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Abstract - In minimizing the fuel cost through dispatch strategies by allocating power generation, Multi-Area Economic Load 

Dispatch (MAELD) poses a severe problem. The balance limitations must be met for the power distribution in economical load 

dispatch, and the generating limit, transmission line, and power balance limitations must be fulfilled. Traditional methods fail 

miserably when used to MAELD because of their complexity and non-linear issues. Many more metaheuristic algorithms have 

been used to solve the economic dispatch problems. In this research, an improvised version of the Deep Recurrent Neural 

Network model (DRNN) based on Long Short-Term Memory (LSTM) has been used to solve MAELD problems for four areas 

with a 3, 13 and 40-unit system. The LSTM algorithm combines the efficiency and diversity of heuristic search techniques with 

the subsistence of the most vital premise on or later evolutionary algorithms. This method eliminates the need on the way to 

comprehend the gradient of the optimization problem during the optimization search. The algorithm’s performance was 

examined in various unit systems, and fine-tuning the parameters reveals its unique qualities and vulnerabilities in the most 

appropriate applications. Compared to the other metamorphic procedures, the recommended system minimizes cost, valve point 
loading, and emission. Multi-Area Economic Load Dispatch solved three separate test scenarios. Using LSTM optimization 

methods, the optimal demand sharing of power-generating units is assessed. The simulation findings, generated using the 

MATLAB/Simulink platform, show that LSTM delivers high-quality cost solutions without violating constraints. 

Keywords - MAELD problem, Long Short-Term Memory, Evolutionary, Yield, Optimization.  

1. Introduction 
The most critical issue or problem with system 

administration’s optimization is ‘Economic Dispatch (ED). In 

order to take into account the operational and physical 

constraints in a particular area, ED distributes load demand 

among the deployed generators in an extremely financially 

efficient manner. The generators are often separated and are 

interested in several generation regions that remain connected 

through tie lines. Economic dispatch has been expanded by 

Multi-Area Economic Load Dispatch (MAELD). The 

economic allocation of different generators remains termed 

system demand within the multi-area, considering all 

constraints [1].  

Reducing emissions while minimizing fuel expenditures 
is the purpose of Economic Emission Dispatch (EED), a 

multiobjective optimization issue. MAELD determines 

production intensity and power exchange sandwiched among 

areas that lower the overall gasoline cost across the whole 

region while meeting power balance limits, generating 

limitations restrictions, and addressing tie-line capacity issues. 

Transmission constraints are routinely ignored when solving 

the economic dispatch problem. 

Nevertheless, several scholars must consider the 

limitations of transmission capacity. Spinning Reserve 

Requirements (SRR) are considered nontrade. They take this 

into view by participating in the power pool electric market 

environment, which can further improve the system’s 

economic and technological elements and the dependability 

performance of energy production. Combining EED with 
renewable energy sources, such as wind power, allows 

researchers to take advantage of the intermittent nature of 

renewable energy while still optimizing power system 

functioning. More efficient use of renewable energy sources, 

less dependence on fossil fuels, and progress towards energy 

sustainability and environmental objectives are all outcomes 

of this integration.  

Therefore, the research gap solution of obtaining an 

effective and powerful optimization technique is essential for 

resolving the MADED problem. Several optimization 

techniques have addressed the ED problem, including 
mathematically-based and metaheuristic-based evolutionary 

algorithms. However, there are issues with the current 

algorithm-based MAELD. Hence, this research technique 

employs a fresh way of MAELD.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Multi-Area Economic Load Dispatch (MAELD) pleases 

multiple constraints simultaneously. In this research, the 

problem statement, the minimization of fuel cost in multi-area 

systems, has been considered when applying different unit 

systems. In this study, a new meta-heuristic method for power 

generation scheduling with transmission line constraints has 
indeed been proposed.  

On the road to escape from local traps due to the fast 

emergence of the complexity of the problems in the economic 

load dispatch, high-speed real-time computations are evolved 

to attain accurate results. The other approaches in various 

algorithms that give a smaller computational time with a low 

participation factor were used to solve the preceding MAELD 

problems [1]. However, the computation effort to solve the 

problem is much more in these algorithms. There are many 

types of fast convergence search algorithms.  

The classifications of nature-inspired are compared in 

many ways in previous literature papers, and comparative 
results have been proposed. Neural Search techniques and 

machine learning are commonly used due to recent 

technologies. Investigation of norm maximization with Linear 

Discriminant Analysis paved the way for the efficiency of 

nature-inspired algorithms [2].  

The proposed deep recurrent neural network model 

constitutes a fast and evolving method that provides faster 

real-time computations. In this study, LSTM started 

addressing fuel-related issues with economic load dispatch 

and minimizing fuel costs using four generation units and four 

areas. It also allowed us to efficiently use systems with 3, 13, 
and 40 units.  

DRNN algorithm search optimization is valuable to 

obtaining accurate results in ED challenges. Taking part in 

multi-area networks, it has also been shown to be the best 

algorithm for categorizing and maximizing the economy’s 

generation scheduling. Towards solving every Economic and 

Emission Load Dispatch (EELD) challenge, current research 

suggested combining the robust and dependable algorithms of 

the DRNN algorithm. 

The outcomes, compared to other intelligent 

methodologies, confirm the prospective presented algorithm’s 

potential and efficacy. The goal function of the optimization 
issue is to reduce fuel expenses and emission rates to a 

minimum.  

We look at five distinct approaches to evaluate LSTM’s 

performance compared to other optimization techniques: 

Grasshopper Optimization (GO), Squirrel search 

Optimization (SO),  Salp Swarm Optimization (SSO), and 

Firefly Optimization (FFO). 

The following are the primary goals of the suggested 

approach: 

 To develop and implement an improvised DRNN-based 

LSTM model for solving MAELD problems. 

 In order to test the suggested LSTM model’s efficacy on 

a range of unit systems. 

 To evaluate the suggested LSTM model’s cost-cutting 

capabilities in comparison to preexisting metaheuristic 

algorithms. 

 To maximize accuracy and efficiency in MAELD 

applications by adjusting the LSTM model’s parameters. 

Continuing with the paper’s structure, Section 2, 

literature review delves into previous Multi-Area Economic 

Load Dispatch (MAELD) studies, pointing out the 

shortcomings of traditional optimization methods and the 

merits of metaheuristic algorithms for dealing with non-linear 

complexity. Section 3, problem formulation, outlines the 
MAELD problem, focusing on fuel cost minimization and the 

associated constraints, including generating limits, 

transmission line constraints, and power balance 

requirements.  

Section 4, proposed methodology, describes the 

procedural steps of the LSTM approach in addressing 

MAELD, detailing how the improvised DRNN-based LSTM 

model is applied to optimize power distribution. Section 5, 

LSTM implementation in MAELD, presents the 

implementation process, simulation findings, and analysis of 

results, showcasing the model’s performance across various 

unit systems.  

Section 6, conclusion, summarises the key research 

outcomes, implications of the findings, and potential future 

directions for further improving MAELD solutions using 

advanced neural network models. 

2.  Literature Review 
Materials are harmed by it by increasing global warming 

and diminishing visibility. The emission-dispatching 

approach is preferable because it seeks to simultaneously 

decrease fuel costs and emissions [3–7]. The optimization of 

solutions to minimize fuel costs has been the most challenging 

aspect of economic load dispatch. Meta-heuristic-based 

hybrid approaches have recently demonstrated tremendous 

success in various applications [8]. They are iterative 

techniques that can adjust their various parameters to optimize 

the cost of fuel, which will then optimize the cost function. 

Among the most recent categories for nature-inspired 

algorithms include tangible, Chemical-based, Local Search 

Algorithms (LSA), Swarm Intelligence, Evolutionary 
Algorithms (EAs), and Human-based algorithms [9, 10].  
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This nature-inspired algorithm paved the way for 

optimization in different applications, especially in economic 

load dispatch problems. Numerous additional application-

specific techniques, like feature extraction - GWO [11], covid-

19-optimization [12], Jaya- machine learning [13], load 

dispatch -salp swarm [14], and mathematical optimization 
[15]. Machine learning and optimization use neural-based 

approaches also used in the new trends of optimizing dispatch 

problems [16].  

Due to the explanation of global energy production and 

consumption, conventional load forecasting based on 

economic load dispatch was indicated during COVID-19 and 

was shared in the paper [17]. An antagonistic theory-based 

turbulent grasshopper algorithm was employed in hybridized 

wind-based power systems to maximize reliable economic 

dispatch. The accuracy and efficacy of the suggested 

technique were corroborated on 6-unit and 10-unit dynamic 

load problems instead of traditional wind-based systems [18].  

This work reviews different evolutionary methods for 

Multi-Area Economic Load Dispatch and compares 

(MAELD). The study provides a thorough evaluation of the 

searchability and merging comportment of Classical 

Differential Evolution (DE) besides numerous techniques to 

solve MAELD issues for both test power systems, the 

traditional Particle Swarm Optimization (PSO) and an 

upgraded PSO through constraint computerization method 

featuring Time Varying Acceleration Coefficients (PSO 

TVAC) are both used [19].  

An analysis of a 48-bus power system serving two areas 
is the subject of this paper’s [20] examination of multi-area 

economic despatch using the Swarm intelligence technique. 

Unscented transformation is used in a parallel process of 

MAELD to account for the uncertainty effect and maintain 

independence in MAELD situations [21].  

Although the standard PSO effectively tackles the ED 

problem, it has certain limitations. The parameters of a typical 

PSO significantly impact how well it performs, and it can get 

stuck in local optima and prematurely converge [22]. By 

integrating PSO with chaotic equations like the logistic 

equation, the Chaotic PSO (CPSO) method has been 

suggested to address the limitations of the standard PSO [22–
24].  

Researchers have also integrated it with GA and used this 

hybrid approach across other disciplines [25, 26]. A Multi-

independent based on Squirrel Search Algorithm (MOSSA) 

was presented by the author within [27] to address the Multi-

Area Economic/Environmental Dispatch (MAEED) issue.  

The MAEED conundrum was also solved using the 

Exchange Market Algorithm, Artificial Bee Colony, and 

Squirrel Search Algorithm-based Weighted Sum 

Methodology using expense forfeit components. The 

suggested strategy’s suitability was approved for 40 producing 

entities, including single combined with multiple field power 

systems. The paper [28] implemented a method called 

Multiobjective Particle Swarm Optimization to address load 

dispatch unruly between steam and wind turbines whilst 
contemplating ecological factors in multi-area power systems 

and utilizing a mean value with wind energy density, 

technologically sophisticated methodologies specified 

holding area and additional cost in the Economic Load 

Dispatch (ELD) problem’s target function and several factors. 

A Salp Swarm Algorithm (SSA) optimized approach was 

developed in the paper [29]. The study uses SSA to suggest a 

resolution to the challenging limited Multi-Area Economic 

Load Dispatch problem for mutually stochastic wind 

integration- and stochastic wind-free power systems. Four 

distinct constrained test cases with various dimensions and 

levels of complexity have been the subject of simulation 
investigation.  

The publication [30] suggested a new optimization 

approach to resolve the problem. The Grasshopper 

Optimization Algorithm (GOA) was employed to solve the 

MAELD algorithm more efficiently. The swarming behaviour 

of grasshopper insects served as the basis for the recently 

developed swarm-based optimization method known as GOA.  

The method was tested using three distinct issue studies, 

and the outcomes were associated with various meta-

heuristics to show that the system could successfully solve 

MAELD problems. A more advanced fireworks algorithm 
included two efficient cross-generation mutation strategies to 

solve multi-dimensional and multi-constraint MAELD issues 

[31].  

A multiobjective load dispatch method using information 

mining technologies was presented and proved in [32] for 

applying significant coal plants. For energy-integrated 

systems, researchers have suggested an LSTM-based LF 

technique that uses multi-feature data and dynamic, similar-

day meteorological information. Feature engineering 

techniques are utilized in the construction process daily. 

Grey correlation analysis with the Gaussian Mixture 

Model. To forecast multiple loads, Sis is also used to pick the 
features of the days that are most connected with each other to 

determine the weights for construction on comparable days 

[33]. Integrating the LSTM model used for load forecasting 

can achieve optimal outcomes in cost minimization within 

economic and emission dispatch problems.  

The main novelty of this optimization approach in 

MAELD is minimizing multi-area economic fuel costs with 

the efficient improvised LSTM technique. The test system has 

been formulated to optimize the minimum cost of all 
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generating units in MATLAB / Simulink. The LSTM’s 

optimization flow optimization gives excellent advantages 

when applying MAEED problems. 

3. Problem Formulation 
3.1. Objective Function and Constraints 

3.1.1. Fuel Cost Minimisation  

The chief goal appropriate to the optimization method 

must be the road to cut the total cost of all generation areas 

while keeping emission costs low. The initial focus of the 

research was on minimizing the cost of gasoline while meeting 

various limitations.  

The total fuel expenditures for all generating units make 

up the optimization problem F. 

𝐹𝑖(𝑃𝑖) = 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 + 𝑒𝑖 × sin⁡(𝑓𝑖 × (𝑃𝑖

𝑚𝑖𝑛 − 𝑃𝑖))   

(1) 

Someplace ai, bi, ci, di, ei are cost curve constants of the 

ith unit, Pim is the output power of ith unit at time m, and Fi(Pi) 

represents fuel cost of area I and P represents power generated 

by ith area generator. N becomes the total quantity of 

generating units, M becomes the total number of hours around 

the time horizon, and Pi remains a lower production limit for 

the ith unit.  

𝐹(𝑃𝑚𝑖) =

{
 
 

 
 
𝑎𝑚𝑖1𝑃𝑚𝑖

2 + 𝑏𝑚𝑖1𝑃𝑚𝑖 + 𝐶𝑚11, … , if …𝑃𝑚(𝑚𝑖𝑛) ≤ 𝑃𝑚𝑖 ≤ 𝑃𝑙1 , fuel..1 

𝑎𝑚𝑖2𝑃𝑚𝑖
2 + 𝑏𝑚𝑖2𝑃𝑚𝑖 + 𝐶𝑚𝑖2, …  if …𝑃𝑙1 ≤ 𝑃𝑚𝑖 ≤ 𝑃𝑙2, fuel …2

…
…
𝑎𝑚𝑖𝑘𝑃𝑚𝑖

2 − 𝑏𝑚𝑖𝑘𝑃𝑚𝑖 + 𝐶𝑚𝑖𝑘 , …  if …𝑃𝑚𝑖𝑘−1 ≤ 𝑃𝑚𝑖 ≤ 𝑃𝑚𝑖(𝑚𝑎𝑥), fuel..k 

  

 (2) 

Where k is the available fuels and amik, bmik, and cmik are 

the fuel cost coefficients of the ith unit of the mth region.  

Min⁡𝐹𝑟 = ∑  𝑁
𝑖=1 𝐹𝑖(𝑃𝑖) + ∑  𝑀−1

𝑗 𝑓𝑖𝑇𝑗(𝑀−1) (3) 

The cost function for the tie line electricity stream from 

area j to the area is called Fi (M-1). 

The generation cost function is built using the knowledge 

gained during high-temperature evaluation, where 

information about the operational zone’s feedback is gathered. 

On big turbine generators, many fuel intake valves are 

frequently present and thus are opened one at a time when the 

unit needs to increase production.  

The heat rate dramatically increases whenever a valve 

opens, instantly raising throttling losses. The nozzle effects, 
which also cause swirls around heart-rate curves, cause an 

objective function to be irregular and nonconvex and have 

several bare minimums. 

3.1.2. Constraints 

Power Stability Restrictions  

The power stability constraints [36] designed in place of 

region m neglecting losses can be given as  

∑  𝑁
𝑖=1 = 𝑃𝑖𝑚 = (𝑃𝐷𝑚 + ∑  𝑀−1

𝑗 𝑇𝑗(𝑀−1)) = 0 (4) 

Instead of m = 1, 2, 3,…..M (Areas). PDm is the load 

demand in the mth area and Ti is a symbol of tie line flows to 

the jth area from the other areas.  

Generating Maximum Restraints  

A unit’s capacity output should be distributed between its 

smaller and upper absolute power generation limits while 

specified with 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥𝑖 = 1,2,… ,𝑁 (5) 

Tie-Line Limit Constraints 

The maximum and minimum tie line energy in area j 
should be utilized. 

𝑇𝑗(𝑀−1)
𝑚𝑖𝑛 ≤ 𝑇𝑗(𝑀−1) ≤ 𝑇𝑗(𝑀−1)

𝑚𝑎𝑥 𝑗 = 1,2,… ,𝑀 (6) 

Someplace Tj remains the power flow through the tie line.  

4. Proposed Methodology 
Members of the deep learning community have 

developed networks with Long Short-Term Memories 

(LSTMs). To circumvent the vanishing gradient issue and 

capture long-term dependencies in sequential data, the 

development of Recurrent Neural Networks (RNN) was the 

Long Short-Term Memory (LSTM) network. Although it 

cannot keep data long, RNN cannot deal with long-term 

dependencies. The architecture now incorporates the LSTM 

without modifying the training model, thanks to eliminating 

the vanishing gradient problem.  

Figure 1 depicts the algorithm’s training and testing flow 
diagram from the proposed methodology. To get the best 

possible initial values for the LSTM model’s parameters, the 

model is trained first. Next, the data is used to test the trained 

model and make predictions. By iteratively refining the model, 

it is possible to attain satisfactory outcomes and a data flow 

chart of the LSTM model architecture to calculate the cost and 

valve point effect in the effective test system. The processed 

data is given for training with parameter initialization, which 

takes place in the model. This step involves processing data 

before feeding it into the algorithm. The raw historical data 

has been subjected to feature engineering to eliminate outliers, 
detect duplicate data, and fill in missing information. The 

training and testing data sets are separated to evaluate the 

suggested LSTM model’s predicting capabilities. 
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Fig. 1 Flow chart of the proposed methodology with the LSTM model 

Figure 2 represents the LSTM architecture that is useful 

for cost dispatch problems. The data are simulated in the 

LSTM training model according to the architecture: hidden 

state (new), ht-1 is a hidden state (previous), Ct is new cell state, 

Ct-1 is previous cell state, and Xt is input data.  

This paradigm is also functional when dealing with 

continuous values and noise. Eliminating the requirement to 

maintain a fixed set of states is one of the many advantages 

LSTMs offer over Hidden Markov Models (HMMs). Learning 

rates, input biases, and output biases are only a few of the 

many customizable factors available to LSTMs, in contrast to 
HMMs with a fixed number of states. The network can adapt 

and perform better since these parameters give control and 

flexibility while learning. 

4.1. Procedural Steps in the LSTM to MAELD 

Economic Dispatch (ED) often mainly addresses cost 

reduction, but with pollution reduction becoming a legal 

necessity for environmental protection, depreciation of 

emission content has also emerged as a crucial issue. A 

complex Multiobjective Optimization (MOO) issue with 
competing objectives is Environmental Economic Dispatch 

(EED) [34, 35]. Many optimization algorithms are proposed 

for EED, but challenges remain. To solve that problem, this 

research methodology proposed a novel long-short-term 

memory algorithm for MAELD.  

4.2. Renewable Energy Framework -MAELD 

Figure 3 displays the block diagram for integrating 

Renewable energy with the proposed method in multi-area 

load dispatch. The block diagram above shows how to 

incorporate sources of renewable energy and demands into the 

recommended optimization method. To meet the needs of the 

various unit systems under consideration, the generating units 
have received wind and solar power. Firstly, the research 

methodology derived problem formulation (i.e., objective 

function) of the proposed methodology; this research 

methodology considers the multiobjective functions. 

 

 

 

 

 

 

 

 
Fig. 2 Multi-Area Economic Load Dispatch LSTM framework  

 

 

 

 

 

 

Fig. 3 Renewable energy integration framework 
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As a first step, the ELD unruly objective function is 

derived, followed by the biased function for the Nonconvex 

ELD problem and the constraints for the ELD problem, 

including transfer, forbidden operational zones, valve-point 

loading, multiple fuel sources, tie-line transmission line 

capacity restrictions, ramp rate caps, and Prohibited Operating 
Zones (POZ). After that, power generation parameters are 

optimized using the LSTM algorithm for the multiobjective 

function.  

The LSTM technique combines the efficiency and 

richness of stochastic search techniques only with the 

persistence of the fittest premise from evolutionary 

algorithms. The algorithm’s disadvantage is the addition of 

local operators to improve exploitation capabilities, which 

could lead to increased complexity and slower execution.  

To solve that problem, this research methodology uses the 

secant formulation-based control parameter calculation. 

Because the range-based initial parameter setting makes more 
iteration, this research proposed an LSTM algorithm. In 

experimental analysis, the performance is analyzed based on 

fuel cost, emission, power loss, and other metrics. 

5. Load Dispatch Deep Recurrent 

Implementation 
Due to the additional tie-lines and restrictions on the area 

power balance, the MAELD challenge is far more complicated 

and accessible than the conventional ED problem. LSTM 

optimization for the given real-world MAELD problem is 

evaluated using test systems with distinct sizes and 

nonlinearities. Examine LSTM optimization for the specified 

real-world MAELD problem.  

Test systems consist of about 3-unit, 13-unit and 40-unit 
system values, which remain considered for the optimization 

of actuator loading points and target values. The load demand 

PD (in MW) for the 3 test unit systems are 850, 1800 and 

10500, respectively. The fuel cost minimization objective 

function applied to the different unit systems can be given by 

the Equation (1).  

Comparing the same problem and its outcomes using five 

different available optimization techniques, including 

1. Firefly Optimization (FFO) 

2. Salp Swarm Optimization (SSO) 

3. Squirrel search Optimization (SO) 
4. Particle Swarm Optimization (PSO) 

5. Grasshopper Optimization (GO) 

Most multi-area issues have been linked to the amount of 

system data units, the corresponding load demand, and the 

highest and lowest area values. The data are taken into 

consideration for the proposed LSTM with oil cost 

coefficients like a, b, and c for 3-unit 13 unit besides 40-unit 

systems, valve-point loading effects, besides nitrous oxide 

emission rate coefficients like alpha, beta, and gamma, Ramp 

rate limits B-coefficients and weightage factor considered for 

economy and emission.  

One set of optimal solutions promoting the intensification 
phase involves planning the number of units necessary for 

implementing the suggested algorithm. The absolute power 

values are also considered with maximum and minimum 

values, and the system works accordingly with the 

optimization initialization.  

The proposed algorithm’s implementation is compatible 

with all nonconvex constraints that cause the immediate 

solution to MAELD problems. The data for the 

implementation are shown in the table below. 

Table 1. Test system parameters 

Constraints Amount 

Total Power Demand (MW) 10500 

The Line Limit (MW) 200/100 

Area Load Demand (%) 3/13/40 

Population Size 100 

wmax 0.9 

wmin 0.1 

c1b 2 

c1p 0.5 

µ1 5 

µ2 3.9 

t 2/3 

k 4 

itrmin / itrmax 1/1000 

 

 

 

 

 

 
 

 

 
 
 

 

 
Fig. 4 Description of 4 areas, 40-unit system 
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The proposed algorithm reduces the generation cost in all 

unit systems and valve loading effect constraints. The 

proposed system was integrated with solar and wind sources 

to meet the load demands. When the algorithm identifies 

renewable sources, they will supplement the grid when the 

load demand goes over a certain threshold.The other important 
LSTM parameters are updated using an adaptive strategy to 

manage the search mechanism better. The equations 

mentioned above are regarded as the implementation’s driving 

equations. The production cost function is estimated using 

“thermal run” measurements, which assess output and input 

data even as the device gradually travels through its active 

zone. As a result of wire drawing effects, the unit curve sways 

as each steaming entry gate in a turbine starts to open. As a 

first step towards accurately calculating the cost of each 

generating unit, we can state the effects of ripples in the cost 

equation that deals with the power sources’ valve point 

loadings. 

𝐹𝑡 =⁡Σ𝑖=1
𝑁 Σ𝑗=1

𝑀𝑖 𝐹𝑖𝑗(𝑃𝑖𝑗) = ⁡Σ𝑖=1
𝑁 Σ𝑗=1

𝑀𝑖 𝑎𝑖𝑗 +⁡𝑏𝑖𝑗𝑃𝑖𝑗 + 𝑐𝑖𝑗𝑃𝑖𝑗
2 +

⁡\𝑑𝑖𝑗𝑥 sin{𝑒𝑖𝑗 ⁡𝑥⁡( 𝑃𝑖𝑗
𝑚𝑖𝑛 −⁡𝑃𝑖𝑗)}⁡ (7) 

5.1. Findings and Conversations  

Using computational simulations on three different test 

systems, including a four-region system in addition to 40 

components, a three-area system through 13 units, and a two-

zone system with three generating units, the effectiveness of 

the suggested LSTM technique is investigated in a multi-area 

concept. Additionally, the LSTM technique is used to solve 

the MAELD. It is contrasted with those of recently published 

contemporary approaches to evaluate the appropriateness of 
the proposed LSTM approach. Designed for 100 free runs 

across all test systems, the LSTM techniques are implemented 

using MATLAB (2023a) at an i5 processor through 8 GB of 

RAM and the proposed system. The three case studies that are 

included are thought about. The test systems are compared 

with the existing FFO, SSO, SO PSO and GO for the same 

constraints. The planned approach comprises three zones, ten 

generating units, and three fuel alternatives. In use across the 

system are 2700 MW. In Figure 1, the 13 production divisions 

are split into three. Area 1 includes the initial 4 types (P1, P2, 

P3, P4), following three (P5, P6, and P7) are in Area 2, and 

residual three (P8, P9, and P10) are in Area 3. (P8, P9, and 

P10). Each region has load and generation, and tie-lines 

connecting each place to every other site are shown. 50% of 

the required load is anticipated to be carried by Region 1. 25% 

and 25% of the overall load demands are placed on Areas 2 

and 3, respectively.100 MW per tie-line is the maximum tie-
line flow allowed. The LSTM-based test system with three 

units, 13 units, and 40 systems has a minimum cost of Rs. 

34,161, which is manageable because the value satisfies area 

power balancing limitations. The same test system has been 

used in the real system and has been administered using 

several methods, producing satisfactory results for this 

system. The 40 generating units in this system have valve 

point loading effects. They were taken and randomly allocated 

into two portions, with half of the units in each section. The 

whole system load is 10,500MW. A comparison of the 

proposed system with all the other techniques is shown in the 

graphs given below, and simulations are carried out in 
MATLAB programming 2023a. The cost-effective 

implemented proposed system in different units is shown in 

Table 2, with the valve loading effect according to Equation 

(7).  

Table 2. Cost-effective value with LSTM 

Load Demand 

in MW 

No. of 

Units 

Cost 

(Rs.) 

Valve Loading 

Effect (Rs.) 

850 3 3075.8 3189.9 

1800 13 10404.2 11390.5 

10500 40 89005.1 94077.1 

 

In Table 2, it has been demonstrated that the proposed 

system implemented in the multi-area system has been 

dynamically stable in all conditions of power demand with 

minimum cost and area split has been completed in the valve 

point loading effect. Renewable solar and wind energy 

resources will be used in the emergency islanding operation of 

the entire system. As noted in Section 5, the results produced 

from the LSTM-based system were compared with those of 

the other five methods. The data obtained, including the 

reduced cost and valve point loading impact, has been 
compared in all the 3 test unit systems. The comparison is 

indicated in Table 3.  

Table 3. Comparison simulation table 

Unit System 3 Unit 13 Unit 40 Unit 

Algorithm Cost Loading Effect Cost Loading Effect Cost Loading Effect 

LSTM (Proposed) 3075.8 3189.9 10404.2 11390.5 89005.1 94077.1 

Firefly 3938 4256.8 11058.8 12218.9 91699.4 96871.3 

Salp Swarm Opt 4586.7 5053.9 11530.7 12205.6 95394.6 100649.9 

Squriel Search Opt 5111.7 5596.4 10712.8 11811.6 96249 101290.4 

PSO 4658.1 5261.8 12710.1 13856.6 106449.5 111437.6 

Grasshopper Opt 3966.3 4386.3 11135.9 12422.9 93186.1 98264.6 
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The table mentioned above compares the suggested 

strategy to various approaches using the same unit systems, 

such as 3, 13, and 40 in, for both cost minimization and valve-

point effects loading. The recommended method gives 

satisfactory reduced cost values for a multi-area system. When 

the system is interconnected with the Microgrid concept, 
LSTM rules out all the other techniques with its following 

advantages. 

1. Fast convergence 

2. Less stipulated time 

3. Simple and easy to tweak than alternative algorithms, 

4. It is simple to use interactions between the intensification 

and diversification phases. 

5. High Performance 

6. A solution to the cross-docking with product truck 

scheduling issues in real-world size 

7. Fewer controlling parameters are needed.  

 

 

 

 

 

 

 

Fig. 5 Comparison graph – 3-unit system 

 Figures 5, 6, and 7 illustrate the results of comparing 

various methods in 3, 13, and 40-unit systems concerning cost, 

valve loading impact, and emission. All unit systems benefit 

significantly from the LSTM model’s graph-based values, 

which result from the deep parameters that regulate them. The 
cost objective considers the valve loading effect and emissions 

and places a lower value on multi-area unit systems. 

Figures 8 and 9 show the convergence graph of the 

suggested system with the technique, and it incorporates two 

areas that use sharing methods. This system consists of three 

units. According to the research, the LSTM approach meets all 

requirements with lower costs, even in single-area systems. 

Figures 10 and 11 demonstrate that the convergence in the 

effect of valve loading is also considered when calculating the 

cost in the case of a 13-unit system. By comparing it to the 

current approaches, figures 12 (cost) and 13 (Valve point 
loading) reveal that the 40-unit system has converged. A 

considerable drop in the cost for a 40-unit system is achieved 

by the suggested LSTM, which, according to the statistics, 

optimizes minimum cost by means of the valve loading effect. 

 
Fig. 6 Comparison graph - 13-unit system 

 
Fig. 7 Comparison graph - 40-unit system 

 

 

 

 

 

 

 

 
Fig. 8 Convergence graph 3 – unit system (cost) 
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Fig. 9 Convergence graph 3 – unit (Valve point loading) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 10 Convergence graph 13 -unit system (cost) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11 Convergence graph 13- unit system (Valve point loading) 

Production cost and execution time of the LSTM 

procedure have been less compared with other classical and 

non-classical techniques with a value of cost minimized, as 

shown in Table 3. Four zones, each with ten generator units, 

are considered for generation in this system. Valve point 

loading coefficients were incorporated in each producing unit. 

Power can move between any two locations because they are 

all interconnected. As illustrated in Figure 4, the system 

includes four sections, each containing ten generators and 
connected to the others by three tie lines. 10,500 MW becomes 

the total demand in this instance. Area 1, 2, 3, and 4 share 15 

%, 20 %, 30 % and 15 % of the load demand in this case study. 

There is a 200 MW tie line restriction in the middle of areas 1 

and 2, Areas 1 and 3, and Areas 2 and 3 or vice versa. Each tie 

line is assessed at 100 MW for all other tie lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12 Convergence graph 40 -unit system (cost) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Convergence graph 40- unit system (Valve point loading) 

6. Conclusion  
This research addresses MAELD problems for four areas 

with a 3, 13, and 40-unit system to employ a specially designed 

LSTM-based renewable energy system. LSTM incorporates 

the continued existence of the healthiest idea from 

evolutionary algorithms, with the same effectiveness as the 

depth of heuristic search approaches. The multiobjective 
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functions for ELD and nonconvex ELD problems were derived 

and optimized using the best convergence technique. The 

values of data sets reveal the easiest convergence of all 

generating units, which can be successfully and economically 

done with the proposed methodology. Three different test 

cases were solved in multi-area economic load dispatch. The 
opportunity to introduce local operators to enhance exploration 

capabilities and add complexity has been lessened with faster 

execution. Using deep recurrent neural networks-based LSTM 

optimization methods, the optimal requirement allocation of 

power-generating units is assessed. The simulation findings, 

generated using the MATLAB platform, show that LSTM 

approaches deliver high-quality cost solutions without 
violating constraints.
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