-based switching 

for data transfer, packets are uniquely identified using an 
infinite number to indicate the beginning with end of data 

packets. Additionally, data packets are encoded with extra 

handshake signals to facilitate their identification. The OCP 

interface is now part of the NAS, acting as the central hub for 

network connectivity. Synchronization tasks are managed 

through the bi-IP-op synchronizer. Operating at a frequency 

of 594.229MHz, the router uses 9% of the 3201 available 

LUTs and 542 latches for its components, potentially causing 

delays. The miniature multi-processor prototypes designed in 

asynchronous Multi-processor with NoC consist of 3 different 

CPUs with identical peripheral units arranged in a 3x2 mesh 

configuration. To prevent deadlocks depending on data 
messages, a dedicated way for request and response modes is 

implemented, ensuring infinite deadlock evasion. 

While the approach may not completely address higher 

strategic delays of FPGA deadlocks, it efficiently utilizes 

FPGA’s logical resources. The goal is to utilize the existing 

FPGA resources effectively to avoid deadlocks successfully. 

Implementing asynchronous MP-NOCs to solve every issue, 

including delay matching criteria, is challenging due to FPGA 

prototyping techniques and a lack of supportive tools. To 

minimize delay in FPGA circuits, a different data way for data 

transmission is used.  

This approach achieves relatively low detain to meet the 

criteria of the MP-NoC, measuring down data packet path with 

macros and design primitives. Despite challenges with 

deadlock avoidance tools, the design optimizes operations in 

real-time. For the complete design of Mp-NoC circuits, 

alternative LUT mapping should be considered to address all 
design issues effectively. Channel routing algorithms are 

utilized to determine the optimal path among interconnected 

sub-modules within an architectural framework, considering 

their spatial arrangement. Research has demonstrated that 

such algorithms significantly enhance Network-on-Chip 

(NoC) efficiency and stability, particularly in mitigating 

network congestion. 

6. Conclusion 
The machine learning-based Support Vector Machine 

(SVM) represents the cutting edge in classification accuracy 

for packets received from multiple processors to various 

peripherals. It achieves this high accuracy while minimizing 

computational complexity. Using MP and accelerator to 

implement the ML-based SVM, we planned and evolved a 

system through greater-level synthesis in Vivado Design Suite 

2018. We evaluated its efficiency based on throughput, 

latency and power consumption, comparing it with the current 

state-of-the-art.  

Our results demonstrate that the HLS-based 

implementation is superior in performance, being 23.4 times 

faster than a General Purpose Processor (GPP)-based design 

and 12.6 times faster than a Graphics Processing Unit (GPU). 

The suggested multiprocessor, integrated with various high-

speed protocols in a block-level hardware configuration 

containing AXI interconnects and a Zynq processor was 

targeted to the Zynq-7000 evolvement FPGA board. It was 

then connected with the SDK environment, and the entire 

design and functionality were examined and verified through 

software programming.  

The outcomes from our design show that the standard 
loop accelerator generated could efficiently compute complex 

machine learning classifiers with highly huge amounts of data. 

The implemented plan is capable of measuring the architecture 

of other PEs that is part of the 3D-NoC.  

Our designed hybrid MP-NoC, depending on application-

aware design for big data loads and transmission, is highly 

beneficial in enhancing energy efficiency and service quality 

across magnificent heterogeneous application loads. To aid in 

the selection of an efficient MP-NoC, we present a hybrid MP-

NoC consisting of a specific MP-NoC, a buffered MP-NoC, 

and an application-aware technique in this research work.  

This procedure significantly increases system efficiency. 

Additionally, we built a unique hybrid MP-NoC congestion 

optimization approach. By reallocating packets in congested 
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nodes and verifying the performance of different MP-NoCs’ 

congestion, this approach can significantly enhance the 

overall system’s energy efficiency. The area and power used 

by router buffers in NoC are major concerns in the submicron 

domain. The performance of synthetic traffic situations can be 

assessed utilising a flit-level, cycle-accurate network 

simulator. Our computational outputs illustrate that the 

designed routing algorithm maximizes power consumption by 

19%, average latency by 24%, and area overhead by 47% 

compared to other conventional algorithms. 
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