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Abstract - Forecasting solar power is essential for increasing solar power plants' competitiveness in the energy market and 
reducing reliance on fossil fuels for social and economic advancement. The novel method of forecasting solar Photovoltaic (PV) 

power output through the use of deep learning and machine learning techniques specifically, Deep Neural Network (DNN) and 

Convolutional Neural Network (CNN) models is presented in this research. To anticipate solar energy generation, our technique 

uses pertinent weather characteristics and historical PV power data as inputs. Although several PV power forecasting models 

in the literature have varying degrees of accuracy, our CNN and DNN models provide a clear benefit by obtaining important 

features from raw local data. With this skill, precise short-term projections of solar PV power output from a few hours to several 

days-can be made. In addition, the integration of naive seasonal forecasting with CNN and DNN models improves the precision 

of short-term power generation forecasts by identifying complex dependencies and periodic patterns in the data. All things 

considered, our suggested method offers a viable way to raise the accuracy and efficiency of solar energy forecasting, which 

will help the energy industry embrace sustainable energy sources more widely. 

Keywords - Solar power forecasting, Machine learning, Deep learning, Short term PV power forecasting. 

1. Introduction  
As a result of advancements in solar panel technologies, 

solar Photovoltaic (PV) power generation has become a 

popular and sustainable energy source. With its clean, silent, 

and cost-effective characteristics, PV production plays a 

significant role in reducing carbon footprint and cutting down 

costs. Nearly 3.7% of the world's power demand was met by 
PV in 2020; this percentage is rising quickly each year [1].  

In recent years, PV production has experienced a 

remarkable 22% growth, positioning it as the second-largest 

contributor to renewable energy generation after wind power 

[2]. The extreme unpredictability of PV production, which is 

strongly correlated with meteorological factors like 

temperature and sun irradiation, makes controlling PV plants 

difficult. Grid management is made more difficult by this 

fluctuation, especially as solar energy penetration increases 

and affects power prices, energy market efficiency, and local 

energy systems' operating expenses [3]. Hence Predicting 

power generation for PV systems has evolved into a key 

technology crucial for enhancing scheduling accuracy and 
minimizing the requirement for surplus capacity reserves. 

PV power forecasting systems are classified depending 

on a number of variables, including the time frame for which 

they predict, the method used, and whether or not they use 

numerical weather prediction. Techniques are divided into 

four categories according to the length of time they span 

extremely short-term, short-term, medium-term, and long-

term forecasting. Very short-term predictions are utilized for 

immediate action and can be generated for a few seconds to 

minutes in advance and are utilized for immediate energy 

management in smart grids.  

Short-term methods forecast from 1 hour to 1 week ahead, 

supporting tasks like power unit scheduling and dynamic 

pricing. Medium-term methods predict from one month to a 

year ahead and are useful for network planning, while long-

term methods forecast several years ahead and aid in power 

infrastructure planning. By their nature and whether or not 
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they rely on measurements, forecasting systems can also be 

distinguished from one another. While data-driven approaches 

examine weather and solar production data to anticipate 

power, physical methods forecast PV power using specific 

weather data and PV panel design factors [4]. Data-driven 

approaches might be machine learning-based, such as decision 
trees and neural networks, or they can be exclusively statistical 

[25].  

Hybrid techniques incorporate elements of both 

strategies. Furthermore, while some approaches are 

independent of weather prediction, others rely on numerical 

weather prediction to increase accuracy by including weather 

forecasts in their predictions. To put it another way, The 

degree of prediction accuracy, the methodology used, and the 

inclusion of weather forecasts are the three categories into 

which solar power forecasting modes fall.  These techniques 

use data analysis techniques or physical equations to anticipate 

solar power generation for various time horizons, from a few 
seconds to several years in the future. While some approaches 

do not rely on weather forecasts, others do in order to increase 

accuracy. Predictive modelling for PV power generation 

encompasses various techniques categorized as either indirect 

or direct forecast models [5]. Indirect methods forecast solar 

radiation across different time spans, which is then converted 

into power considering panel characteristics, while direct 

forecasts are derived directly from plant output. These models 

fall into four main classes: statistical, physical, Artificial 

Intelligence (AI), and hybrid approaches.  

AI and Machine Learning (ML), particularly, have gained 
prominence due to their robust learning and regression 

capabilities [6-10]. Notably, algorithms like Random Forest 

(RF), Support Vector Machine (SVM), and Extreme Gradient 

Boosting (XGBoost) have been utilized to enhance forecasting 

accuracy. Incorporating additional parameters like the Air 

Quality Index (AQI) has shown promise in improving model 

performance. Deep Learning has become popular for 

predicting PV power because it is really good at finding 

patterns in data, especially when things are uncertain. It has 

evolved to use lots of layers of neurons, which helps it 

understand complicated relationships between inputs and 

outputs, making it great for PV power forecasting. 
Convolutional Neural Networks (CNN), a type of deep 

learning model, are especially liked for PV power prediction 

because they are good at handling data with grid-like 

structures and finding important features.  

Studies have shown that models like ResNet and 

DenseNet work well for forecasting PV production, 

confirming that deep learning is the best choice for this task 

[11-16]. Deep Learning models are gaining popularity in PV 

power forecasting because they are really good at 

understanding complex data patterns, much better than 

traditional methods. H.Z. Wang et al. [8] introduced Deep 
Neural Networks (DNN) for time series prediction, leveraging 

their ability to capture temporal and nonlinear characteristics 

of data. DNN-based predictive models can effectively identify 

complex data associations from large datasets. In theory, 

predictive models based on DNNs should exhibit better 

performance and robustness compared to traditional shallow 

network models. Overall, deep learning-based predictive 
models have shown significant advancements and promise in 

handling complex data and improving forecasting accuracy. 

This indicates that because of their capacity to manage 

massive volumes of data and identify crucial correlations, they 

are emerging as the go-to choice for precisely estimating PV 

power output [7, 18-20]. This paper aims to improve PV 

production forecasting by introducing a new method that 

combines different forecasts. While individual deep learning 

models have shown promise, they do not always give the best 

predictions for every solar plant. Our approach uses a mix of 

advanced deep learning models like DNN and CNN with 

naïve seasoning.  

Naive seasonal forecasting is often used alongside CNN 

and DNN for short-term PV prediction to complement the 

capabilities of these advanced machine learning models. 

While CNN and DNN are powerful for capturing complex 

patterns and relationships in the data, they may struggle with 

certain types of periodic or seasonal patterns present in solar 

energy generation data. Naive seasonal forecasting, on the 

other hand, relies on simple methods like averaging historical 

data from the same season or time period to make predictions. 

By combining naive seasonal forecasting with CNN and 

DNN models, it is possible to leverage the strengths of both 

approaches. Naive seasonal forecasting can capture recurring 

patterns in solar energy generation data that CNN and DNN 

may overlook, particularly in short-term predictions where 

these patterns are more prominent. Meanwhile, CNN and 

DNN can handle the nonlinear relationships and complex 

features in the data that naive seasonal methods cannot 

capture. Overall, using naive seasonal forecasting alongside 

CNN and DNN models allows for a more complete and 
accurate prediction of short-term power generation by 

incorporating both the periodic patterns and complex 

dependencies present in the data to overcome this issue. 

2. Methodology  
The forecasting process of the proposed framework is 

shown in Figure 1. The dataset utilized in this work is publicly 

available and comprises two distinct sets: solar power 

generation data and weather data. The integration of two 

essential datasets significantly enhances the understanding 

and optimization of solar power generation dynamics. The 

first dataset, consisting of 69,000 records, focuses on power 

generation and includes timestamps, plant and inverter 

identifiers, as well as metrics for DC and AC power output 

daily yield and total yield.  
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Fig. 1 Architecture of the proposed framework 

This dataset provides detailed insights into individual 

inverter performance and overall plant productivity. 

Complementing this, the Weather Sensor Data offers 
environmental context with ambient and module 

temperatures, irradiation levels, and matching timestamps. By 

combining these datasets, a comprehensive understanding of 

how environmental conditions influence solar panel 

performance is achieved. This integration facilitates efficiency 

optimization, prediction of generation patterns, and informed 

decision-making in the field of solar energy production. 

3. Data Preprocessing and Manipulation 
Currently, the data is structured with rows corresponding 

to each inverter, resulting in multiple rows for the same 

timestamp if data is available for multiple inverters at that time 

as shown in. However, we aim to organize our data at the plant 

level, aggregated by day and timestamp, with columns 

representing the sum of values for all inverters at each 

timestamp. To achieve this, we will group our data by inverter 

and merge each group sequentially using an outer join on the 

DATE_TIME column. Ensuring to generate a single, cohesive 

dataset, we will also combine this dataset on power generation 

with our weather dataset. The DATE_TIME column will then 
be divided into separate columns for DATE and TIME. 

Finally, we will use the Pandas data range function to generate 

a new column named "BLOCK" that will represent 15-minute 

intervals and be stored in a dictionary. Each day will then have 

96 time blocks, allowing for stratified training splitting. With 

our dataset structured accordingly, we will proceed with 
analysis and imputation, followed by splitting it into train and 

test sets, keeping the test dataset separate for evaluation. 

Currently, the data is organized with rows for each 

inverter, meaning each timestamp is repeated for the number 

of inverters present at that time. However, it is desired for our 

predictions to be at the plant level, with rows representing 

each day divided into 15-minute intervals. Thus, the data 

needs to be rearranged. Firstly, the data will be grouped by 

inverter, and each group will be stored in a list. Then, each 

group will be merged using the outer join method based on the 

DATE_TIME column. This will result in the introduction of a 

lot of null values for timestamps that are not common across 
all inverters. Subsequently, this power generation dataset will 

be merged with our weather dataset to create a single dataset. 

Next, the DATE and TIME columns will be separated, 

and a new column called "BLOCK" will be created to 

represent each 15-minute interval using the Pandas date range 

function, as shown in Figure 2. This will facilitate the splitting 

of the data during training. Each day will be comprised of 96  

time blocks, from 00:00 as the 1st block to 23:45 as the 96th 

block. 
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Fig. 2 Data after grouping by inverter wise 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

Fig. 3 Data represented as block 
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Fig. 4 Understanding patterns in PV power generation on a random date 

For the sake of continuity, a deliberate splitting approach 

will be employed instead of random selection. Specifically, 

the last three days of data will be designated for testing 

purposes, while the remaining data will be utilized for 

training. Consequently, the training dataset will consist of 

2971 rows, and the test dataset will be comprised of 288 rows. 
With a significant number of missing values present in the 

training dataset, the next step will involve addressing the 

imputation of these missing values. 

Before proceeding with imputation, it is essential to 

understand the underlying patterns in the weather and 

generation data. Let us visualize a plot for a random date to 

gain insights. From the plot, as shown in Figure 4, it is evident 

that the columns exhibit a continuous, ordered nature with 

some sequential properties. Therefore, for imputing missing 

values, leveraging the values from the previous and next 

timestamps can be beneficial. This is why we opted not to split 

the dataset randomly for train and testing, as doing so helps 

preserve the sequential nature of the data. To handle missing 

values in our data, we have a few strategies. One approach is 

to find the mean, median, or mode for each time block in the 

training data and use these values to fill in missing data in the 
test data. Another method involves training a model only on 

the non-missing values and using it to predict the missing 

values. However, this second strategy can be computationally 

expensive and time-consuming, so it is not usually 

recommended for production. Instead, we can use spline 

interpolation. This method generates a smooth curve between 

the two nearest non-zero values to estimate the missing values, 

as shown in Figure 5. However, we need to consider the nature 

of the data columns. For example, irradiation and AC/DC 

power generation are zero during non-solar hours (e.g., 

nighttime), so we will fill in missing values with zeros during 

these times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Smoothing PV power data with spline interpolation 
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Fig. 6 Expletory data analysis

For solar hours, we will use linear spline interpolation for 
irradiation and a polynomial spline with degree 2 for AC/DC 

power, as the generation does not vary linearly during solar 

hours. This approach helps maintain the smoothness of the 

curve and ensures accurate imputation of missing values, as 

shown in Figure 5. Degree 2 spline imputation is employed to 

achieve smoother results, resembling the parabolic nature of 

the data. The dataset is aggregated on the plant level, 

combining values from all 22 inverters and scaled to 

megawatts from kilowatts. With the training and test data 

prepared, Exploratory data analysis is initiated to extract 

insights, as shown in Figure 6. Starting with pair plots, strong 
linear relationships are observed between AC Power and 

Irradiation, as well as between Module Temperature and 

Irradiation. The distributions of Irradiation and AC/DC Power 

are heavily skewed to the right due to non-generating periods 

(6 pm-6 am), while Ambient and Module Temperatures are 

slightly less skewed. Module Temperature demonstrates 
increasing variation with each degree rise in Ambient 

temperature, suggesting potential influence from other 

weather parameters like humidity and wind speed, which are 

not included in the dataset. Additionally, the presence of 

outliers in AC Power is noted. 

The process involves splitting the DataFrame into train, 

validation, and test datasets based on unique dates, with the 

train set encompassing 80% of the data and the validation set 

containing 20%. After filtering and sorting the datasets by date 

and time block, they are saved to CSV files with no missing 

values present. The process involves building a neural 
network model (`model1`) with three dense layers using the 

sequential API, followed by compiling the model with Mean 

Squared Error loss and Adam optimizer. ModelCheckpoint is 

employed to save the best-performing model during training. 
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Fig. 7 Correlation heat map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8(a) Yielding MAPE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8(b) Training 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8(c) Validation 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Fig. 8(d) Comparision 

The model is trained on various features such as ambient 

temperature, Pv array temperature, and irradiation, with 

training predictions generated and compared against actual 

values using pandas DataFrame. The process involves making 

predictions on the training, validation, and test datasets using 

the trained neural network model (`model1`). For the training 

set, the predictions are compared with the actual values, and a 

DataFrame (`train_results`) is created to store these results.  

Similar steps are followed for the validation and test sets, 

resulting in DataFrames (`val_results` and `test results`, 
respectively). Additionally, for the test set, the Root Mean 

Squared Error (RMSE) is calculated and printed as a measure 

of model performance. Finally, line plots are created to 

visualize the predicted values against the actual values for the 

training, validation, and test sets. The process involves 

comparing the predictions generated by the Deep Neural 
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Network (DNN) model (`Test Predictions`) with the actual 

values (`Actuals`) and a naive seasonal baseline 

(`naive_seasonal`) for the test dataset. Afterwards, a bar plot 

is created to visualize the Mean Absolute Percentage Error 

(MAPE) for both models, which is calculated using the 

function `calculate mape` for the DNN model and the naive 
seasonal baseline. Finally, the MAPE values for both models 

are printed, with the DNN model achieving a MAPE of 

approximately 22.76% and the naive seasonal model yielding 

a MAPE of around 78.76%, in Figure 8. 

4. CNN Convolutional Neural Network 
The Convolutional Neural Network (CNN) model is 

constructed using Keras' Sequential API. The architecture 
begins with a Conv1D layer containing 64 filters and a kernel 

size of 2, followed by a Flatten layer to transform the output 

into a one-dimensional array. This is followed by two dense 

layers with 32 and 16 neurons, respectively, both utilizing the 

ReLU activation function. Finally, a dense layer with a single 

neuron and a linear. The activation function is added to 

produce the output. The summary of the model displays the 

layers, their types, and the output shapes at each layer. 

Additionally, it provides information about the total number 

of parameters in the model, including trainable and non-

trainable parameters. Comparing the results of the CNN and 
DNN models with the naive seasonal approach, both the CNN 

and DNN models outperform the naive seasonal approach in 

terms of predictive accuracy, with the CNN model showing 

superior performance with a lower MAPE compared to the 

DNN model. 

5. Conclusion 
This paper introduces an innovative method for short-

term Photovoltaic (PV) power forecasting by employing Deep 

Neural Network (DNN) and Convolutional Neural Network 

(CNN) models. The study evaluates the prediction accuracy of 

both models and reveals that the CNN model surpasses the 

DNN model. Technological advancements, particularly in 

earth and atmospheric sciences, have increased the availability 

of meteorological data for predicting PV power generation. 

Despite these advancements, predictive modelling continues 

to face challenges, with traditional neural networks struggling 

to handle complex input variables.  

To overcome these challenges, future research should 
concentrate on refining predictive models through deep 

learning techniques and PV power generation systems. 

Enhanced data integration strategies, ultimately improving the 

accuracy and reliability of PV power generation systems 

reforms the DNN model. Advancements in technology, 

particularly in earth and atmospheric sciences, have increased 

the availability of meteorological data for PV power 

generation prediction. Despite these advancements, 

challenges remain in predictive modelling, with traditional 

neural networks struggling with complex input variables. To 

address these challenges, future research should focus on 
refining predictive models using deep learning techniques and 

improved data integration strategies, ultimately enhancing 

accuracy and reliability. 
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