
SSRG International Journal of Electrical and Electronics Engineering  Volume 11 Issue 7, 215-227, July 2024 
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I7P119    © 2024 Seventh Sense Research Group® 
          

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Forecasting Maximum Power Point in Solar Panels Using 

CNN-GRU  

Diaa Salman1, Yonis Khalif Elmi2, Abdullahi Sheikh Mohamed3, Yakub Hussein Mohamed4  

1,3,4Faculty of Engineering, Jamhuriya University of Science and Technology, Mogadishu, Somalia. 
2 Department of Electrical and Electronic Engineering, Cyprus International University, Nicosia, Northern Cyprus. 

1Corresponding Author : D.salman@just.edu.so  

Received: 09 May 2024 Revised: 11 June 2024 Accepted: 09 July 2024 Published: 26 July 2024

Abstract - The use of hybrid Convolutional Neural Network- Gated Recurrent Unit (CNN-GRU) models for solar panel 

Maximum Power Point (MPP) prediction is examined in this work. Improved solar energy forecasting accuracy is essential for 

grid integration and power-generating optimization. A novel CNN-GRU architecture that captures both temporal and spatial 

patterns present in solar energy data using a dataset that includes temperature, irradiance, and MPP characteristics is utilized. 

A comparison study with alternative hybrid architectures and individual GRU and CNN models. Model performance is evaluated 

by use of evaluation metrics such as coefficient of determination (R²), Mean Squared Error (MSE), and Mean Absolute Error 

(MAE). Results show that the CNN-GRU model achieves better accuracy in forecasting voltage (Vmp) and current (Imp) at the 

MPP than individual architectures. Furthermore, residual analysis and prediction against actual comparisons prove the efficacy 

and robustness of the suggested method. The practical ramifications of this study for renewable energy management and grid 

stability advance solar energy forecasting methods. 

Keywords - Solar energy forecasting, Maximum power point, Hybrid models, Predictive accuracy, Renewable energy 

optimization. 

1. Introduction  
A recent fast advancement in solar PV energy technology 

has made it possible for the PV market to expand and lower 

material costs. Thus, it is essential to make technological 
advancements to keep the system operating steadily. A battery 

management system that is capable of efficiently managing 

the energy that is stored in the battery, as well as MPPT 

algorithms that are able to monitor the power, which improves 

real-time efficiency, are two examples of many techniques and 

modules used for developing the PV system.  

Throughout the last ten years, photovoltaic systems have 

become the renewable technology with the quickest rate of 

growth and a crucial element of sustainable development. 

Though it has created much attention, the quick progress of 

photovoltaic power generation has also presented a problem 

[1].  

The primary components of photovoltaic power 

generation include characteristics such as the intensity of solar 

irradiation, the temperature of the module and its 

surroundings, wind velocity, and other parameters that are 

based on meteorological conditions [2]. Photovoltaic power 

production will be intermittent and fluctuating if any minute 

changes take place, such as the instability or inconsistency of 

the subsequent dependency. Sudden disruptive occurrences 

could have serious repercussions for the grid-connected and 

stand-alone PV power system that would be hard to monitor 

and quantify [3]. Predicting accurately how much power a PV 

system will generate is crucial, and it has been noted as one of 

the main obstacles to extensive PV integration. 

Solar forecasting basically gives the interested party—

grid operators, for example—away. They would have to 

ensure that the production and consumption of energy are 
balanced in order to reduce expenses and attain 

competitiveness and economic viability. When the grid 

operator has a variety of generating assets at their disposal, 

accurate solar forecasting enables the operator to allocate their 

controllable units optimally. 

In the event that a solar panel does not receive uniform 

irradiation, the circumstance that is known as partial shading 

may occur. A lot of different things could be the cause of this, 

including the presence of snow, passing clouds, surrounding 

buildings, towers, trees, and telephone poles. The PV panel’s 

Power versus Voltage (P-V) curve is altered to have multiple 
peaks as a result of this condition, which causes the curve to 

have a convex appearance. This is because the PV panel is able 

to produce more power than it consumes [4].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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In addition, it results in power losses and thermal stress 

on the photovoltaic panel at the same time. These adverse 

consequences are the result of the fact that specific 

photovoltaic cells within a photovoltaic panel become reverse-

biased when exposed to partial shading conditions [5].  

Traditional maximum power point tracking methods, 
which are intended to maximize the effectiveness of energy 

harvesting, are confronted with a challenge when confronted 

with the multi-peak power-voltage curve. It is unavoidable 

that a considerable amount of energy will be lost as a 

consequence of the fact that the present MPPT approaches are 

not designed to discover the global maximum power point. 

This, in turn, will result in a significant decrease in the 

efficiency of the PV system that is being considered. 

Furthermore, while they are in operation, these MPPT 

techniques usually find themselves confronted with issues 

such as sluggish convergence and power fluctuations in the 

steady state. 

The challenges with maximum power point tracking that 

arise in scenarios involving partial shade have, in general, 

been addressed in two different ways. This is how these 

solutions are presented. Approaches that are hybridized with 

MPPT are included in the first category of various solutions. 

Combining the traditional MPPT algorithms with 

optimization and heuristic methods results in the creation of 

these techniques [6].  

As part of the second category, unique MPPT strategies 

that are founded on heuristic methods are put forward for 

consideration. The approaches that fall under this category 
include, but are not limited to, simulated annealing [7], firefly 

algorithm [8], whale optimization [9], and team game 

optimization [10]. 

With regard to this particular domain, the Particle Swarm 

Optimization (PSO) maximum power point tracking method 

has shown an exceptional level of success in discovering the 

global maximum power point. However, this method has a 

slow tracking period, which leads to significant fluctuations 

and poor dynamic performance when the global maximum 

power point is being tracked [11].  

This is because the monitoring period is slow. One of the 

potential options that was investigated was the utilization of 
the PSO in conjunction with other techniques, such as the 

perturb and observe approach, in order to cut down on the 

amount of time that was necessary for tracking [12].  

Furthermore, certain modified PSO algorithms that 

implement some adjustments, such as adaptive parameters, 

were given [13]. This was done in order to improve the 

performance of the algorithm. Although these methods were 

designed to address certain PS situations, they still have a 

severe flaw, which is that they are unable to prevent becoming 

stuck in a local maximum power point. This is a significant 

limitation. It is feasible to come up with a more thorough 

solution. This can be accomplished by first gaining an 

understanding of the elements that lead to this behavior.  

Because the PSO MPPT method is a dynamical system, 

its stability and steady-state assessments in the partial shading 
conditions demonstrate these causes and provide insight into 

how its performance can be improved even further. This is 

because the PSO MPPT algorithm is a dynamical system. 

Because deep learning techniques may capture intricate 

non-linear correlations between solar power generation and 

related weather data, they have attracted special attention 

among forecasting techniques for solar generation [14].  

Deep Neural Networks (DNNs) belonging to the 

Convolutional Neural Network (CNN) class can automatically 

learn and extract relevant features for a specific task without 

the requirement for human feature engineering or task 

comprehension in advance [15]. Although computer vision 
applications were the original purpose for these networks, 

solar power forecasting has shown promise in recent years 

[15]. 

As the population and industries seek cleaner solutions, 

sunlight has become an essential component of the electricity 

generated and utilized all over the world; for this, it is required 

to ensure forecasting of the maximum power point in the solar 

panels. Nevertheless, this task is complex due to fluctuations 

in the surroundings, such as temperature and irradiance.  

The previous literature has mainly considered the usage 

of RNNs such as GRU or CNNs for this task. At the same 
time, few have investigated the application of the combined 

form of both architectures. However, there is no extensive 

comparison of the experiments to choose the best model 

architecture for the given application.  

This study aims to fill the above research gap with a clear 

objective of comparing and evaluating the performance of the 

chosen models, including GRU, CNN, GRU-CNN, and CNN-

GRU, in the task of MPP forecasting for solar panels. These 

hybrid models are expected to outperform the others because 

of the temporal dependencies obtained from the GRU 

mechanism and the spatial features extracted from the CNN. 

The primary goal is to find the best topology for forecasting 
the voltage and current at MPP to improve the photovoltaic 

system’s performance. 

This work compares and combines several unique 

advanced machine learning models, including GRU, CNN, 

GRU-CNN, and CNN-GRU, which is a fresh approach 

different from other related works. The goal is to determine 

where solar panels will generate the most incredible power.  
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An extensive study of a range of uses has been done on 

individual models, including CNN and GRU. Conversely, the 

combination of both models in GRU-CNN and CNN-GRU 

designs offers a unique approach to maximize the advantages 

connected with both recurrent and convolutional neural 

networks. This hybridization aims to improve the accuracy of 
predictions by combining the temporal dependencies and the 

spatial characteristics of the input data (Temperature and 

Irradiance). 

2. Problem Identification  
2.1. Models Overview 

Forecast solar electricity. This comparison takes into 

account the topologies of each model in addition to the 
assessment criteria that are associated with each model. Seven 

research studies are compared and contrasted in Table 1. 

These studies focus on different kinds of models, datasets, 

assessment measures, and notable discoveries.  

Researchers from all over the world carried out these 

investigations. Additionally, the structures of the GRU, CNN, 

and hybrid CNN-GRU models are depicted in Figures 1 

through 3, respectively. These figures display the architectures 

of the models [16, 17]. 

The main contribution of this work can be stated in the 

innovative approach to the models’ creation, which is based 
on the CNN and GRU deep learning networks that enhance 

the accuracy of solar power forecasting. The prior studies, for 

instance, Amreen et al. (2023) [18], are more concerned with 

employing GRU for hour-ahead, which demonstrates 

promising gains against conventional approaches.  

However, other researchers figured out that LSTM and 

CNN models can be used individually, as reviewed in a study 

carried out at Visvesvaraya National Institute of Technology 

(VNIT), Nagpur that applied LSTM, CNN, and Linear 

Regression (LR) models for forecasting of solar power for 

educational buildings. In this study, LSTM was established to 

be the fit model and was more accurate than CNN and LR.  

The study contributes to this area by combining the 

superiority of both CNN and GRU structures for a more 

accurate prediction of values. The CNN part learns spatial 

patterns from the input data, and the GRU layers learn 

temporal patterns, which are also more robust and 

comprehensive.  

The above experiments have also shown that this 

combined model outperforms the completely separate GRU 

and CNN models with the same inputs through the values of 

MAE and MSE. Therefore, eliminating the drawbacks of the 

approaches used and offering an efficient solution to improve 
the accuracy of the sun power forecast, this work enhances 

further investigations to enhance the efficiency of managing 

and repairing solar power plants. 

Using cutting-edge machine learning techniques, there 

have been major efforts made to enhance the accuracy of PV 

power forecasting, as can be seen from the review of the 

relevant literature. The authors such as Qing et al. (2022) 
proposed a novel multi-step ahead PV power forecasting 

model that includes data augmentation by TimeGAN, soft 

DTW-K-medoids clustering for extracting time series 

features, and a CNN-GRU hybrid neural network. This model 

was developed in order to forecast PV power in the future [19].  

Their model proved to have a better accuracy in 

predicting the weather conditions compared to the 

conventional methods as depicted by their model. In the same 

vein, For PV power forecasting, Abdellatif et al. (2024) 

examined the performance of three different models: the 

Bidirectional Long Short-Term Memory (Bi-LSTM), the 1D-

CNN, and the GRU. This was done mainly during the day and 
during the night [20].  

According to their findings, all the models they used had 

high accuracy, but Bi-LSTM and GRU surpassed 1D-CNN, 

especially in cases involving night-time data. Amit et al. 

(2023) proposed a new model, a differential attention-based 

model with CNN and BiLSTM as two parallel branches, with 

an attention mechanism for learning long-term dependencies 

and Bayesian optimization for hyperparameters tuning [21].  

They demonstrated significant enhancements in the 

predictive accuracy of their model when compared with the 

datasets originating from different regions. Altogether, these 
works collectively illustrate the constant improvement of PV 

power forecasting and the effectiveness of the hybrid and 

attention-based models in reaching higher accuracy and 

reliability in forecasting. 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Fig. 1 Architecture of GRU model [26] 
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Table 1. Comparison of studies on solar power forecasting models 

Reference Model Type Dataset Description Evaluation Metrics Main Findings 

[19] Hybrid CNN-GRU 

Data from two 50 MW PV 

power stations in Xinjiang, 

China. 

RMSE, MAE, R² 

The CNN-GRU model achieved superior 

accuracy, with lower RMSE values for 

both sunny and cloudy days. 

[22] 
Hybrid GRU and 

XGBoost 

Historical solar energy and 

NWP data from Tianchi 

UNiLAB and 

GEFCom2014. 

MSE, MAE 

The GRU-XGBoost model significantly 

reduced MSE and MAE, outperforming 

other models. 

[23] 

Various DL 

techniques, including 

CNN, GRU, LSTM 

Industrial PV plant datasets 

from various locations. 

RMSE, MAE, 

MAPE 

Hybrid DL models, especially CNN-

GRU, showed higher accuracy than stand-

alone models. 

[20] 
Bi-LSTM, GRU, 1D-

CNN 

207,088 samples from a 

rooftop PV system in 
Morocco. 

R², MAE, MSE, 
RMSE, ME 

Bi-LSTM, GRU, and 1D-CNN models 

provided high prediction accuracy, 
particularly in sunny conditions. 

[21] 

Hybrid CNN-

BiLSTM with 

Attention 

Real-time solar plant data 

from Australia and India. 
MSE, MAE 

The differential attention net improved 

MSE and effectively captured temporal 

dependencies. 

[24] 

LSTM, BiLSTM, 

GRU, BiGRU, 

CNN1D, CNN1D-

LSTM, CNN1D-GRU 

Data from a PV microgrid 

at the University of Trieste. 

RMSE, MAE, 

MAPE, r 

LSTM and GRU models provided the best 

results, with high correlation coefficients. 

[25] Hybrid WPD-LSTM 
Data from a PV system in 

Alice Springs, Australia. 

MBE, MAPE, 

RMSE 

The WPD-LSTM model outperformed 

other models, showing lower error values 

across different conditions. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Architecture of CNN model [27] 

 

 

 
 

 

 

 
 

 

 
 

 

 
Fig. 3 Architecture of hybrid CNN-GRU model [28] 
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2.2. Mathematical Formulations of GRU and CNN Models 

2.2.1. GRU Model Formulation 

One particular type of Recurrent Neural Network (RNN) 

is known as the Gated Recurrent Unit (GRU), which was 

designed specifically to identify correlations in sequential 

input sources. There are a great number of different types of 
RNNs as well; this particular one is one among them [29]. 

GRUs consist of gating units that modulate the flow of 

information inside the unit, as described by the following 

equations. 

𝑧𝑡 = 𝜎(∑𝑖=1
𝑛  𝑊𝑧𝑖𝑥𝑡𝑖 +∑𝑗=1

𝑚  𝑈𝑧𝑗ℎ(𝑡−1),𝑗 + 𝑏𝑧)   (1) 

𝑟𝑡 = 𝜎(∑𝑖=1
𝑛  𝑊𝑟𝑖𝑥𝑡𝑖 + ∑𝑗=1

𝑚  𝑈𝑟𝑗ℎ(𝑡−1),𝑗 + 𝑏𝑟)  (2) 

ℎ̃𝑡 = tanh(∑𝑖=1
𝑛  𝑊ℎ𝑖𝑥𝑡𝑖 + 𝑟𝑡 ∗ (∑𝑗=1

𝑚  𝑈ℎ𝑗ℎ(𝑡−1),𝑗) + 𝑏ℎ) (3) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ(𝑡−1) + 𝑧𝑡 ∗ ℎ̃𝑡      (4) 

Where, 

 zt is the update gate at time step t, controlling how much 

of the past state h(t−1)  is used. 

 rt is the reset gate at time step t, determining how much 
of the past state to forget. 

 h̃t is the candidate activation, a combination of the current 

input xt and the modulated past state. 

 ht is the final hidden state at time stept . 
 σ  is the sigmoid activation function. 

 tanh  is the hyperbolic tangent activation function. 

 Wzi,Wri , and Whiare weight matrices for the input 
features. 

 Uzj,Urj, and Uhj are weight matrices for the hidden states. 

  bz, br, and bhare biased terms. 

These equations enable the GRU to capture temporal 

dependencies effectively in sequential data. As illustrated in 

Equation 1, the update gate zt incorporates the current input 

and the previous hidden state, allowing the model to decide 

how much past information to retain.  

Equation 2 demonstrates the reset gate rt, which 

facilitates the forgetting mechanism by selectively resetting 

parts of the past hidden state. Equation 3 elaborates on the 

candidate activation h̃t, combining current inputs and 
modulated past states to form a candidate for the new hidden 

state.  

Lastly, Equation 4 shows the GRU output ht, merging the 

retained past information with the candidate activation to 

produce the final hidden state for the current time step [30]. 

2.2.2. CNN Model Formulation 

Convolutional Neural Networks (CNNs) are designed to 

process data with a grid-like topology, such as time-series data 

or image data. The critical components of a CNN include 

convolutional layers and pooling layers. The equations 

governing these layers are described below. 

Convolutional Layer Equation 

Y𝑖,𝑗,𝑘 = ∑  𝑀−1
𝑚=0 ∑  𝑁−1

𝑛=0 ∑  𝑐−1
𝑐=0 x𝑖+𝑚,𝑗+𝑛,𝑐 ⋅ W𝑚,𝑛,𝑐,𝑘 + 𝑏𝑘   (5) 

Pooling Layer Equation 

Z𝑖,𝑗,𝑘 = max
0≦𝑚<𝑃,0≤𝑛<𝑄

 Y𝑝𝑖+𝑚,𝑞𝑗+𝑛,𝑘   (6) 

Where, 

 Yi,j,k is the output feature map at position (i, j)  for the 

(K-th) filter. 

 xi+m,j+n,c is the input data at position (i +m, j + n) for 

channel c . 

 Wm,n,c,k is the weight of the filter at position m,n)for 

channel c and filter k. 

 bk is the bias term for the (K-th) filter. 

 Zi,j,k is the output of the pooling layer at position (i, j)  for 

the (K-th) feature map. 

 max  denotes the max-pooling operation, which selects 
the maximum value within the pooling window. 

The convolutional layer is responsible for computing the 

output feature map, as demonstrated in Equation 5. This is 

accomplished by applying a set of filters to the input data, 

which then effectively captures local patterns.  

As shown in Equation 6, the pooling layer is responsible 

for reducing the spatial dimensions of the feature maps. This 
allows for the retention of only the most significant 

characteristics while also improving computational efficiency. 

[31]. 

3. Methodology  
3.1. Establishing the CNN-GRU Model 

In this part, the CNN-GRU model’s design and setup for 

solar panel maximum power point predictions are described 

and illustrated in Figure 4. 

3.1.1. Input Layer 

First in the model is an input layer made to manage 

sequential data. More significantly, the features employed in 

prediction, such as the values of temperature and irradiance, 

are reflected in the input shape. The input data structure allows 

for the time-series character of the problem, which qualifies it 
for additional processing by the CNN and GRU levels. 

3.1.2. Layers of A Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are used by the 

first component of the model to extract spatial information 

from the input data. Local dependencies and patterns in the 

data are captured in significant part by the CNN layers. 

Comprising this arrangement are: 
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• The First Convolutional Layer: Uses several filters to 

carry out convolution procedures along the input stream. 

Non-linearity brought about by the ReLU activation 

function improves the model’s capacity to grasp intricate 

patterns. Batch normalization is the application of 

normalizing the convolutional layer output to stabilize 
and speed up the training process. 

• Layer 2 Convolutional: Further processing of the features 

obtained by the first layer is done by another 

convolutional layer. Using a bigger kernel size captures 

wider patterns. It ensures stability and efficiency 

throughout training by using batch normalization and 

ReLU activation, the same as the first layer. 

• Layers of Flattening: The multi-dimensional feature maps 

are flattened to produce a one-dimensional vector as the 

output of the CNN layers. This stage makes the data 

consistent with the input requirements of the GRU layers 

that follow, therefore preparing it for them. 

3.1.3. Reshape Layer 

The data is then reformed to have the proper size that the 

GRU layers need once it has been flattened. Maintaining the 

sequential character of the input, this reshaping is essential 

since it converts the data into a format that the GRU layers can 

handle efficiently. 

3.1.4. Layers of the Gated Recurrent Unit (GRU) 

The model captures temporal dependencies in the data 

using several GRU layers. Particularly well-suited for 

sequential data, GRUs perform well at time-series forecasting. 

Setup comprises: 

 First Layer of GRU: The many units in this layer process 
the altered data and generate return sequences. Through 

the capacity to return sequences, the model is able to 

record temporal dependencies over several time steps and 

process the input further by later GRU layers. 

 Extra GRU Layers: Complex temporal relationships are 

captured even more by the data processing of further 

GRU layers. These layers improve the capacity of the 

model to understand the sequence information included 

in the data, therefore generating more accurate forecasts. 

3.1.5. Dropout Layers 

A dropout layer has been included to help lower overfit 
and enhance model generalization. This layer generates a 

random drop of a given proportion of the units during the 

training process, which drives the model to acquire more 

robust properties that are less sensitive to particular training 

samples. 

 
Fig. 4 Hybrid CNN-GRU model architectur
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3.1.6. Dense Layers 

The last element of the model, which generates output 

forecasts, are very dense layers. Together, these layers make 

up the last component; inside, there are several layers: 

 Many deep layers, including ReLU activation functions, 

are generated once the GRU layers have been processed. 
Dense layers with drop out are the layers that show drop 

off. Dropout is also carried out to these deep layers in 

order to prevent overfitting and ensure that the model 

generalizes well to data not observed. This is carried out 

to guarantee the accuracy of the model. 

 Generation of the forecasts of the MPP (Vmp) and the 

current at MPP (Imp) depends on the last thick layers, 

sometimes referred to as the output layers. The output 

layers compute these forecasts. Every output layer is 

designed expressly to produce accurate projections for the 

goals that match it. The traits and patterns found by the 
layers before it help one to derive these projections. 

Dropout and thick layers, CNN and GRU layers, and 

other layers taken together produce an all-encompassing 

model. This approach can effectively include temporal and 

spatial dependencies in the data. Regarding the performance 

of solar panels, this model can generate reliable and consistent 

forecasts. 

3.2. Data Description 

The dataset that was utilized for this investigation is 

comprised of four primary components. Temperature, 

irradiation, voltage at maximum power point (Vmp), and 

current at maximum power point (Imp) are some of the 
variables that are being discussed in this context.  

As illustrated in Figure 5, temperature and irradiance are 

depicted as heatmaps, and each variable is represented in a 

matrix fashion. The correlation coefficients between variables 

are shown on the heatmaps; a perfect positive correlation is 

indicated by a value of 1.00, a perfect negative correlation of 

-1.00, and no correlation of 0.00.  

Remarkably, a 0.28 correlation between temperature and 

irradiance is found, indicating a relatively positive association 

between both environmental variables.Moreover, while the 

correlation between Irradiance and Vmp is 0.29, indicating a 
slightly stronger positive association, the correlation between 

the temperature and Imp is recorded as -0.019, suggesting a 

faint negative link.  

Similar connections between Imp and Imp, irradiance and 

Imp, and temperature and Vmp are also shown. Important new 

information on the interrelationships among the factors 

important for solar energy forecasting is provided by this data 

description [32]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 5 The correlation matrix of the data 

3.3. The Workflow of the Study 

The work is divided into multiple critical phases to 

guarantee an accurate and systematic approach to employing 

powerful machine learning models to forecast the highest 

power point in solar panels, as illustrated in Figure 6 and in 

the following steps: 

Step 1 : Preprocessing and cleaning of the data starting with 

the dataset preparation for analysis is the first step. 

This covers managing missing values, standardizing 

the data, and making sure every feature is formatted 

correctly for model input. Increased accuracy and 

efficiency of the machine learning models depend 

on appropriate data cleaning and preparation. 

Step 2 : Model selection, where several machine learning 

architectures are used to find the best model for the 

forecasting problem. Considered models are 

Convolutional Neural Network (CNN), Gated 

Recurrent Unit (GRU), CNN-CNN (a hybrid of 
GRU and CNN), and CNN-GRU (another hybrid 

architecture with a different layer sequence). The 

choice of the most effective method depends on this 

procedure since every model has particular benefits 

in terms of gathering various sections of the data. 

This is so as every model offers certain benefits. 

Step 3 : Following the completion of the cleaning and 

preprocessing of the dataset, the next step is to build 

training and testing subsets of the dataset. The 

training set is used to instruct the models, while the 

testing set is used to evaluate how well they 
perform. In order to determine the extent to which 

the models can be generalized, it is required to 

divide them. 

Step 4 : Training and testing of the models: The training 

dataset is used to train each chosen model. The 

models pick up mapping the input properties 

(temperature and irradiance) to the output targets 

(Vmp and Imp) during this stage. The models are 
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evaluated for their predictive power on the testing 

dataset following training. The optimal 

performance of the models is achieved by fine-

tuning their hyperparameters in this stage. 

Step 5 : The trained models are assessed using a number of 

performance indicators, such as the coefficient of 
determination (R²), Mean Absolute Error (MAE), 

and Mean Squared Error (MSE). The quantitative 

evaluation of the accuracy of each model in 

forecasting the highest power point in solar panels 

is given by these criteria. 

Step 6 : The model with the most fantastic accuracy and 

generalization ability is chosen as the best model 

based on the performance evaluation. The best 

model is identified as the investigation comes to an 

end if its performance satisfies the required 

standards. In the absence of such, the process loops 

back to the model selection stage to reevaluate and 
maybe modify the model selection procedure, 

guaranteeing ongoing enhancement and 

optimization of the forecasting model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 The workflow and model selection flowchart 

4. Results and Discussion  
4.1. Performance Evaluation  

The performance metrics for the four models; GRU, 

CNN, GRU-CNN, and CNN-GRU-in forecasting the 

maximum power point parameters; Vmp (Voltage at 

Maximum Power Point) and Imp (Current at Maximum Power 

Point) are thoroughly compared in Table 2. Metrics assessed 

include the coefficient of determination (R³), Mean Squared 

Error (MSE), and Mean Absolute Error (MAE). 

At an MAE of 0.08651, an MSE of 0.0379, and a R² of 

0.98664 for Vmp, the GRU model performs really well. It 

accomplishes for Imp an R² of 0.99401, an MSE of 0.0288, 

and an MAE of 0.13421. Though it does well overall, 
especially in terms of R² for Imp, the GRU model does not 

outperform the other models. 

By contrast, the CNN model has an R² of 0.98055, a 

higher MAE of 0.15108, and an MSE of 0.0552 for Vmp. It 

obtains for Imp an R² of 0.99551, an MSE of 0.0216, and an 

MAE of 0.10899. Although the CNN model predicts Imp 

somewhat better than Vmp, generally, its accuracy for Vmp is 

not higher than that of the GRU model. 

At an MAE of 0.09090, an MSE of 0.0326, and a R² of 
0.98851 for Vmp, the hybrid GRU-CNN model shows better 

performance. With an MAE of 0.07018, an MSE of 0.0081, 

and an R² of 0.99831, this model much beats the prior ones for 

Imp. These findings imply that improved overall performance 

can be obtained by merging GRU and CNN layers to catch 

more intricate patterns in the data. 

Lastly, albeit having a somewhat higher MSE for Imp at 

0.0504, the CNN-GRU model performs the best for Imp 

prediction with an MAE of 0.05042. Its greatest R² of 0.99912 

for Imp indicates a perfect fit. It records for Vmp an R² of 
0.98631, an MSE of 0.0389, and an MAE of 0.07130. The 

CNN-GRU model yields competitive results even though its 

MSE for Vmp is lower than that of the GRU-CNN model. 

In conclusion, the resilient choice is the GRU-CNN 

model, which provides a balanced performance with low 

MAE and MSE and high R² values for both Vmp and Imp. 

But, since the CNN-GRU model predicts Imp so well, it seems 

to be better at capturing the current-related patterns. These 

results emphasize the advantages of hybrid models in solar 
energy forecasting applications that take advantage of both 

GRU and CNN architectures. 

Figure 7, showing the relationship between Loss and 

Epoch for the various models across 1000 epochs, offers 

important information about their training characteristics. 

Effective learning and convergence are indicated by the GRU 

model’s constant loss drop in Figure 7(a), which is consistent 

with its comparatively low MAE and MSE for both Vmp and 

Imp.  
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Table 2. A comparison between the model’s performances 

Model MAE MSE R² 

GRU 
Vmp 0.08651 0.0379 0.98664 

Imp 0.13421 0.0288 0.99401 

CNN 
Vmp 0.15108 0.0552 0.98055 

Imp 0.10899 0.0216 0.99551 

GRU-CNN 
Vmp 0.09090 0.0326 0.98851 

Imp 0.07018 0.0081 0.99831 

CNN-GRU 
Vmp 0.07130 0.0389 0.98631 

Imp 0.05042 0.0504 0.99912 

Given its greater MAE and MSE for Vmp, which may not 

adequately capture temporal dynamics-Figure 7(b) displays 

the CNN model with a comparable but less noticeable loss. 

Drawing on the temporal sequence management of the GRU 
and the pattern recognition capabilities of the CNN, Figure 

7(c) shows a more noticeable reduction in loss. Higher R² 

values and reduced MAE and MSE for this hybrid model, 

especially for Imp, indicate improved predictive accuracy. 

Finally, Figure 7(d) for the CNN-GRU model combines the 

advantages of both architectures for efficient sequence 

learning and feature extraction with an early fast loss 

reduction followed by a slow fall. This model performs 

remarkably well in current prediction, as seen by its lowest 

MAE and greatest R² for Imp. Both hybrid models outperform 
the individual GRU and CNN models overall; the CNN-GRU 

model excels in Imp prediction, demonstrating the benefits of 

combining convolutional and recurrent layers for precise solar 

energy forecasting, while the GRU-CNN model achieves the 

best balance for Vmp and Imp predictions.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Comparison of model loss across epochs for (a) GRU, (b) CNN, (c) GRU-CNN, and (d) CNN-GRU architectures. 
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Fig. 8 Comparison of model MAE across epochs for (a) GRU, (b) CNN, (c) GRU-CNN, and (d) CNN-GRU architectures. 

Four subfigures in Figure 8 show how Epochs and MAE 

relate to the GRU, CNN, GRU-CNN, and CNN-GRU models. 
Four curves representing training and validation MAE for 

both Vmp and Imp are shown in each subfigure. The GRU 

model is shown in Figure 8(a) with a consistent drop in MAE 

for both training and validation sets, showing strong 

generalization but with a slightly larger validation MAE, 

particularly for Imp, reflecting middling performance.  

With larger values for both training and validation sets, 

especially for Vmp, Figure 8(b) for the CNN model shows a 

less consistent decrease in MAE, indicating its reduced 

efficacy in capturing temporal dependencies. Because of the 

combined strengths of the GRU and CNN layers, the GRU-

CNN model shows a more noticeable and smoother fall in 
MAE across all curves (Figure 8(c)).  

At last, Figure 8(d) for the CNN-GRU model highlights 

its better performance in current prediction by displaying the 

most significant decrease in MAE, especially for Imp, where 

it obtains the lowest values. The GRU-CNN and CNN-GRU 

models perform better than the individual GRU and CNN 

models; CNN-GRU excels in Imp prediction, which is 

consistent with the already noted metrics. 

Figure 9 gives an understanding of the predictive 

accuracy of the CNN-GRU model by comparing the projected 
values with the actual values for both Vmp and Imp. With a 

near alignment between the anticipated and real values, Figure 

9(a) shows the model’s great accuracy in predicting the 

maximum power point voltage.  

The model’s accuracy in forecasting the current at the 

maximum power point is seen by the prediction vs. actual Imp 

plot in Figure 9(b), where the projected and fundamental 

current values are pretty similar. As previously noted in the 

performance measures, the CNN-GRU model’s effectiveness 

and superior performance in solar power prediction tasks are 

highlighted by this high degree of correlation in both 

subfigures. 

Subfigures (a) and (b) of Figure 10 illustrate the 

correlation between residuals and frequency for Vmp and Imp, 

respectively, using the CNN-GRU model. The frequency at 

which various residual values occur is shown in Figure 10(a) 

by the distribution of residuals for Vmp, which also offers 

information about the prediction errors of the model and their 

dispersion around zero, therefore revealing the accuracy and 

possible biases in the voltage forecasts.  
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Fig. 9 Prediction vs. Actual values for (a) Vmp, and (b) Imp Using the CNN-GRU model. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 10 Residual analysis for CNN-GRU model for (a) Vmp, and (b) Imp.

Similar residuals for Imp are shown in Figure 10(b), 

which emphasizes the frequency and distribution of errors in 
the present forecasts. Strongness in the prediction of voltage 

and current at the maximum power point would be 

demonstrated by a closely centered distribution around zero 

for both subfigures. 

4.2. Results Analysis 

As for the findings of this study, it presented a new model 

fusing CNN and GRU to forecast the maximum power point 

of solar panels. The above evaluation proves that our CNN-

GRU model has a better performance compared to the other 

models, which could be attributed to the following aspects.  

To begin with, hybrid architecture takes the best from 

CNN and GRU, and their combination allows us to reach our 
goals more quickly and with less effort. CNNs perform very 

well in learning spatial features of the input data to discover 

local representations in the irradiance and temperature.  

This is to ensure that variability and intermittency of solar 

power data are managed in the best way possible through this 

spatial feature extraction. Indeed, GRUs are intended to model 

temporal dependencies, so a time series forecasting problem 
is more suitable for them. Thus, using CNNs in parallel with 

GRUs, the proposed model is capable of extracting high-

quality spatial features and effectively learning temporal 

dependencies by increasing predictive accuracy.  

Secondly, bidirectional GRU layers, which are 

incorporated into the network, also help the model capture 

information flow from the data. Classic GRUs work with the 

sequence data in a one-way manner, which can potentially 

leave details about relations between various time points 

unnoticed.  

This shortcoming is handled effectively by bidirectional 

GRUs since the data is processed forward and backwards, 
which helps capture more temporal dependencies. 

Bidirectional to this flow, much contribution to the model 

meant for the identification of both Vmp and Imp is achieved.  

Dropout layers and batch normalization applied to the 

model also reduce overfitting and provide stability for 
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training. Dropout layers temporarily eliminate a percentage of 

the neurons in a network during training to enhance the 

network’s feature learning process. On the other hand, batch 

normalization normalizes the output of every layer, which has 

a direct impact on increasing the rate of training and the 

stability of the model. These techniques generally improve the 
ability of the model to perform well when used on data that 

was not used in its training, hence increasing its generality.  

In regard to the performance of these models, it can be 

inferred that the proposed CNN-GRU model outperforms the 

stand-alone GRU and CNN models for the specific task. 

Although the stand-alone GRU model is sensitive to temporal 

dependencies, it is incapable of learning spatial features that 

are very important to solar power forecasting. The stand-alone 

CNN model is adept at spatial feature extraction but is 

inadequate when it comes to temporal modeling. 

5. Conclusion 
A thorough investigation of forecasting MPP in solar 

panels using a variety of neural network architectures: GRU, 

CNN, GRU-CNN, and CNN-GRU models is presented in this 

article. It is clear from thorough testing and assessment that 

the hybrid models-more significantly, GRU-CNN and CNN-

GRU outperform individual GRU and CNN models in terms 

of accuracy measures like MAE, MSE, and coefficient of 
determination (R²). While the CNN-GRU model shines 

especially at current prediction, the GRU-CNN model strikes 

a delicate balance between precise voltage (Vmp) and current 

(Imp) predictions. Furthermore, confirming the correctness 

and robustness of the CNN-GRU model is a residual analysis. 

These results highlight how well convolutional and recurrent 

layers combined to capture temporal and spatial patterns, 

respectively, to improve solar energy forecasting prediction 

performance. Through its insights into the use of sophisticated 

neural network architectures to enhance MPP prediction in 

solar panels, the work advances the area of renewable energy.  

Future studies might enhance prediction performance 
even more by investigating more hybrid designs or adding 

attention techniques. Real-time data streams and outside 

variables like weather forecasts could also improve the 

robustness and application of the models in real-world solar 

energy systems. Evaluation of the model’s performance in 

different environmental settings and scaling up to more 

enormous datasets for broader applicability and validation 

could be the main topics of future study. 
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