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Abstract - The demand for wireless communication has surged due to the rise of IoT applications. Wireless Sensor Networks 

(WSNs) are crucial in this field but often operate in license-free spectrums, causing interference and impacting Quality of Service 

(QoS). Cognitive Radio (CR) technology offers a solution by enabling opportunistic access to licensed bands, thus reducing 
interference and enhancing system performance. However, integrating CR with IoT and WSNs poses challenges due to the high 

energy consumption of CR tasks and limited power and computation resources in sensor networks. Continuous data collection 

also leads to redundancy. To address these issues, data aggregation techniques can eliminate redundant data, and energy-aware 

routing can reduce energy consumption during data exchange. This study proposes a combined model of WSN and CR for IoT 

applications, utilizing a polynomial series-based data aggregation and spectrum-aware clustering technique. The proposed 

approach achieves a packet delivery rate of 95.47%, energy consumption of 5.216J, and a delay of 0.554 seconds, outperforming 

existing schemes in CRSNs. 
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1. Introduction  
Nowadays, a large range of applications use the Internet 

of Things (IoT). The IoT communication technology has 

emerged as a robust networking framework that permits 

communication among physical things. Due to developments 

in these technologies, it is also projected that soon, most 

offices, industries, and household gadgets will adopt these 

paradigms where IoT devices perceive the information and 

connect with other devices [1]. A study published by Fizza et 

al. [2] anticipated that roughly 29 billion IoT devices would 
be linked by 2022. Similarly, a study released by Bauer et al. 

in 2019 has forecast a rise in IoT devices of roughly 75 billion 

by 2025 [3].  

This significant growth shows that IoT is destined to be 

one of the most essential communication paradigms. 

Moreover, its vast range of applications has intrigued the 

research community to increase the quality of communication 

to accomplish seamless connectivity. Nowadays, a large range 
of applications use the Internet of Things (IoT). The IoT 

communication technology has emerged as a robust 

networking framework that permits communication among 

physical things. Due to developments in these technologies, it 

is also projected that soon, most offices, industries, and 

household gadgets will adopt these paradigms where IoT 

devices perceive the information and connect with other 

devices [1]. A study published by Fizza et al. [2] anticipated 
that roughly 29 billion IoT devices would be linked by 2022. 

Similarly, a study released by Bauer et al. in 2019 has forecast 

a rise in IoT devices of roughly 75 billion by 2025 [3]. This 

significant growth shows that IoT is destined to be one of the 

most essential communication paradigms. Moreover, its vast 

range of applications has intrigued the research community to 

increase the quality of communication to accomplish seamless 

connectivity.  

In this domain of IoT, Wireless Sensor Networks (WSN) 

are recognized as the main pillar of the IoT because it act as 

the source of the event. The WSNs are constructed by 

grouping a number of sensor nodes, which connect in a multi-
hop way to deliver the event information to the base station. 

However, these networks have limited battery capacity and 

memory resources, making them resource-constrained 

networks. Thus, excessive use of these networks might lead 

to failure of the network, resulting in harming the user 

experience because these WSNs are massively utilized in 

various real-time systems such as monitoring, tracking, error 

detection, etc. Nonetheless, the current WSN standards 
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operate in the ISM (Industrial, Scientific and Medical) 

frequency range, and this ISM band is also used by other 

communication technologies such as Wi-Fi, Bluetooth and 

IEEE 802.15 [4]. The enormous number of sensor nodes that 

are planned to be placed will have a significant bandwidth 

requirement that cannot be fulfilled by ISM or unlicensed 
spectrum. However, the Federal Communication Commission 

conducted studies where even in heavily populated locations, 

the FCC has reported that 70% of the authorized spectrum is 

underutilised [5]. Moreover, WSNs also suffer from many 

restrictions, like as delay, energy, localization, security, etc. 

As the number of devices increases, these networks demand 

spectral and energy-efficient approaches. 

The number of IoT devices will expand, which would 

access the unlicensed bands, increasing the co-existence 

difficulty. Thus, these IoT enabled WSNs require an 

additional capability to alleviate these issues. Cognitive Radio 

(CR) technology can help IoT devices work more successfully 
using Opportunistic Spectrum Availability (OSA), which 

enhances spectrum resource provision and band management. 

Additionally, a Cognitive Radio Sensor Network (CRSN) has 

emerged to broaden the capabilities of WSN-enabled IoT by 

using the unique qualities afforded by the CR paradigm.  

A CRSN is based on distributed networking where sensor 

nodes receive the event occurrence signal. Later, these nodes 

communicate in a hop-by-hop fashion to convey the message 

to the far situated base station based on the application 

requirement. Throughout this entire connection, these nodes 

arbitrarily employ the accessible spectrum frequencies. On 
the other hand, various applications of IoT have been 

presented which have reported the advantages and 

disadvantages of IoT networks, such as channel utilization to 

an individual IoT system becoming costly. In these settings, 

cognitive radio systems have emerged as a promising way to 

improve the effective use of the available licensed spectrum.  

This combined paradigm of WSN and cognitive radio 

suffers from various constraints, such as limited energy and 

restricted computation resources. Generally, the channels 

available in CRSNs are dynamic, and their availability 

depends on the principal user’s actions and the location of 

secondary users. This unpredictability in channel availability 
might lead to network partition. This scenario arises when the 

principal user reclaims allotted channels and no channel is 

accessible for other users or nodes in the network [6-8]. Thus, 

channel allocation becomes one of the key objectives for these 

networks to maintain robust channel connectivity. On the 

other hand, the sensor networks cooperatively connect with 

other nodes by transmitting their sensed data. This 

cooperative nature of sensor nodes helps to increase the 

network performance by boosting spectrum sensing, spectrum 

allocation and routing, etc. Data aggregation plays a 

significant part in evaluating energy consumption since 
constant monitoring leads to an increase in the redundancy of 

data, which requires additional power to transfer to other 

nodes. Moreover, duplicate information exchange may 

influence the QoS of the system along with hurting the 

lifetime by diminishing its computational resources. 

Similarly, data transmission in these networks is the major 

reason for energy usage. Thus, competent data sharing is also 
viewed as a crucial component in reducing energy 

consumption and increasing the network lifetime.  

In this subject, routing and clustering are the major 

strategies which have been employed in WSNs to prolong the 

network lifetime. However, typical clustering and routing 

methods do not address spectrum-related difficulties so these 

algorithms cannot be applied directly in cognitive radio-

capable sensor nodes. Thus, it becomes a crucial purpose to 

build a strategy which can preserve the channel connectivity 

and improve the network lifetime. Recent research 

approaches have been published which are based on the 

clustering mechanism. The clustering methods are recognized 
as an important scheme to optimize the energy usage in the 

network. Much work has been done to improve the overall 

performance of cognitive radio-equipped sensor networks. 

The CRSN follows opportunistic communication techniques 

for spectrum sensing.  

However, cluster head selection becomes critical in these 

networks; hence, Mortada et al. [9] introduced a new strategy 

by leveraging ad-hoc communication. This strategy utilized 

the importance of CH (Cluster Head) selection in CR-WSN. 

However, these networks are resource-constrained; 

consequently, resources need optimization for efficient 
utilization.  

To overcome these challenges, Verma et al. [10] 

suggested applying meta-heuristic optimization strategies and 

introduced the Sooty Tern Optimization Algorithm (STOA) 

for efficient cluster head selection because of its faster 

convergence to optimal solutions. In [11], Shivaraj et al. have 

provided the Tylor-SHO method to pick the CH efficiently 

along with the trustworthy link selection using the M-kVDPR 

algorithm, which has proven the substantial energy efficiency 

of the network with reduced latency with varying number of 

sensor nodes.  

According to the standards, WSN operates in ISM bands, 

which are becoming overcrowded; therefore, Prajapat et al. 

[12] introduced dynamic spectrum access along with the 

neighbour discovering approach and greedy k-hop routing 

method for spectrum management and energy efficient 

communication, respectively. Carie et al. [13] proposed the 

cognitive radio-assisted WSN with interference-aware 

AODV routing protocol.  

In [14], Salameh et al. addressed the security 

considerations and suggested implementing an ensemble 
machine learning concept where historical patterns may be 
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studied to create the correct conclusion to combine security 

aspects along with energy consumption optimization. In [15], 

Joon et al. introduced the Q-learning strategy, which learns 

from the environment and follows a reward mechanism to 

increase the system’s performance.  

Based on these studies, we have identified that energy 
consumption and spectrum sensing are the two main 

important aspects of CR-WSN. In this work, we have adopted 

the concept of data aggregation and clustering to maximize 

the network lifetime. Moreover, the proposed clustering 

scheme also considers the spectrum availability which makes 

it suitable to implement for cognitive radio WSNs. Despite 

these advancements, WSNs face several limitations: 

 Energy Consumption: Continuous data collection and 

transmission consume significant energy, reducing 

network lifetime. 

 Data Redundancy: Unattended environments lead to 
redundant data, increasing processing and transmission 

loads. 

 Routing Efficiency: Effective data routing is crucial for 

minimizing energy consumption and ensuring reliable 

communication. 

 Dynamic Channel Availability: The availability of 

channels in CRSNs depends on the activity of PUs, 

leading to potential network partitioning. 

Several existing methods have been proposed to mitigate 

these challenges: 

 Spectrum Sharing: Techniques like opportunistic 

spectrum access allow SUs to use idle licensed bands, 
enhancing spectrum utilization. 

 Data Aggregation: Aggregating data at sensor nodes 

reduces redundancy and conserves energy. 

 Routing and Clustering: Efficient routing algorithms and 

Cluster Head (CH) selection mechanisms help optimize 

energy use and improve data transmission. 

However, these approaches have their restrictions. 

Traditional clustering and routing algorithms generally miss 

spectrum-related difficulties, rendering them unsuitable for 

CRSNs. Additionally, the dynamic nature of channel 

availability in CRSNs needs adaptive and robust channel 
allocation algorithms. 

WSN is an information gathering technology which is 

evolving very swiftly. It is a necessary aspect of various 

applications, including urban transport systems, industry 

control, monitoring of the environment and military. The 

challenges experienced by the existing WSN applications are 

energy efficiency, dependability, and data redundancy. The 

constraints experienced by existing Cluster Head Selection 

methods, together with data routing ways, are taken as the 

inspiration for designing a novel model which can address 

numerous concerns in WSN run IoT applications. The main 

contributions of the research are elaborated as follows: 

 Data aggregation to reduce the data redundancy in WSN.  

 Here, the sensor nodes represent their sensed data as 

polynomial functions to aggregate the data.  

 The Cluster Head selection process to route the data 

efficiently. 

The remainder of the paper is structured as follows: The 

literature review and issues with current Cluster Head 

Selection and methods in CRSN are explained in Section 2. 

The data aggregation, Cluster Head Selection, and Spectrum 

sensing model are all shown in Section 3. Results and the 

comparative analysis are done in Section 4. In Section 5, the 
conclusion is discussed.  

2. Literature Review 
This section presents a brief discussion about existing 

data aggregation, routing and clustering methods for cognitive 

WSN IOT enabled networks. As discussed, traditional IoT-

WSN networks do not consider the spectrum availability 

scenario. Moreover, combined with IoT, the WSN consumes 

more energy due to its high usage, and IoT enabled networks 

work in an unlicensed spectrum environment where 

interference becomes the prime issue.  

Mortada et al. [9] presented the operation of CRSN, 

where sensor nodes operate as secondary users and can access 

the channel when the primary user is not present. However, 

this process is opportunistic and is completed without PUs. 

This shows that the sensor nodes are equipped with the 

spectrum sensing capability which monitors the PUs activity. 

The authors provided a CH selection technique for spectrum 

sensing, data gathering and transmitting it in the direction of 

the BS by employing ad-hoc communication topology.  

The expanded clusters minimize the energy consumption 

during data transmission; however, spectrum sensing 

increases energy consumption since more CHs do spectrum 

sensing before transmitting the data. This approach considers 

data aggregation, spectrum sensing and transmission into the 

network. This highlights the advantage of adding data 

aggregation in these networks. However, it increases the 

complexity of the CH as it has to conduct the spectrum 

detection and data transmission processes simultaneously. 

Verma et al. [10] discussed the challenge of managing the 

enormous volume of data in WSN combined with the 

transmission in resource restricted networks. To tackle this 

issue, the authors presented energy-efficient routing, which 

considers the elements of cognitive radio, IoT, and WSN. The 

authors defined this challenge as an optimization problem and 

provided a Sooty Tern Optimization Algorithm (STOA) way 

to tackle this. The faster convergence and increased 
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exploration capabilities of STOA make this algorithm suited 

for energy-efficient clustering. This helps to obtain efficient 

clustering as the output of the optimization technique to 

increase the network performance. The proposed work is 

directed towards the static nodes, thereby limiting its use 

cases.  

Shivaraj et al. [11] present cases of numerous meta 

heuristic techniques utilized for CH selection in WSN. The 

suggested Taylor-SHO algorithm considers the behaviour of 

Spotted Hyenas and the Taylor series to develop the optimal 

solution for the CH selection. Further, the Modified k-VDPR 

approach is employed to execute the data routing. Route 

maintenance is also undertaken to mitigate the network faults. 

This technique has shown considerable benefits in terms of 

energy usage, delay and distance. However, the calculation 

time is dependent on the number of coefficients considered 

while executing the CH selection procedure. This limits the 

number of sensor nodes active in the CH selection process at 
a given time.  

Prajapat et al. [12] addressed the spectrum-related issues 

in WSN and used the notion of dynamic spectrum access with 

cognitive radio networks. The dynamic spectrum access 

capabilities of these networks help to tackle the spectrum 

shortage issue. However, DSA overcomes the spectrum 

problem, but the energy consumption associated difficulties 

still need to be resolved. Thus, the authors chose a clustering 

mechanism and created a neighbour discovering strategy and 

greedy k-hop routing process for intra and inter-cluster data 

transmission. The clustering approach includes numerous 
criteria such as remnant power, quality of the communication 

link and channel, PU’s arrival, Euclidean distance, spectrum 

awareness, etc. With the aid of these principles, it tries to 

obtain stable clustering. Due to the inclusion of extra 

parameters, the suggested method demonstrates increased 

computational complexity.  

According to Carie et al. [13], the WSNs operate in the 

ISM bands, which are very crowded and communication in 

these bands can deteriorate the communication performance 

due to channel saturation and an increase in collision rate. To 

tackle this, the authors suggested an opportunistic spectrum 

sensing routing with dynamic spectrum access capability. In 
order to formulate the clusters, nodes broadcast the 

advertisement message, and other nodes join these nodes 

according to their distance from the node. This operation is 

undertaken to form the cluster. Later, cluster update, channel 

routing, and channel route discovery are conducted. The 

routing strategy considers RREP and RREQ message 

exchange. Finally, a power control technique is also described 

to lessen energy depletion and extend the network lifetime.  

Salameh et al. [14] cited various advantages of cognitive 

radio sensor networks but reported that maintaining security 

owing to resource hungry operations becomes a laborious 

issue for these networks. Thus, the authors presented a 

security aware routing strategy which mainly considers the 

jammer threats and formulated the optimization issue. To deal 

with this issue, the authors presented an ensemble-based 

jamming behaviour detection method. This ensemble model 

uses Random Forest, Bayesian learning, and k-NN based 
techniques to construct the ensemble classification mode, and 

lastly, majority voting is performed to get the final result. The 

complexity of the proposed method is relatively greater 

compared to the present work. 

Joon et al. [15] focused on energy consumption, network 

lifetime and throughput of cognitive radio sensor networks. 

To tackle these issues, the authors presented a Q-learning 

based solution as Energy Aware Q-learning AODV (EAQ-

AODV). This methodology is based on AODV routing 

together with a Q-learning algorithm. The Q-learning 

technique uses a reward-based mechanism for CH selection, 

and AODV focuses on determining the routing path based on 
multiple limitations such as remaining energy, hop count, 

channel condition, communication range and trust factor.   

Similarly, Vimal et al. [16] have claimed that coupled 

data aggregation and clustering could be a suitable option to 

ease the performance related difficulties in cognitive radio 

IOT sensor networks. To accomplish this, the authors 

developed an optimisation-based solution technique with a 

multi-objective ant colony optimization scheme and a greedy 

optimisation strategy. Further, the deep reinforcement 

learning method is also offered with double Q-learning to gain 

robust input as a reward. This approach helps increase the 
inter-cluster data aggregation, boosting the overall 

performance of the network.  

Raj Kumar et al. [17] suggested an optimization-based 

solution for energy-efficient clustering, which uses the 

centroid based ant colony optimization method to increase the 

network performance. During the early phase, it uses centroid 

based clustering for information collecting, and afterwards, 

ant colony optimization is used to transfer the acquired data 

to the base station. For the centroid, the energy of the sensor 

nodes is considered as the key parameter. Further, the 

clustering strategy incorporates energy cost and channel 

uniformity of cognitive sensors for super cluster head 
selection. Furthermore, the path optimization is also 

performed between super cluster heads with the help of an ant 

routing model.  

Thareja et al. [21] suggested a combined technique for 

spectrum sensing and enhancing the network lifetime 

execution by limiting the network energy consumption. To 

alleviate the energy consumption issue, scientists presented 

the inter and intra cluster model and later posterior transition 

probability-based model to improve the spectrum sensing. 

Yadav et al. [18] proposed the event driven cluster-based 

routing approach. The routing protocol for CRSN is used to 
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relay the samples from event detecting nodes to the sink via 

intra and inter-cluster communication. The intra-cluster 

communication is aimed at reducing the distance and power 

consumption. CHs of each spectrum aware cluster are selected 

based on the residual energy, available channels, and distance 

to the sink node. More importance on intra and inter-cluster 
has increased the computation time and hence the delay.  

The optimum distance formulation has been proposed by 

Tripathi et al. [19], considering the energy consumption in 

inter and intra cluster data-forwarding. The number of packets 

will decide the size of the cluster. The routing takes place 

through energy-efficient paths. The clusters are adaptable and 

the nodes are given the cognitive capability to calculate the 

residual time of the unused licensed channels. This is a 

complex process where sensor nodes have to perform multiple 

operations of calculating the residual time along with the data 

processing and forwarding. Siddesha et al. [20] proposed a 

machine learning based technique and adopted a deep 
reinforcement learning approach. In this approach, a novel 

policy to maximize the reward for task scheduling actions is 

performed.  

A temporal event driven clustering technique has been 

proposed by Ozger et al. [22]. The cluster is formed upon 

detecting the event. The nodes in the vicinity of the event are 

detected and are made part of the cluster. The two-hop 

communication to the sink reduces energy consumption. 

However, the even driven temporal clusters formation and 

deformation, selection of CHs among these clusters and 

rotuing the data with the efficient paths is the costly operation.  

Ozdemir et al. [23] presented a polynomial regression 

based secured data aggregation protocol. Sensor node 

represents their sensed data as polynomial functions. Data 

aggregation is performed on these functions and the sink node 

will have the ability to approximate the data from this 

aggregation. This method successfully catered for the purpose 

of reducing data redundancy along with securing confidential 

data in sensitive WSN applications.  In [24], Kim et al. 

reported the issues associated with MAC layer sensing in 

CRSNs as the frequency of sensing the available licensed 

channels and the order of sensing. The authors have adapted 

the sensing period to maximize the discovery of the spectrum 
while reducing the delay. The proposed method has shown 

significant improvement when compared with the nonoptimal 

schemes. 

Wang et al. [25] emphasized the necessity of multi-hop 

clustering and routing technique to assist the efficient data 

transmission in CRSNs. In prior approaches, the false alarm 

and missed detection rate parameters are ignored because of 

the assumption of flawless spectrum sensing but it leads to 

transmission failure in real-time settings. To tackle this, the 

authors develop an Incomplete Spectrum Sensing-based 

Multi-hop Clustering Routing Protocol (ISSMCRP) CH and 

relay selection is performed based on the detection level 

function and relay with high spectrum sensing capabilities. 

Similarly, inter and intra cluster data transfer criteria are 

derived based on idle detection accuracy. Additionally, a 

control overhead is also introduced for CH selection and 

cluster formation which helps to minimize the energy usage 
and regulate the network overhead.  

Satyavathi et al. [26] presented an efficient QoS 

conscious approach for intra and inter-cluster data 

aggregation by employing hybrid optimization schemes. The 

optimization approaches include modified bowerbird 

optimization to increase the clustering performance, and later, 

multi-objective seagull optimization based decision-making 

methodology is introduced to estimate the CH of a cluster. 

Finally, a teacher-inspired cappuccino search method is 

introduced to improve the data transfer.  

Srividhya et al. [27] created Energy-efficient Distance-

based Spectrum Aware Optimization (EDSO). This approach 
uses Honey Bee Mating Optimization (HBMO) for clustering, 

and Donkey and Smuggler Optimization (DSO) is used to 

perform the routing to the base station. The HBMO technique 

helps in identifying the optimum cluster and minimizes 

energy consumption. Nasirian et al. [28] created a cluster-

based hierarchal routing system dubbed as Pizzza. The 

suggested protocol improves network longevity by 

establishing minimum spanning trees across nodes in each 

sector-shaped cluster, enabling only first-level nodes to 

become cluster chiefs. This eliminates energy waste by 

reducing reverse data flow from the base station, enabling 
efficient data transfer to neighboring nodes, and balancing 

energy usage throughout the network. 

3. Proposed Data Aggregation and Clustering 

Model for CRSN  
This section describes the proposed solution for data 

aggregation, spectrum and energy aware cluster head 

selection for cognitive radio sensor networks for IoT based 

applications. According to the proposed approach, data 

aggregation is the first stage, and the energy and spectrum 

aware cluster head selection are the next stages of this work. 

 

 

 
 

 

 

 

 

 

 
 

Fig. 1 Illustration of a general architecture of CRSN 
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3.1. Network Model and Parameters 

According to the proposed approach, we have considered 

a Cognitive Radio Sensor Network (CRSN) model. This 

network model consists of  𝑁 number of Secondary Users 

(SUs), which are positioned in the 𝑚 × 𝑚 network area 𝒜. 

The deployment density is denoted by 𝜌, which can be 

computed by taking the ratio of total nodes and network 

region as 
𝑁

𝒜
. These IoT sensors have a component which is 

used to switch the communication between the Control 

Channel (CC) and traffic channel (C). These two channels are 

accessed opportunistically.  

Similarly, this network also consists of  ℳ number of 

primary users who can access the channels at any point in 

time. The utilization period is denoted as 𝜏𝑜𝑛 and the silent 

period when these nodes are not using the channel is denoted 

as 𝜏𝑜𝑓𝑓 . Furthermore, the energy detection method is applied 

to identify the inactive channels, and the proposed clustering 

mechanism is enforced to distribute the network into 𝐾 

number of clusters. Figure 1 depicts the general architecture 

of the deployment of CRSN.  

Here, we assume that the wireless transceivers either 

work in transmitting mode or reception mode. According to 

this process, once the SU has initiated the transmission, it 

finishes the existing communication before releasing the 

communication channel. This scenario may lead to 

interference or cause a delay in transmission. The secondary 

user detects the transmission instance 𝑆𝑡  of primary users. The 

received signal 𝑆𝑟(𝑡)for this step can be articulated as: 

𝑆𝑟
𝑠(𝑡) = {

𝑛(𝑡), 𝑖𝑓 𝐻0

𝑛(𝑡) + 𝑆𝑡(𝑡), 𝑖𝑓 𝐻1
  (1) 

Where 𝐻0 represents the hypothesis for the inactive state 

of PU and 𝐻1 denotes the hypothesis characterizing the data 

exchange stage of PU, 𝑛(𝑡) is used to represent the additive 

white Gaussian noise. According to this model, the 

probability of false alarm (𝑃𝑓) and probability of detection is 

expressed as: 

𝑃𝑓 = Pr{𝑌 > 𝜖|𝐻0}

𝑃𝑓 = Pr{𝑌 > 𝜖|𝐻1}
  (2) 

Where 𝑌 is the output of the energy detection algorithm 

used as a decision for energy detection, and 𝜖 is the detection 

threshold. The lower value of the probability of detection 𝑃𝑑  
represents the absence of a primary user, resulting in 

increased interference, whereas a high value of 𝑃𝑓 represents 

the low spectrum utilization. Thus, in this work, we introduce 

a binary variable 𝑥𝑐 to signify the channel accessibility. Based 

on this expression, for 𝑖𝑡ℎ node and 𝑐𝑡ℎ channel, the channel 

availability is represented by 𝑥𝑐
𝑖  and if the probability of 

detection is 𝑃𝑑 < 0.1, then it represents the absence of the 
primary user.  

3.2. Data Aggregation 

Data aggregation plays an important role in these 

networks because redundant data processing and transmission 

consumes extra energy, which affects the network 

performance. In this phase, the data is periodically collected 

and aggregated within the data aggregation session.  

Each data aggregator sends the notification to the sensor 

nodes in its cluster at the beginning and the end of each data 

aggregation session. Each sensor node performs n sensor 

readings, resulting in a data set of size n. Upon completing the 

data aggregation, the data aggregator requests the sensor 

nodes for these data sets to send it further to the Base Station. 

Sensor nodes decide to store the last 𝑛 reading as 𝑚- 

order polynomial curve where m<n. To mitigate the 

transmission of the entire data, the sender node transmits only 

the coefficients. Figure 2 demonstrates the process of data 

aggregation. According to this illustration, the cluster is 
formed by grouping numerous sensor nodes (SN1, SN2, SN3, 

SN4, SN5) in this work where sensor nodes 1, 3 and 5 are 

collecting the data D1, D2, and D3 and transmit to the data 

aggregator node, where the aggregator node performs the 

assigned operation and generates the final aggregated data 

vector, which is transmitted to the Base Station (BS) via the 

multihop communication link.   

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Data aggregation illustration 
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Thus, the final data aggregation function using the 

polynomial function can be articulated as [23]: Where 𝑠 

denotes the sensor readings. 

𝐷𝑎𝑔𝑔(𝑥) = ∑ 𝑓𝑠(𝑥)𝑠 = ∑ [(∑ 𝑎𝑠𝑗𝑠 )𝑥𝑗]𝑗  (5)                                                                                         

3.3. Cluster Realization and CH Selection  

This section describes the proposed method for cluster 

establishment and selection of cluster heads. The clustering 

mechanism helps to regulate the data transmission in such a 

way that it reduces energy consumption. In these 

communication cases, inappropriate traffic management may 

lead to exceeding the capacity of links and routes which can 
reduce the overall performance of the network. The cluster-

based communication methods formulate the cluster, and the 

cluster becomes the important entity to control the data 

transmitted by nodes to prevent excessive energy 

consumption. Moreover, maintaining fair QoS with spectrum 

cognition is a challenging task.  

In this stage, we focus on finding the vacant condition of 

the channel and the availability of the channel as important 

parameters to obtain the information for cluster head 

selection. Once the spectrum sensing task is finished, the 

information-sharing process takes place to exchange the 

information with neighbouring nodes. This is done by 

broadcasting 𝐼𝑛𝑓𝑜 message, which contains several 

parameters such as channel availability, residual energy, and 

distance, which are further used for cluster head selection.  

Let us consider that 𝑣𝑖(𝑡) denotes the channel emptiness 

matrix of the node 𝑖 at a time stamp  𝑡 in ℂ channels. This is 

obtained based on the decision of binary element 𝑥𝑐
𝑖 (𝑡) which 

is obtained as (1), which shows the vacant channel condition. 

Thus, the vacant channel matrix 𝑣𝑖(𝑡) is represented as 𝑣𝑖 =

[𝑥1
𝑖 (𝑡) 𝑥2

𝑖 (𝑡) … 𝑥𝐶
𝑖 (𝑡)]

𝑇
. Similarly, we focus on identifying the 

channel availability 𝑎𝑖(𝑡) for node 𝑖. This channel availability 

matrix is formulated as follows:  

𝑎𝑖(𝑡) = [𝑎1
𝑖 (𝑡) 𝑎2

𝑖 (𝑡) … 𝑎𝐶
𝑖 (𝑡)]         (6)    

The channel availability is obtained based on past 

channel statistics, which include channel usage patterns. In 

order to determine the pattern, the channel is represented as 

ON-OFF. A channel can be represented as an ON-OFF 

source, switching between two states, ON (busy) and OFF 

(idle), depending on the usage pattern of its PUs. This model 

effectively captures the time intervals during which SUs can 
utilize the channel without causing any detrimental 

interference to PUs [24]. 

The channel availability is obtained based on past 

channel statistics. With the help of these channel vacancy and 

mean availability, the channel availability between node 𝑖 and 

𝑗 can be computed as: 

𝔸𝑖𝑗(𝑡) = (𝑣𝑖𝑣𝑗) × min{𝑎𝑖 , 𝑎𝑗 }                (7) 

Where 𝑣𝑖 and 𝑣𝑗 denotes the channel vacancy matrix for 

node 𝑖 and 𝑗, respectively, which are element wise multiplied 

with the minimum of expected channel availability for node 𝑖 
and 𝑗, denoted as 𝑎𝑖 and 𝑎𝑗 , respectively. At this stage, the 

communicating node computes the spectrum availability 

based on the ranks, which is denoted as: 

𝜑𝑖𝑗(𝑡) =
1

𝐶
× 𝔸𝑖𝑗(𝑡)  (8) 

With the help of these expressions, we obtained the 
spectrum related information and presented a model to rank 

the spectrum energy 𝜑. Similarly, we extend this process for 

wireless sensor network scenarios for IoT applications. For 

the IoT-WSN scenario, we consider the spatial, temporal 

interdependency and residual energy parameters.  

The combined spectrum energy rank and IoT based 

parameters are used to select the final cluster head. The 

channel availability is subjected to geographical locations; 

therefore, spatial interdependency is required to identify the 

relationship between channel availability and geographical 

location. This relation can be written as: 

𝒮𝑖,𝑗,𝑡 = {
1 −

𝑑𝑖,𝑗,𝑡

min{𝑟𝑖,𝑟𝑗}
, 𝑑𝑖,𝑗,𝑡 < min{𝑟𝑖 , 𝑟𝑗}

0, 𝑑𝑖,𝑗,𝑡 ≥ min{𝑟𝑖 , 𝑟𝑗} 
  (9) 

Where 𝑑𝑖,𝑗,𝑡  denotes the Euclidean distance between 

communicating node 𝑖 and 𝑗; if the distance 𝑑𝑖,𝑗,𝑡 < min{𝑟𝑖 , 𝑟𝑗} 

then, the two communicating nodes are in the communication 

range where 𝑟𝑖 , 𝑟𝑗  denotes the communication radii of two 

nodes. The average spatial interdependency among the 

communicating node 𝑖 and the next hop is determined as: 

𝐸(𝒮𝑖,𝑡) =
1

𝑛𝑖,𝑡
∑ 𝒮𝑖,𝑗,𝑡

𝑛𝑖,𝑡

𝑗=1
  (10) 

Further, we need to describe the time-based 

interdependence between communicating nodes 𝑖 and 𝑗 
because at some specific time stamp nodes may have high 

interdependency. Thus, to obtain the final decision, we apply 

temporal interdependency given as: 

𝒯𝑖,𝑗,𝑡 =
|𝑐𝑖,𝑡⋂𝑐𝑗,𝑡 |

𝑛𝑐
  (11) 

Where 𝑐𝑖,𝑡 and 𝑐𝑗,𝑡  denotes the sensed sequence of idle 

channels for node 𝑖 and 𝑗, we try to obtain the interdependency 

between these channels by identifying the common idle 

channel as |𝑐𝑖,𝑡⋂𝑐𝑗,𝑡 |. High energy consumption is one of the 

key issues with spectrum-aware clustering, particularly when 
exchanging sensing data and making local spectrum 
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decisions. For energy-limited CRSNs, this problem becomes 

more difficult; hence, energy-efficient clustering is required 

to increase network lifespan. A node with more remainder 

energy has a higher probability of being elected as a CH since 

CHs require extra computational resources to make spatial 

decisions and distribute the perceived inactive channels for 
cluster members. Thus, we measure the remainder energy 

level of the node, which is characterized as:  

𝔼 =
𝑒𝑟𝑒𝑠

𝑒𝑚𝑎𝑥 
  (12) 

Where 𝑒𝑟𝑒𝑠 signifies the remainder energy levels of the 

node and 𝑒𝑚𝑎𝑥 signifies the maximum assigned energy of that 

node. Based on these parameters, we formulate an index for 

CH selection which considers spatial, temporal 

interdependency, and spectrum ranking. This index is 

expressed as: 

𝐶𝐻𝑖𝑑𝑥 = 𝔼(𝒮). 𝔼(𝒯) + 𝜑𝑖,𝑡 + 𝔼𝑖,𝑡   (13) 

The higher value of 𝐶𝐻𝑖𝑑𝑥 represents more possibility of 

the node becoming the cluster head. In the next phase, packet 
routing is performed. The proposed approach considers the 

cluster head communication, which is used to set the path to 

the base station. The major steps followed in the proposed 

approach are described in Table 1. 

Table 1. Packet routing tasks to establish the path to the base station 

Step Message Tasks Performed 

1 𝐶𝐻 − 𝑅𝑅𝐸𝑄 
This message is initialized by the cluster head, where it broadcasts the route request message 

on the common channel. The member node receives the packet and waits for the backoff timer. 

2 𝐶𝐻 − 𝑅𝑅𝐸𝑃 

The neighbouring cluster head or member receives the RREQ packet and waits for the backoff 

timer. During this backoff timer, the node waits for the response from the other neighbouring 

nodes present in the cluster and assigns the path which is present in its cache. If no path is 

found, then the member node directs the RREQ data packet to the cluster head. At this stage, 

the cluster head sends the RREP message in response to the RREQ. 

3 𝑇𝑒𝑚𝑝𝑃𝑎𝑡ℎ 
Once the next cluster head sends the RREP to the RREQ of the previous cluster, then the first 

cluster head stores this as a temporary path for the next hop 

4 𝐶𝐻 − 𝐷𝑅𝐸𝑄 

If the initial path is obtained, then the cluster head announces the data request 𝐷𝑅𝐸𝑄. 

Therefore, member nodes start transmission of the information gathered from events. 

However, we have aggregation functionality at the cluster head. 

5 𝐸𝑚𝑝𝑃𝑎𝑐𝑘 
This message is generated at the cluster head if there is no route is present. Then, the cluster 
head allocates TDMA slots to transmit the packets. 

6 𝑃𝑐𝑘𝑡𝑆𝑐ℎ𝑑 

This is the final stage of the routing process. When TDMA slots are assigned, the cluster head 

sends the scheduling message. Once the cluster members receive this message, then these 

nodes synchronize with CH and TDMA. In this way, each node transmits data in the assigned 

TDMA schedule. 

Algorithm 1. Pseudo Code of Developed Method 

1. Input: Primary and Secondary Users 

2. Output: Cluster Heads for the clusters 

3. Start 

4. Initialize parameters 

5. Perform spectrum sensing. 

6. calculate 𝑃𝑓 and 𝑃𝑑  

7. Perform the data aggregation     𝐷𝑎𝑔𝑔(𝑥) = ∑ 𝑓𝑠(𝑥)𝑠 =

∑ [(∑ 𝑎𝑠𝑗𝑠 )𝑥𝑗]𝑗  

8. for every secondary user, do 

9. estimate spatial, temporal interdependency 𝔼(𝒮). 𝔼(𝒯) 

10. end for 

11. for every secondary user, do 

12. estimate the residual energy 𝔼𝑖,𝑡  

13. end for 
14. for every secondary user, do 

15. estimate the residual energy 𝔼𝑖,𝑡  

16. end for 

17. for every secondary user, do 

18. estimate the spectrum ranking 𝜑𝑖,𝑡 

19. end for 

20. Calculate 𝐶𝐻𝑖𝑑𝑥 = 𝔼(𝒮). 𝔼(𝒯) + 𝜑𝑖,𝑡 + 𝔼𝑖,𝑡  

21. Select the CH based on the higher value of 𝐶𝐻𝑖𝑑𝑥 

22. Perform the message exchange to establish the 
communication path to the Base Station. 

23. Stop 

4. Results and Discussion  
In this section, the analysis of the proposed methodology 

and evaluation of its performance against several cutting-edge 

methods are discussed in the context of cognitive radio sensor 

networks. The efficiency of the suggested technique with that 

of current schemes like energy aware clustering [18], event-

driven (ESAC) [21], and adaptive clustering [19] is 

demonstrated with respect to the performance. We assume 

that sensor nodes are dispersed arbitrarily over a 2-

dimensional geographic area to establish the simulation 

scenario. The simulation settings utilised in the 

experimentation are shown in Table 2 and the simulation is 
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carried out with MATLAB tool with 4GB RAM, Intel i3 

processor and Windows 10 OS. 

Table 2. Experimental setup and parameters  

Simulation Parameter Value 

Network Deployment Area 1500mX1500m 

Primary Users 2-10 

Bandwidth of Channel 2 Mbps 

Secondary Users 50-100 

Communication Range 500 m 

Preliminary Node Energy 50J 

Size of Data Packet 512 byte 

𝑒𝐸𝑙𝑒𝑐 50nJ/bit 

𝑒𝑎𝑚𝑝 100 pJ/bit/m2 

Based on these simulation parameters, we analyze the 

performance of the proposed approach in terms of spectrum 

sensing probability for varied SNR levels. Figure 3 depicts the 

comparative analysis of the probability of false alarms and the 

probability of detection. The probability of detection PD of the 

proposed approach is achieved similar to the theoretical value 

and similarly, the probability of false alarm Pf is also obtained 

similar to the theoretical values. According to this analysis, 

the match between empirical and theoretical values indicates 

that the statistical model used to derive the theoretical 

probabilities accurately represents the real-world system. 

Moreover, it shows that the detection algorithm is performing 
as expected under the given conditions. This suggests that the 

theoretical analysis and the implemented algorithm are 

correctly aligned. This experiment shows that the proposed 

approach is able to maintain coherence with the 

aforementioned hypothesises as mentioned in Equation (2), 

and demonstrates the robustness of the presented approach to 

identify the spectrum availability. Moreover, if spectrum 

availability is marked, then further processes such as 

aggregation and clustering can be carried out. 

 

 

 

 

 

 

 

 
Fig. 3. Spectrum sensing performance 

In the next phase, we quantify the overall delay outcome 

where we have a number of secondary users. Figure 4 shows 

the graphical representation of this relative analysis. 

 
Fig. 4 Overall delay performance: varied SU (50:100) 

This investigation shows the delay analysis for the 

diverse number of secondary users. As the amount of SUs is 

increased the overall delay also rises to deliver the packets. 

The average delay performance for this observation was 1.11 
s, 1.032 s, 0.732 s, and 0.554 s, respectively, employing the 

event-driven [21], energy aware clustering, suggested 

method, and Adaptive clustering [19] approach. The values 

obtained are displayed in Table 3. 

Table 3. Analysis of overall delay for different numbers of SUs 

Number 

of PUs 

Event 

Driven 

Energy 

Aware 

Method  

Adaptive 

Clustering 

Proposed 

Model 

50 0.65 0.56 0.52 0.45 

65 0.85 0.65 0.56 0.48 

80 1.2 1.15 0.76 0.54 

95 1.3 1.3 0.89 0.6 

100 1.55 1.5 0.93 0.7 

Avg. 1.11 1.032 0.732 0.554 

Further, we considered the same experimentation setup 

and extended the research to measure energy depletion. In this 

experiment, we have different numbers of PUs, ranging from 
5 to 10. Figure 5 demonstrates the graphical representation of 

average energy consumption.  

The overall energy utilization rate for varied numbers of 

primary users is obtained as 8.36J, 7.84J, 7.56J, and 6.8J by 

using event-driven [21], energy aware clustering [18], 
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Adaptive clustering [19] and proposed model, respectively. 

An increasing number of primary users affects the energy 

consumption performance and leads to an increase in the 

energy consumption because of increased delay. Table 4 

illustrates the obtained values for energy consumption for this 

test.   

 
Fig. 5 Overall energy depletion analysis for varied PUs 

Table 4. Average energy consumption analysis for varied PUs 

Number 

of PUs 

Event 

Driven  

Energy 

Aware 

Method  

Adaptive 

Clustering  

 Proposed 

Model 

2 7.2 6.6 6.2 5.5 

4 7.5 7.3 6.3 6.2 

6 8.2 7.6 7.6 6.3 

8 9.3 8.5 8.8 7.1 

10 9.6 9.2 8.9 8.9 

Avg 8.36 7.84 7.56 6.8 

Figure 6 demonstrates the outcome in terms of average 

energy consumption for the varied number of secondary users. 

According to this evaluation, event driven [21], energy aware 

clustering [18], Adaptive clustering technique [19] and 

proposed model achieve the average amount of energy 

depletion obtained as 8.35J, 6.96 J, 6.191 J, and 5.216 J, 

respectively.  

The average throughput performance by varying the 

number of PUs is represented in Figure 7. In this 

investigation, the average throughput performance is obtained 

as 8920kbps, 8982 kbps, 9060 kbps, and 9252 kbps by using 

EVENT DRIVEN, energy aware clustering [18], Adaptive 

clustering [19] approach and proposed approach, respectively. 

Figure 8 depicts the packet delivery performance for the 

varied number of SUs.  

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
Fig. 6 Analysis of average energy depletion for different numbers of 

SUs 
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Fig. 7 Throughput analysis for varied primary users 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 

Fig 8. Average throughput analysis for varied SUs 
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Conferring to this experimentation, we have measured 

the average packet delivery performance for different 

numbers of SUs. The average packet delivery rate is obtained 

as 85.25%, 89.65%, 92.685%, and 95.475% by using EVENT 

DRIVEN, energy aware cluster clustering, Adaptive 

clustering technique [19] and the proposed model, 
respectively. Table 5 shows the corresponding value for each 

set of secondary users, and finally average packet delivery 

performance is also presented. 

Table 5. Average packet delivery for varied SUs 

Event 
Event 

Driven  
EACRP  

Adaptive 

Clustering  

Proposed 

Model 

50 76.2 82.3 86.2 91.25 

60 82.3 86.1 89.2 93.5 

70 84.1 89.1 94.11 96.5 

80 87.2 92.1 95.2 96.3 

90 89.5 94.2 95.1 97.2 

100 92.2 94.1 96.3 98.1 

Avg. 85.25 89.65 92.685 95.475 

The experiments for varied simulations demonstrate a 

significant improvement in the performance of the proposed 

approach when compared with other existing techniques. The 

initial outcome of this research demonstrates the close match 

between theoretical and simulated values. This alignment 

indicates that the statistical model used is accurate and that the 
detection algorithm performs as expected under the given 

conditions. This robust performance validates the hypothesis 

that the proposed methodology can reliably identify spectrum 

availability. Moreover, this alignment ensures that secondary 

users can accurately detect the presence or absence of primary 

users, thereby reducing interference and improving spectrum 

utilization. 

In another experiment, the performance of the proposed 

model is compared with the existing schemes, such as Event 

Driven [21], Energy Aware Clustering [18], and Adaptive 

Clustering [19] approaches. As shown in Table 3 and Figure 
4, the proposed method demonstrates significantly lower 

overall delay, with an average delay of 0.554 seconds 

compared to 1.11 seconds for Event Driven, 1.032 seconds for 

Energy Aware Clustering, and 0.732 seconds for Adaptive 

Clustering. This reduction in delay can be attributed to the 

efficient spectrum sensing and decision-making process 

implemented in the proposed approach. 

The CH selection process in the existing methods has 

increased computational time and the complexity of the 

algorithm is more compared to the proposed method. The 

metaheuristic algorithms discussed in Section 2 show a 
significant increase in computational time and are mainly 

focused on the CH selection and data routing techniques. The 

proposed methodology incorporates data aggregation, CH 

selection, and data routing along with the utilization of the 

available resources effectively. The proposed method has 

attempted to incorporate CH selection, spectrum sensing and 

data aggregation in the CRSNs based IoT applications, which 

has shown significant improvement through its simulation 

with varied SU when compared with the existing 

methodologies.  

Applications like agriculture, weather monitoring 

systems, forests, etc are the ideal applications for the proposed 
method. In these applications, the SU count increases with 

respect to time to cover a large area. However, this method 

proves to provide more stability considering the applications 

where the number of SUs is fixed. 

5. Conclusion 
In this work, we have presented a polynomial series-

based data aggregation and spectrum and energy aware 

clustering technique to prolong the network lifetime by 

minimizing energy depletion and efficiently utilising 

resources. The proposed model has shown a significant 

improvement in terms of overall energy consumption of the 

network, throughput performance and average packet delivery 

ratio. Results have been compared with the event driven, 

EACRP and adaptive clustering models. The model has been 

tested for different numbers of PUs and SUs, and the results 

show an improvement when the number of PUs and SUs is 

increased. The spectrum sensing performance for the 

proposed model has shown similar results as per the 
theoretical values for detecting the spectrum and the false 

alarms. This facilitates the model to perform better in the co-

existence of the devices utilizing the same frequency 

spectrum. The future work of the research will be to 

implement more efficient CH selection optimization 

techniques to enhance the data routing more efficiently. 

Future research will also incorporate the mobile sensor nodes 

as the present work is implemented considering the static 

nodes.
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