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Abstract - Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline, memory loss, 

and impaired reasoning, caused by the accumulation of amyloid-beta plaques and neurofibrillary tangles of tau protein. This 

study utilizes neuroimaging Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and structural MRI and clinical 

data from 1069 subjects acquired through the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Early-stage AD presents 
challenges for classification between Mild Cognitive Impairment (MCI) and Cognitively Normal (CN) individuals, as structural 

abnormalities are less pronounced, making sMRI-derived features less discriminative. However, functional connectivity 

disruptions in brain regions are notable in the early AD stages. This study investigates whether the metabolic brain assessment 

biomarker, Support Uptake Value Ratio (SUVR) from FDG-PET, can enhance classification performance between MCI and CN 

classes effectively or not. We introduced a novel weighted random SVM cluster, an ensemble method that outperforms single 

SVM classifiers by addressing issues of limited data and noise. Using the AAL3 Atlas, which provides finer subdivisions of brain 

regions (168 regions compared to AAL2’s 90), we achieved a more detailed connectivity analysis. Employing rigorous pre-

processing and a Stratified K-Fold Nested Cross Validation with k=5 and an 8:2 train-validation to test split ensured robust 

hyperparameter tuning and model selection to prevent overfitting and selection bias. The proposed method demonstrates good 

classification accuracy for MCI vs. CN and exhibits good ROC characteristics, indicating sensitivity to detect disruptive 

metabolic changes, highlighting its potential in early AD detection. 

Keywords - Alzheimer’s diseases, Quantified biomarkers of AD, Positron Emission Tomography, FDG-PET, Weighted SVM 

cluster.

1. Alzheimer’s Disease and Positron Emission 

Tomography (PET) 
Alzheimer’s Disease (AD) is a progressive 

neurodegenerative disorder characterized by cognitive 

decline, memory loss, and impaired reasoning. Pathologically, 

it is marked by the accumulation of amyloid-beta plaques and 

neurofibrillary tangles of tau protein, leading to synaptic 

dysfunction and neuronal death [1-3]. AD primarily affects the 

elderly, with its incidence increasing with age. Despite 

extensive research, the exact etiology remains unclear, 

involving complex interactions of genetic, environmental, and 

lifestyle factors [4, 5]. AD represents a significant public 
health challenge, necessitating ongoing research for effective 

diagnostics, treatments, and preventive strategies [6, 7]. 

PET is a medical imaging technique used to visualize and 

measure various physiological processes in the body. PET 

scans provide functional information by detecting and 

visualizing the distribution of a radioactive tracer that is 

injected into the patient. 

In a PET study, the signal is generated through the 

detection of gamma rays emitted from a radioactive tracer 

injected into the patient. PET imaging is based on the principle 

of detecting pairs of gamma rays resulting from the 

annihilation of positrons emitted by the radioactive tracer. The 

following steps describe signal generation for PET studies. 

1. Radiotracer Preparation: A radiochemist synthesizes a 

radiotracer, which is a biologically active molecule 
labelled with a radioactive isotope (commonly Fluorine-

18 or Carbon-11). The most used radiotracer in PET 

studies for the purpose of neurodegenerative tracer is 

Fluorodeoxyglucose (FDG), a radioactive form of 

glucose. 

2. Radiotracer Injection: The prepared radiotracer is injected 

into the patient’s bloodstream. This is typically done 
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intravenously, ensuring that the radiotracer circulates 

through the body and reaches the target tissues. 

3. Radiotracer Distribution: After injection, the radiotracer 

distributes throughout the body and gets accumulated in 

specific tissues or organs based on its biological 

properties. For instance, a glucose analogy like 
Fluorodeoxyglucose (FDG) will accumulate in areas with 

high glucose metabolism, such as active brain regions or 

tumour. 

4. Positron Emission: Once it is inside the body, the 

radiotracer goes through radioactive decay, emitting 

positively charged particles called positrons 

(antielectrons) as it becomes stable.  

5. Annihilation Event: Positrons emitted from the decaying 

radiotracer travel a short distance (usually a few 

millimetres) before encountering electrons in the 

surrounding tissues. When a positron meets an electron, 

they annihilate each other, resulting in the conversion of 
their mass into energy. This energy is released as two 

gamma photons. 

6. Gamma Photon Detection: The two gamma photons 

produced by the annihilation event are emitted in nearly 

opposite directions (approximately 180 degrees apart). 

PET scanners, equipped with ring-like arrays of detectors, 

capture these photons. The coincidence detection system 

in the PET scanner identifies pairs of gamma photons that 

originate from the same annihilation event. 

7. Image Reconstruction: The detected gamma photon pairs 

are processed by the PET scanner’s computer system to 
reconstruct detailed images. Algorithms use information 

about the origin and trajectory of the photons to create 

cross-sectional images that represent the distribution of 

the radiotracer within the body. Advanced reconstruction 

techniques, such as iterative reconstruction, improve 

image quality and resolution. PET studies offer numerous 

benefits and, therefore, find its application in almost all 

clinical branches of medicine. 

1.1. Benefits of PET Imaging Modality  

1. Early Disease Detection: PET can detect functional and 

metabolic changes at the cellular level, allowing for early 

detection of diseases even before structural changes are 
evident. This is particularly useful in oncology and 

neurology. 

2. Accurate Staging and Treatment Planning: PET is highly 

valuable in cancer staging, as it can assess the extent of 

tumour spread and detect metastases. It aids in planning 

appropriate treatment strategies. 

3. Treatment Response Assessment: PET helps monitor the 

response to therapy, enabling clinicians to evaluate 

treatment effectiveness and adjust if necessary. 

4. Differentiation of Benign and Malignant Lesions: PET 

can aid in distinguishing between benign and malignant 
lesions, reducing the need for invasive procedures and 

unnecessary surgeries. 

5. Metabolic Mapping: PET provides functional 

information about metabolic activity, blood flow, and 

oxygen consumption in tissues and organs, helping 

researchers and clinicians understand organ function. 

6. Non-Invasive: PET is a non-invasive imaging technique 

that minimises patient discomfort and reduces the risk of 
complications. 

1.2. Radioactive Tracers 

PET uses radioactive tracers, also known as radiotracers 

or radiopharmaceuticals, to visualize and measure 

physiological processes in the body. These radiotracers emit 

positrons, which interact with nearby electrons, resulting in 

the emission of gamma rays during the process of positron 

annihilation. The detection of these gamma rays allows PET 

scanners to create detailed images of the distribution and 

metabolism of the radiotracer within the body. Commonly 

used radioactive tracers in PET and their applications are as 

follows [8]. 

1. Fluorodeoxyglucose (FDG): FDG is the most widely used 

radiotracer in clinical PET imaging. It is a radioactive 

form of glucose, which is taken up by cells in proportion 

to their metabolic activity. FDG-PET is commonly used 

in oncology for cancer detection, staging, and treatment 

response assessment. Malignant cells, being more 

metabolically active, typically show increased FDG 

uptake compared to normal tissues. 

2. Carbon-11 Methionine (11C-MET): 11C-MET is used in 

neuroimaging to study brain tumors and neurological 

disorders. It is taken up by cells that actively synthesize 
proteins, and its uptake in brain tumors is indicative of 

increased protein synthesis and cell proliferation. 

3. Oxygen-15 Water (15O-H2O): 15O-H2O is used to study 

Cerebral Blood Flow (CBF) in the brain. It is a freely 

diffusible tracer that provides information about regional 

blood flow, helping in the evaluation of brain function 

and perfusion. 

4. Nitrogen-13 Ammonia (13N-NH3): 13N-NH3 is used to 

assess myocardial blood flow in the heart. It is taken up 

by cardiac muscle cells in proportion to blood flow, 

making it valuable in diagnosing coronary artery disease 

and evaluating cardiac viability. 
5. Rubidium-82 Chloride (82Rb): 82Rb is another tracer 

used for myocardial perfusion imaging. It has a similar 

application as 13N-NH3 in assessing myocardial blood 

flow and coronary artery disease. 

6. Gallium-68 Dotatate (68Ga-Dotatate): 68Ga-Dotatate is 

used in neuroendocrine tumour imaging. It targets 

somatostatin receptors, which are often overexpressed in 

neuroendocrine tumours, allowing for their detection and 

localization. 

7. Fluorine-18 Florbetapir (18F-AV-45, also known as 

Amyvid): 18F-AV-45 is used to visualize amyloid 
plaques in the brain, which are a hallmark of Alzheimer’s 
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disease. It aids in diagnosing Alzheimer’s and other 

neurodegenerative conditions. 

8. Fluorine-18 Sodium Fluoride (18F-NaF): 18F-NaF is 

used for bone imaging to assess bone metastases and other 

bone-related diseases. It accumulates in areas of increased 

bone turnover, making it valuable for detecting bone 
lesions. 

9. Copper-64 Pyruvaldehyde Bis (N4-

methylthiosemicarbazone) (64Cu-ATSM): 64Cu-ATSM 

is being investigated for imaging hypoxic regions in 

tumors. It tends to accumulate in areas of low 

oxygenation, which can be useful for predicting tumor 

response to treatment. 

Table 1. Overview of common radiotracers used in PET studies: targets and clinical applications 

Radiotracer 
Radioactive 

Isotope 
Target Clinical Applications 

Fluorodeoxyglucose (FDG) Fluorine-18 (18F) Glucose metabolism 

Oncology (tumors detection and 

monitoring), neurology (brain activity), 

cardiology (myocardial viability) 

Florbetapir (Amyvid) Fluorine-18 (18F) Amyloid plaques Alzheimer’s Disease diagnosis 

Flutemetamol (Vizamyl) Fluorine-18 (18F) Amyloid plaques Alzheimer’s Disease diagnosis 

Choline (11C-Choline) Carbon-11 (11C) 
Cellular membrane 

synthesis 
Prostate cancer imaging 

Methionine (11C-Methionine) Carbon-11 (11C) 
Amino acid transport and 

protein synthesis 
Brain tumor imaging, other cancers 

Pittsburgh Compound B (PiB) Carbon-11 (11C) Amyloid plaques Alzheimer’s Disease research 

Sodium Fluoride (NaF) Fluorine-18 (18F) Bone formation Bone metastasis detection 

Dopamine (18F-DOPA) Fluorine-18 (18F) Dopaminergic system 
Parkinson’s Disease and other 

movement disorders 

Thymidine (18F-FLT) Fluorine-18 (18F) DNA synthesis Cancer imaging (cell proliferation) 

Annexin V (18F-Annexin V) Fluorine-18 (18F) Apoptosis Imaging of cell death 

1.3. Generation of the Signal Using FDG Radioactive Tracer 

FDG tracer is a radioactive glucose that is used in PET 

scans. It is a radioactive form of glucose, a molecule that 

serves as the primary source of energy for cells in the body. 

FDG is a glucose analog, where the hydroxyl group at the C-

2 position of the glucose molecule is replaced with a 

radioactive fluorine-18 atom.  

The chemical structure of FDG is that of glucose, which 

allows it to be taken up by cells and metabolized similarly to 
glucose. The chemical composition is as follows. 

             F 

             | 

     HO - C - H 

             | 

           OH 

In this structure, “HO” represents a hydroxyl group (OH) 

that is replaced by a radioactive fluorine atom (F) at the C-2 

position of the glucose molecule. FDG tracer is injected into 

the body through an Intra Venus (IV) method. The half-life of 

18F is 110 minutes. This means that the radioactivity of the 

FDG tracer decays to half its original level in 110 minutes. 

The patient must wait for about an hour after the injection 

before the PET scan can be performed. 

1.3.1. Uptake Mechanism 

Once administered to the patient, FDG behaves similarly 

to glucose in the body. It is taken up by cells, particularly those 

with high metabolic activity. The uptake of FDG is mediated 
by Glucose Transporters (GLUTs) present on the cell 

membrane. Inside the cell, FDG undergoes phosphorylation, 

becoming FDG-6-phosphate, but it cannot be further 

metabolized due to the lack of a hydroxyl group at the C-2 

position. As a result, FDG-6-phosphate accumulates within 

the cell, leading to the emission of positrons during radioactive 

decay. 

1.3.2. Positron Emission and Imaging 

FDG emits positrons (positively charged particles) as it 

undergoes radioactive decay. These positrons travel a short 
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distance in the surrounding tissues before encountering nearby 

electrons. Upon collision with electrons, positrons are 

annihilated, resulting in the emission of two gamma rays 

(photons) traveling in opposite directions.  

PET scanners detect these gamma rays, allowing the 

reconstruction of 3D images that represent the distribution of 
FDG within the body. The intensity of the PET signal is 

proportional to the metabolic activity of the tissues, making 

FDG-PET a powerful tool for imaging and assessing various 

diseases and physiological processes [9]. 

When FDG tracer is injected into the body, it is taken up 

by cells that use glucose for energy. Abnormal cells use 

glucose less or more than normal cells, so they take up the 

amount of FDG tracer [10]. This allows PET scans to visualize 

abnormal cells that may not be visible on other imaging tests, 

such as X-rays, CT scans, or MRIs.  

1.4. Biomarkers Derivable from FDG-PET    

PET molecular imaging agents can elucidate multiple 
aspects of AD pathophysiology, including brain amyloidosis, 

tau protein accumulation, neuroreceptor alterations, metabolic 

abnormalities, and neuroinflammation. PET imaging serves as 

a critical tool for the early diagnosis of AD, disease staging, 

and monitoring responses to treatment.  

Given the increasing emphasis on presymptomatic early 

diagnosis and disease-modifying interventions, PET 

molecular imaging agents offer an unparalleled capability to 

quantify the pathophysiological processes of AD, monitor 

disease progression, evaluate the engagement of therapies 

with brain molecular targets, and measure pharmacological 
responses. This study underscores the critical contributions of 

PET in elucidating brain molecular abnormalities associated 

with AD [11]. 

FDG-PET is a medical imaging technique that uses a 

radioactive tracer called FDG to measure glucose metabolism 

in various tissues and organs of the body. FDG-PET can 

provide valuable information about the functional activity and 

metabolism of cells. While FDG-PET itself does not measure 

specific biomarkers directly, it can indirectly reveal important 

metabolic and physiological information. Biomarkers that can 

be derived from FDG-PET, their usefulness and significance 

are discussed in the following paragraphs. 

1. Standardized Uptake Value (SUV): SUV is a commonly 

used biomarker in FDG-PET imaging. It quantifies the 

uptake of FDG in tissues and provides information about 

their metabolic activity. SUV represents the concentration 

of FDG in a tissue region of interest normalized to the 

injected dose and the patient’s body weight. 

2. Tumor-to-Background Ratio (TBR): TBR is a biomarker 

that compares the FDG uptake in a tumor to the 

surrounding normal tissue or a reference region. It is often 

used to assess tumor metabolism and to differentiate 

between malignant and benign lesions. 

3. Metabolic Tumor Volume (MTV): MTV measures the 

total volume of metabolically active tumor tissue. It 

identifies and quantifies the extent of tumor involvement 

by considering areas of increased FDG uptake. MTV can 
be useful for staging cancer, monitoring treatment 

response, and assessing tumor burden. 

4. Total Lesion Glycolysis (TLG): TLG combines both the 

metabolic activity (SUV) and the Metabolic Tumor 

Volume (MTV) to provide a more comprehensive measure 

of tumor metabolism. TLG is calculated by multiplying the 

SUV by the MTV and can be useful for characterizing 

tumor aggressiveness and predicting patient outcomes. 

5. Glucose Metabolic Rate (MRglu): MRglu represents the 

rate at which cells take up and metabolize glucose. It is a 

quantitative measure of tissue glucose metabolism and can 

provide information about the overall metabolic state of 
organs or tissues imaged with FDG-PET. 

SUV is a quantitative metric employed in FDG-PET 

imaging to evaluate the uptake and concentration of the 

radioactive tracer FDG in tissues or lesions. This measure 

facilitates the quantification, standardization, and comparison 

of FDG uptake across different patients, brain regions (ROIs), 

and time points in longitudinal studies.  

Additionally, it serves as a valuable tool for assessing 

treatment response. The SUV is calculated using the following 

formula: 

SUV = (Tissue radioactivity concentration (Bq/mL) X 

Body weight (g)) / Injected FDG dose (Bq) 

Where,  

Tissue Radioactivity Concentration represents the 

concentration of FDG in the specific tissue or lesion 
being imaged and measured in Becquerels per 

milliliter (Bq/mL) and is obtained from the PET scan 

data.  

Body Weight accounts for differences in FDG 

distribution based on body size and is measured in 

grams (g). 

Injected FDG Dose the amount of FDG that was 

administered to the patient for the PET scan and is 

measured in Becquerels (Bq). 

Further, an SUV is a dimensionless or a scalar quantity, 

meaning it has no units. It provides a standardized measure of 

FDG uptake that is independent of the injected dose and 

patient size, enabling direct comparisons between different 

patients and scans.  

Hypometabolism, the areas of reduced glucose 

metabolism, can be detected by FDG-PET and patterns in 

these brain regions - such as the hippocampus, posterior 
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cingulate cortex, precuneus, and temporoparietal cortex, are 

typical early features of AD and can aid in the diagnosis of the 

disease. 

2.  Significance of FDG-PET in AD 
It has been demonstrated that FDG-PET is a potential 

method for identifying and detecting metabolic and functional 

brain alterations in AD and MCI subjects, has been proven to 

be helpful for early detection and can be used for differential 

diagnosis of AD from other causes of dementia [12]. 

A novel and effective approach for the automatic 

classification of FDG-PET scans in subjects with AD and 
Frontotemporal Dementia (FTD) has been developed. Unlike 

previous methods that rely on principal component analysis 

and predefined regions of interest, this approach employs 

information gain and spatial proximity to cluster cortical 

pixels into empirically determined regions that are highly 

discriminative between AD and FTD.  

These regions serve as attributes within a decision tree 

learning framework, achieving superior classification 

accuracy compared to existing methods. Our findings 

underscore the potential of this method in accurately 

distinguishing between AD and FTD patients, with significant 
implications for early detection and personalized treatment 

strategies in these neurodegenerative diseases [13]. 

In a multicenter study, researchers evaluated the accuracy 

of optimized procedures for FDG-PET brain metabolism and 

Cerebrospinal Fluid (CSF) classifications in predicting or 

excluding the conversion to AD dementia and non-AD 

dementias in individuals with MCI. The study included 80 

MCI subjects who underwent neurological assessments, FDG-

PET scans, and CSF measures at baseline, followed by clinical 

follow-ups. FDG-PET data were analyzed using a validated 

voxel-based Statistical Parametric Mapping (SPM) method, 

with resulting SPM maps classified by imaging experts based 
on disease-specific patterns.  

Statistical analyses grouped the individual patterns into 

categories of AD dementia vs. non-AD dementia or FTD vs. 

non-FTD. The study found that FDG-PET SPM classification 

and CSF Aβ42 levels were the best predictors of conversion 

from MCI to AD dementia, while the “FTD” SPM pattern 

predicted conversion to FTD dementia.  

Overall, FDG-PET SPM classification demonstrated 

higher accuracy in predicting progression to different 

dementia conditions in prodromal MCI, outperforming CSF 

biomarkers. These results highlight the significant role of 
FDG-PET SPM classification as a valuable biomarker for 

early detection and differential diagnosis of dementia 

conditions [14].  

The study employed a novel deep learning method known 

as the “multi-feature kernel supervised within-class-similar 

discriminative dictionary learning algorithm” (MKSCDDL) to 

classify subjects with AD, MCI, and CN individuals. The 

model was trained on structural MRI (sMRI), FDG-PET, and 

florbetapir-PET data from the ADNI database.  

The results demonstrated a significant improvement in 

classification accuracy compared to several other state-of-the-

art machine learning algorithms [15]. The study employed a 

novel deep learning method known as Kernel-based Integrated 

Persistent Feature (KBI) to enhance the accuracy of analyzing 

persistent homology data for diagnosing AD.  

Persistent homology is a mathematical technique used to 

study the topological structure of networks, and recent 

research indicates that altered network organization in the 

human brain can serve as a diagnostic tool for such conditions. 

Traditional methods for analyzing persistent homology data 

often lack accuracy.  

The authors applied KBI to FDG-PET imaging data from 

140 AD patients, 280 subjects with MCI, and 280 CN 

individuals. The results demonstrated that KBI could detect 

significant differences in network organization among AD 

patients, MCI patients, and healthy controls. Compared to 

other persistent homology-based and standard graph-based 

measures, KBI showed more significant group differences and 

better classification performance, suggesting its potential as 

an effective preclinical AD imaging biomarker [16].  

The study compared the diagnostic accuracy of CSF 

biomarkers and PET for diagnosing early-stage AD. Amyloid 
deposition in nine brain regions was assessed using FDG-PET, 

and CSF was analyzed with INNOTEST and EUROIMMUN 

ELISAs.  

The results indicated that both CSF biomarkers and 

amyloid PET were highly accurate in diagnosing early AD, 

with no significant difference in diagnostic accuracy between 

the two modalities. Furthermore, combining CSF and PET did 

not enhance diagnostic accuracy beyond what was achieved 

by either method alone [17]. 

3. Materials and Methods 
3.1. Data Selection 

The participants whose FDG-PET and T1w sMRI, both 

scans (modalities) were available at baseline, were included in 

this study. Details, distribution, demography of subjects, and 

their clinical assessment scores (MMSE & CDR) used in this 

section are mentioned in Table 2. An additional FDG-PET 

modality-specific preprocessing step that was applied to 

neuroimaging data used in this study is described in section 
3.4.  
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Table 2. Demographic and clinical characteristics of subjects from the ADNI Cohort 

 CN sMCI pMCI AD Total 

# of subjects/images 404 166 177 322 1069 

Gender (# male/# female) 202/202 98/68 104/73 177/145 581/488 

Age in years mean [min; max] 
74.2 

[59.8; 89.6] 

74.4 

[55.9; 91.4] 

74.3 

[48.1; 88.3] 

75.8 

[55.1; 91.4] 

74.6 

[48.1; 91.4] 

MMSE (mean, [min; max]) 
29 

[24; 30] 

28 

[23; 30] 

26 

[23; 30] 

23 

[19; 26] 

-- 

[19; 30] 

CDR (mean, [min;max]) 
0.34  

[0; 1] 

1.26 [ 

0.5; 1] 

2.08  

[0.5; 2] 

2.69 

 [1; 3] 

0.92 

 [0; 3] 

CN - Cognitively Normal / Healthy Control. 

sMCI - Stable MCI; (subjects were tracked/followed up and did NOT progress to AD in 24 months from their first visit and visit at 24 Months) 

pMCI - Progressive MCI (subjects were tracked/followed up, and they had progressed to AD in 24 months. i.e. between the time of their first visit to the 

subsequent 24 Months) 

AD - Alzheimer’s Disease patient. 

Every subject belonging to the MCI group is categorized 

(falls) into either sMCI or pMCI class.  

People with normal cognition did not have memory 

problems, but people with MCI and AD are reported with 

some deficits and decline. MMSE and CDR score for each 

category of the subjects is mentioned in Table 2 as a tuple in 

{mean, [minimum; maximum]} format. 

Figure 1 illustrates the distribution of data across three 

classes of interest. Meanwhile, Figure 2 depicts the age 

distribution (in years) of the subjects within these classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Age distribution of subjects across different classes in the ADNI 

dataset 

This study utilized standardized, Quality Controlled (QC-

passed), 3-Dimensional Magnetization Prepared Rapid 

Gradient Echo (3D-MPRAGE) files to mitigate data 

preprocessing and acquisition variations as outlined in [18]. 

 

 

 

 

 

 

 

 

Fig. 2 Dataset distribution Vs Number of subjects taken from each 

Cohort (class) 

These files underwent essential preprocessing steps, 
including Gradwarping for correcting spatial distortions due 

to gradient non-linearity, intensity normalization to address 

B1 non-uniformity, N3 correction for sharpening histogram 

peaks to reduce intensity non-uniformity caused by wave or 

dielectric effects and scaling for gradient drift. Data from 

ADNI, quality assured by the Mayo Clinic and hosted at the 

LONI database, includes detailed information on specific 

preprocessing corrections applied to each image or series of 

scans under consideration. The study adhered to the Brain 

Imaging Data Structure (BIDS) [19], a standardized 

framework for organizing and sharing neuroimaging data. 
BIDS ensures a consistent and well-defined structure for 

storing various types of brain imaging data, such as sMRI, 

fMRI, DWI, and PET data, facilitating easier analysis and data 

sharing across diverse research groups and software 

platforms. 
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By adhering to the BIDS format, this study aims to ensure 

that the data is organized in a consistent and standardized 

manner. This facilitates data sharing, integration of data across 

multiple sites, collaboration, and reproducibility in the field 

and across research groups and labs. The raw neuroimaging 

data acquired from ADNI for FDG-PET and sMRI both is 
converted into BIDS format. 

3.2. Conversion of Raw Data to Standard Format (BIDS) 

The raw data available from the scanner is converted 

using the following steps for the reasons and to avail benefits 

mentioned above into BIDS [19] format. 

1. Obtain a List of Subjects and Sessions: Start by acquiring 

the list from the ADNIMERGE spreadsheet. 

2. Compare Available Scans: Compare the scans to the list 

of subjects and sessions. 

3. Multiple Scans for Subject-Session Pair: Determine if 

multiple scans exist for a specific subject-session pair. 

4. Select Single Scan for Conversion: 
If the modality is T1: 

 Preferred Scan: Check if a preferred scan is identified 

in MAYOADIRL_MRI_IMAGEQC_12_08_15.csv. 

If so, select it. 

 Higher Quality Scan: If no preferred scan, 

choose the higher quality scan based on 

MRIQUALITY.csv. 

 First Scan: If no quality control information is 

available, choose the first scan. 

 For other modalities, select a single scan. 

5. Use Specific Images for sMRI: If the modality is sMRI, 
use gradwrapped and B1-inhomogeneity corrected 

images. 

6. Use Averaged Images for FDG-PET: For FDG-PET 

scans, use the co-registered and averaged images across 

time frames. 

7. Discard Scans That Fail QC: Discard scans that fail 

quality control. 

8. Convert to BIDS Format: Convert the selected imaging 

data to BIDS format. 

9. Generate BIDS Folder Structure: Create the folder 

structure with subject subfolders, session subfolders, and 
modality subfolders within each session subfolder. 

3.3. Data Acquisition, Protocol Parameters and 

Configuration of FDG-PET Data  

The experimental neuroimaging (FDG-PET and sMRI), 

clinical and study data used in this study were acquired from 

the ADNI database. The ADNI FDG-PET protocol consists of 

a dynamic 3D scan of six five-minute frames (6*5) = 30 mins, 

30 to 60 minutes post-injection with a radiation dose of 

FDG:185 MBq (becquerel) equivalent to 5 millicurie (mCi). 

Imaging sequence parameters for FDG-PET neuroimaging 

data and the associated values for it are mentioned in Table 3. 

 

Table 3. Acquisition protocol parameters and corresponding values for 

FDG-PET imaging 

Scanning Modality 

Fluorodeoxyglucose (FDG) 

Positron Emission Tomography 

(PET) 

Radiotracer [18F]-Fluorodeoxyglucose (FDG) 

Scan Duration 
Six, five-minute frames (6*5) = 30 

mins 

Image Matrix 128 x 128 x 64 

Voxel Size 2 x 2 x 2 

Injection Dose 
185 MBq = 5 millicurie (mCi) of 

FDG 

Injection Time 30 to 60 minutes before the scan 

Injection Protocol IV bolus over 1 minute 

Scanning Protocol Dynamic 3D acquisition 

3.4. Preprocessing of FDG-PET Data 

The raw data, FDG-PET scans, acquired from ADNI is 

converted into BIDS [21] format, as mentioned in section 3.2. 

sMRI (T1w) imaging data is also converted into the MNI 

space. Following (FDG-PET modality specific) pre-

processing steps were performed manually and, in the order 

/sequence mentioned here, on the (FDG-PET) data to remove 

artifacts and possible noise and to transform it into standard 

format and space so that registration can be done. This pre-

processing has also contributed to improving the overall 

accuracy of the ML algorithm as well, and it is represented 
graphically in Figure 3. 

1. The PET preprocessing pipeline utilized SPM12 [20] and 

PETPVC8 [21] for Partial Volume Correction (PVC). 

2. Non-brain areas were removed using SynthStrip [22] 

utility, done earlier in section 3.6 

3. Register the PET image to the corresponding T1w image 

in native space using the co-register method/module in 

SPM. 

4. A PVC step with the Regional Voxel-Based (RBV) 

method has been performed, using tissue maps from the 

T1w in native space as input regions. 
5. Register PET image into MNI space using the 

transformation mentioned in section 3.7 as for 

corresponding T1w. 

6. In MNI space, the PET image is intensity normalized 

based on a reference region (eroded pons for FDG-PET) 

to generate a Standardized Uptake Value Ratio (SUVR) 

map. 

7. The resulting masked SUVR images are in a common 

space, providing voxel-wise correspondence across 

subjects. 
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Fig. 3 PET preprocessing pipeline 

4. Results and Discussion  
In the later or advanced stage of AD, structural loss of 

neurons leading to brain atrophy can easily be detected by 

sMRI modality and thus, Convolutional Neural Network 
(CNN) and volumetric brain morphological studies can 

differentiate AD vs CN with very good accuracy and has 

excellent Receiver Operating Characteristic & Area Under 

Curve (ROC-AUC) characteristics. However, in the early 

stages of the disease, i.e. MCI stage, those structural 

abnormalities and associated atrophy are not so significant, 

and thus, it makes the classification of MCI vs CN 

challenging. In this scenario sMRI derived biomarkers and 

associated features are not so discriminative.  

In the initial stage of the diseases, the uptake mechanism 

of glucose reflecting metabolic disruptive changes in the form 

of hypometabolism is seen much prior, in many cases up to 

one decade prior, as compared to any atrophy-related 

structural changes, accessible through sMRI [14, 16]. These 

disruptive changes are gross indicators of disturbance in the 

brain connectivity, cohesiveness, and coordination within or 

between different brain regions or areas and thus have the 

potential to be used as a biomarker and feature for the ML 

model to predict with good accuracy for MCI vs CN. 

SUVR, a biomarker derived from FDG-PET 
neuroimaging data, is sensitive towards detecting underlying 

metabolic and physiological information by multiple 

researchers and is outlined in sections 1 and 2. FDG-PET aims 

to measure or quantify these hypometabolism related 

differences during its early stages and effectively as well. With 

this hypothesis, whether these FDG-PET derived metabolic 

Start 

Use SPM 12 and PETPVC8 for Partial Volume Correction - PVC 

Remove Non-Brain Areas Using SynthStrip 

Register PET Image to Corresponding T1w Image in Native Space Using SPM 

Perform PVC with RBV Method Using Tissue Maps from T1w Image 

Register PET Image to MNI Space Using Transformation from T1w 

Intensity Normalize PET Image in MNI Space Based on Reference Region 

Generate Standardized Uptake Value Ratio SUVR Map 

Obtain Masked SUVR Images with Voxel-wise Correspondence Across Subjects 

End 
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changes can give a better overall performance in 

differentiating MCI vs CN classes or not, in this research, we 

have extracted two types of features from FDG-PET 

neuroimaging data: 1) voxel-wise and 2) regional features. 

Voxel-wise features correspond to the signal value received in 

the form of SUVR, obtained from all (each) voxel in the brain 
and regional features correspond to the average signal 

computed in a set of ROIs in the context of AAL3 [23] atlas. 

The classification was performed using SUVR as a biomarker, 

reflecting scikitmetabolic activities. 

In the AAL3 atlas, the brain was divided into 80 ROIs in 

each cerebral hemisphere (left and right), totaling 160 ROIs; 

additionally, 8 midline structures were included, resulting in a 

total of 168 ROIs. AAL-3 offers improvements over its earlier 

versions by providing finer brain parcellation, enabling 

detection and localization of signals from smaller brain areas, 

and avoiding signal deterioration due to averaging and 

supporting smaller voxel sizes as well.After completing a 
series of data preprocessing steps as mentioned in section 3.4, 

the SUVR value averaged over each ROI, defined in the 

context of the AAL3 atlas, is retrieved from each ROI for all 

the subjects, resulting in 168 SUVR values per subject, which 

is to be used as the feature by ML model later for predicting a 

class label. 

The experiments are performed on the datasets described 

in Section 3.1. and is mentioned in Table 2, consisting of 1069 

subjects.  The composition of the data derived from the ADNI 

dataset for the classification task performed here, i.e., MCI vs 

CN, has 273 (M:161, F:112) subjects labelled MCI and 404 

(M:161, F:161) subjects labelled as CN. Out of an available 

total of 747 subjects, 595 (80%) matched w.r.t. available 

demographic details are used in training/validation and the 

remaining 152 (20%) subjects are used for testing and 
performance evaluation of the model.  

The dataset was partitioned into three subsets: a training 

set, a validation set, and a testing set. The training set was 

employed to train the model, while the validation set was 

utilized for hyperparameter tuning and decision-making 

regarding model selection. The testing set remained 

untouched until the final stage, where it was exclusively used 

for calculating final metrics and conducting comparative 

analyses between models. Figure 4 visually depicts the train-

validation-test strategy implemented in this study to develop 

and evaluate the model. 

The train-validation split enables simultaneous 
hyperparameter tuning and model selection/configuration to 

prevent overfitting and selection bias. The discovered 

hyperparameters are then applied to reconfigure the final 

model using the entire train-validation dataset for making 

predictions. The classification task focused on distinguishing 

between MCI and CN subjects. To ensure generalizability and 

prevent overfitting, we employed the “Stratified K-Fold 

Nested Cross-Validation” technique with k=5, where the 

train-validation to test split ratio was 8:2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Strategy for model building & configuration 
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This approach ensures that each fold of the dataset used 

for model training maintains a balanced proportion of positive 

and negative classes, accounting for all demographic details 

as outlined in Table 2. 

In the nested cross-validation procedure described earlier, 

the inner loop (performed using scikit-learn’s [24] 
GridSearchCV() maximizes the score by training a model on 

each training set and then optimizing (hyper) parameters based 

on the validation set. In the outer loop, the generalization error 

is assessed by averaging scores from the test set across 

multiple dataset splits. 

ML methods were widely used for pattern recognition and 

SVM based model has demonstrated good performance in 

classifying high dimensional neuroimaging data with good 

efficacy. At the same time, a single SVM is not found to be 

stable, suffers from low accuracy, and often represents 

underfitting. 

In this study, we implemented an approach capable of 
automatically extracting high-dimensional features. 

Specifically, we proposed and employed the ‘random SVM 

cluster’ method. This method offers several advantages: 1) 

Enhanced robustness through the integration of multiple 

SVMs and 2) Improved efficiency via the reinforcement of 

strong SVM base classifiers using a weighted approach. The 

FDG-PET neuroimaging data used in this study underwent the 

preprocessing steps detailed in Section 3.4 and utilized SUVR 

as a biomarker feature. 

The complete pipeline of the proposed model, detailing 

the steps to derive class labels, is summarized and visually 
represented in Figure 5. 

1) The entire available dataset is divided into 5 folds, as 

mentioned earlier, and the same training (N1) – validation 

(N2) – testing (N3) splitting strategy is applied.  

2) At each (nth) iteration – the number of samples/subjects is 

randomly selected from the training set N1, and some d-

dimensional feature is randomly selected from 168-

dimensional sample feature space to construct an SVM 

classifier. This avoids any a-priori features derived from 

previous knowledge directly fed into the model. 

3) Thus, a single (and each) SVM is formed using randomly 

selected samples and features, using the Radial Basis 
Function (RBF) as a kernel function and yields different 

decision boundaries (hyperplane) and thus, it has a 

different classification performance and so aids to 

mitigate overfitting in the model.  

4) The accuracy of each SVM on the training dataset is 

evaluated by sorting it in descending order (highest-to-

lowest); the SVMs with the highest performances make 

more contributions to the overall performance, and the 

features used by these SVMs are referred to as “optimal 

features”. 

5) The performance of this ML model is evaluated by 

feeding a test sample to the trained model, the total 

amount of votes belonging to class ‘a’ is denoted by Sa as 

follows. 

𝑺(𝒂) = ∑    𝐈 (𝒇𝒊(𝒙) = 𝒂) 𝒙 𝑾𝒊
𝒏
𝒊=𝟏  (1) 

Where, 

 x - Sample from the test set,  

fi(x) - A class label predicted by ith  SVM from the test set,  

Wi - Weights used from the validation test for 

hyperparameter tuning.  

Cost parameter c for each SVM is set to Inf and RBF 

kernel with a bandwidth σ = 3. 

The label with the greatest cumulative number of votes 
represents the final predicted label A of the test sample. 

Classification accuracy Ptrue is identified as follows, 

 𝐏𝐭𝐫𝐮𝐞 =
𝐓𝐭𝐫𝐮𝐞

𝐓
 (2) 

Where,  

Ttrue = Number of test samples that were correctly 

classified, and  

T = Total number of samples in the test set. 

The overall approach, this design has explored the space 

ranging from 1 to 40 (# of SVM) and found that the single 

SVM’s accuracy ranges from 0.58 to 0.85; however, the 

Balanced Accuracy (BA) of such a weighted random SVM 

cluster achieved here is 84.87%. Interpretation leads to the 

conclusion that the random SVM cluster can make up for the 

unpredictability and poor accuracy of a single classifier. To 

derive what numbers of SVMs would be sufficient and enough 
(i.e., could reach global maxima of accuracy) in the proposed 

weighted random SVM cluster and to establish that betterment 

in the result achieved is not because of randomness indeed; 

also, the model does not represent the case of overfitting, and 

this approach can generalize well in the general scenario as 

well, the effect of the number of SVMs in random SVM 

cluster and corresponding balanced accuracy achieved there 

on is evaluated.   

The number of base SVMs in the cluster when crosses 18, 

the training accuracy becomes stable, and it becomes range 

bound when SVMs are in the range of 18 to 25. It has been 
observed through the experiments that adding excessive base 

SVM classifiers after reaching global maxima does not 

contribute to increasing the overall performance, and it 

remains range-bound. Further, it adds experimental training 

overhead and even leads to overfitting. So, we have used 18 

base SVMs in the final model. Further, the total number of 

features available is 168 per subject, which is manageable and 

hence does not require identifying “optimum features”.
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Fig. 5 The overall approach, train-test split, model evaluation, and overall system/model architecture of weighted random SVM cluster

The confusion matrix summarizes the classifier’s 

predictions compared to the actual class labels. It includes 

True Positives (TP), True Negatives (TN), False Positives 

(FP), and False Negatives (FN), providing a comprehensive 

evaluation of classifier performance. 

4.1. Accuracy 
The overall correctness of the classifier, i.e., “the ratio of 

correctly recognized samples to the total number of tested 

samples,” is also known as Balanced Accuracy (BA) and is 

calculated as follows.  

Accuracy =  
TP + TN

TP + FP + FN + TN
 

4.2. Precision 
The ability of the classifier to correctly identify positive 

instances (class) given by, 

Precision =  
TP

TP + FP
 

4.3. Recall 
The ability of the classifier to correctly identify all 

positive instances (class), also known as Sensitivity (SEN) or 

True Positive Rate (TPR), is given by, 

Recall =  
TP

TP + FN
 

4.4. Specificity (SPE) 
The ability of the classifier to correctly identify negative 

instances (class), also known as Ture Negative Rate (TNR), is 

given by, 

Specificity =  
TN

TN + FP
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4.5. F1-Score 
The F1 score is the harmonic mean of precision and recall. 

It provides a balanced measure that considers both precision 

and recall and is given by, 

F1 =  
2 ∗ ( precision ∗  recall)

(precision + recall)
 

The proposed approach achieved a maximum Balanced 

Accuracy (BA) of 84.87% for the classification task of MCI 

versus CN using FDG-PET neuroimaging data. Detailed 

performance metrics and other parameters are reported in 

Table 4, with graphical representations provided in Figure 6, 

and ROC-AUC characteristics are represented in Figure 7.  

Table 4. Performance evaluation of FDG-PET modality for MCI Vs CN 

ML Model – 

Weighted Random 

SVM Cluster 

Features Used 
MCI Vs CN 

BA SEN SPE F1 

SUVR 84.87 85.0 84.78 83.60 

 

 

 

 

 

 

 

 

Fig. 6 Classification accuracy of SUVR biomarker from FDG-PET for 

MCI Vs CN 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 ROC (mean and fold wise) and AUC curve for MCI Vs CN 

5. Conclusion  
PET has been proven to be a reliable tool for mapping the 

brain’s metabolism and can often detect disruptive changes 

within the brain before any structural atrophies are accessible 
through sMRI data. This makes it a good modality to derive 

biomarkers from and use this to build ML models to predict 

class labels. Biomarker SUVR, derived from FDG-PET, 

provides an efficient approach to measuring, analysing and 

detecting disruptive changes by applying ML methods and 

models. Many single SVM algorithms that deal with 

neuroimaging data have poor precision for classification 

because of limited availability and noise in the data. To 

address these issues, we have introduced the novel weighted 

random SVM cluster, which is the weighted ensemble of 

individual SVM and does a better job of classifying than a 

single SVM classifier.  

The AAL3 Atlas, which was used to measure brain 

connectivity, has 168 regions, which have more anatomical 

regions than its predecessor, AAL2 (90), or AAL. This makes 

it easier to divide the brain into smaller parts (fine-grain 

subdivisions) and facilitates accessing metabolic alterations 

very early, allowing for a better study of brain metabolism-

related alterations.The proposed methods developed here 

yield good classification accuracy for MCI vs CN task and 

have demonstrated good ROC/AUC curves, suggesting that it 

has the potential to access subtle and minor changes within the 

brain and is sensitive towards detection of MCI subjects. The 

training and test accuracy achieved indicates that the model is 

stable, effective and optimum. The quantified value of SUVR 

can aid clinicians in better diagnosis and build trust in the 

CAD system/model. 
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