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Abstract - This paper presents a new approach to enhance Ring Laser Gyroscopes (RLGs) performance using Statistical Signal 

Processing (SSP) and Reinforcement Learning (RL). RLGs are devices that are highly significant for most navigation systems; 

they are, however, inherently subject to the lock-in effect, static and dynamic, which degrades the accuracy and performance. 

To minimize these issues, the concept of Dynamic Dither Angle (DDA) and Dither Symmetry Angle (DSA) calculations, which 
are derived from dithered Pseudo Random Noise (PRN), is injected into the RLG system. The DDA is calculated recursively, 

providing a method to track the cumulative effect of dither pulses. In contrast, the DSA method takes the form of a balance 

measure of the errors in the system caused by dither. Deep Deterministic Policy Gradient (DDPG) is used as an optimization 

method for PRN values to avoid lock-in effects for better measurement accuracy. The RL agent works in interaction with the 

RLG system and tunes the PRN values such that multiple performance metrics can be fed back, comprising lock-in occurrences 

and angular measurement accuracies. Experimental results proved that both static and dynamic lock-in effects can be reduced 

enormously, whereby overall gyroscope performance is enhanced. This SSP-RL integration provides a robust and efficient way 

to advance RLG technology into more reliable solutions for accurate navigation. 

Keywords - Dither, Navigation, Pseudo Random Noise, Reinforcement Learning, Ring Laser Gyro, Statistical Signal Processing. 

1. Introduction 
Ring Laser Gyroscopes (RLGs) are vital devices for 

modern navigation systems, which operate at elevated 

precision and stability in angular velocity measurement. 

However, an essential deficiency of RLGs is the lock-in effect 

[1], which, in principle, occurs due to a coincidence of two 

counter-propagating beams at a standard frequency, leading 

the gyroscope to lose its sensitivity to small angular 

movements. This effect, encompassing both static and 
dynamic lock-in [1], drastically decreases the accuracy of 

RLGs, particularly at low angular rates. Mechanical dithering 

is often implemented to reduce the lock-in effect [2].  

However, standard dithering schemes are not very 

successful in an absolute sense in eliminating lock-in, 

particularly dynamic lock-in, which occurs even with 

dithering. In addition, introducing Pseudo Random Noise 

(PRN) to the dither drive signal has demonstrated some 
encouraging results in lowering dynamic lock-in; however, 

optimising PRN [3] values remains a tough task. Existing 

techniques fail to fully eliminate dynamic lock-in and often 

rely on heuristic or trial-and-error approaches for PRN 

optimization. Moreover, the current methods do not leverage 

the potential of adaptive and data-driven techniques like 

machine learning, which can offer more precise and real-time 
optimization. 

This paper further proposes an entirely new approach of 

combining SSP with RL [5] to improve RLGs [4]. Two new 

concepts are introduced: Dynamic Dither Angle (DDA) and 

Dither Symmetry Angle (DSA). Where the DDA is a measure 

that captures the cumulative effect of the dither pulses in a 

recursive calculation, the DSA will calculate in a balanced 

way and thus give the possibility to find and correct lock-in 

effects. DDPG reinforcement learning techniques are applied 

to the optimization of PRN values.  

The RL agent interacts with the system by making real-
time adjustments in PRN values based on the feedback 

provided by the performance metrics. These performance 

metrics mainly rely on the occurrence of lock-in and the 

precision of angular measurements, where dynamic 

adjustment is usually aimed at minimizing lock-in effects and 

thereby improving the overall accuracy of the gyroscope. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Contributions of the works are threefold: first, the DDA and 

DSA methods for lock-in reduction are introduced to enhance 

the performance of RLGs; secondly, a Reinforcement 

Learning framework is developed and implemented for PRN 

value optimization [7]; and finally, the proposed methods are 

evaluated using simulations, showing significant lock-in 
effect reductions and gains in gyroscope performance. 

The integration of these two tools-SSP and RL-will offer 

a new, robust solution for advancing RLG technology to make 

it more reliable and accurate for applications in precision 

navigation. 

2. Related Work 
2.1. Existing Methods 

Lock-in issues in Ring Laser Gyroscopes (RLGs) have 

been the topic of much research in recent years. To reduce the 

lock-in effects, both in static and dynamic states, several 

methods have been proposed and adopted. This section will 

review the most notable existing methods and their 

drawbacks. 

The dithering of various mechanical forms was one of the 

earliest and most widely applied techniques to reduce the lock-

in effect in RLGs. The dither, which periodically oscillates the 

gyroscope, makes the system spend much time far from the 

zero angular rate region, thus making it less likely that the 
counter-propagating laser beams will lock. While effective at 

minimizing the likelihood of lock-in due to static imbalance, 

mechanical dithering can be less effective against dynamic 

imbalance, where in some phases of the dither cycle, the 

beams may still synchronize [8]. 

Injecting PRN into the dither drive signal has recently 

been proposed as one approach for breaking this periodicity 

that leads to dynamic lock-in. PRN injection results in 
randomizing the dither motion and, as a by-product, de-

correlating the frequencies of the laser beams, so it generally 

diminishes the tendency for lock-in to occur. This can, 

however, make the actual optimization of PRN parameters 

highly complex in practice and often quite challenging to 

achieve optimally, even through time-consuming trial-and-

error or heuristic methods.  

Different advanced control algorithms, including 

adaptive control and fuzzy logic [9], have been used for the 

performance improvement of RLGs. The mentioned 

techniques adjust the control parameters by the system's 
behavior, so it is a more reactive technique aimed at 

diminishing the effect of lock-in. Still, generally, these 

algorithms have a high order in nature, for example [10], with 

the consequence that their implementation is highly complex. 

Their efficiency depends on the underlying model quality, as 

well as the parameters themselves, which are tuned and could 

be pretty cumbersome in actual cases. 

2.2. Machine Learning in RLGs  

This field of research is relatively young but has very 

rapid growth. The RLG system, with the application of 

machine learning techniques, presents optimal possibilities for 

complex nonlinear systems more effectively than 

conventional methods. 

RLG measurement errors have been predicted and 

corrected using supervised learning [11] approaches. Labelled 

data can be large-quantity datasets, which enable training 

models to recognize patterns of lock-in effects and anomalies 

for pre-emptive adjustments. However, the key issues remain 

reliance on a lot of labelled data and generalization to unseen 

conditions, limiting applicability in dynamic environments. 

Reinforcement Learning (RL) [12] is exciting for the 

optimization of PRN values in RLG systems due to how RL 

learns an optimal policy interacting with the environment. The 

RL agent tries out different settings for PRN and learns from 

the feedback it receives about how different task performance 
methods affect lock-in effects and performance. The latest 

developments in the class of RL algorithms belong to that of 

Deep Deterministic Policy Gradient (DDPG) [12]. 

Despite intensive progress, the existing methods yet to be 

adopted have limitations in considering dynamic lock-in 

comprehensively and optimizing the PRN parameters 

effectively. Mechanical and electromagnetic dithering serve 

as partial solutions only, with PRN injection showing some 

promise. However, its optimization problem is complex. 
Improvements can be made through advanced control 

algorithms and digital signal processing, but these methods 

may grow complex and computationally intensive. 

In such cases, Machine Learning, and particularly 

Reinforcement Learning, appears to be a powerful technique 

to overcome the limitations in applying adaptive, data-driven 

methods for the optimal setting of PRN values, which will 

minimize the lock-in effects better than previous ways. This 

gap will be bridged by integrating statistical signal processing 

with the DDPG algorithm into one coherent work to come up 
with a viable solution for enhancing RLG performance. 

3. Methodology 
3.1. RLG System Description 

There are several main components to the RLG system. 

The dither motor provides a periodic oscillatory motion to the 

gyroscope to depreciate the lock-in of its axis. A closed optical 
path is created with counter-propagating beams of a laser. 

Photo-detectors monitor the interference pattern that these 

beams produce, from which it is possible to measure angular 

velocity. To alleviate the lock-in impact, mechanical dithering 

is applied to the RLG. The dither motor enforces oscillatory 

motion to take the system off the region of zero angular rate, 

thereby breaking the synchronization of the laser beams. 
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3.2. Pseudo-Random Noise (PRN) Injection 

To overcome the limitations of the traditional dithering 

methods, PRN is injected into the dither drive signal. The PRN 

makes the dither motion random and thus removes the 

periodicity of the dither. It can be observed that the values of 

the PRN in Equations 1 and 2 are generated with a pseudo-
random number generator and updated dynamically through 

reinforcement learning to optimize the dither signal. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 1 Pendulum-like system with randomized reversal points  

𝑷𝑹𝑵𝑨[𝒏] = 𝑷𝑹𝑵𝑨[𝒏 − 𝟏] + ∆𝑨[𝒏]        (1) 

𝑷𝑹𝑵𝑩[𝒏] = 𝑷𝑹𝑵𝑩[𝒏 − 𝟏] + ∆𝑩[𝒏]       (2) 

Here, the clockwise and anticlockwise angles [13] caused 

by the dither motion are given as A[n] and B[n], respectively. 

Figure 1 shows a pendulum-like system similar to RLG with 

random reversal points showing the A[n] and B[n] in terms of 

the dither angle 𝜃𝑑 acquired from the RLG. These A[n] and 

B[n] pulses are acquired over a specific duration for further 

analysis. 

3.3. Statistical Signal Processing (SSP) Approach 
3.3.1. Dynamic Dither Angle (DDA) Calculation 

The DDA is defined by its previous values and 

alternating additions and subtractions of A[n] and B[n]. If the 

sequence values are denoted by S[n], then the DDA can be 

expressed as Equation 3. 

{S[0], S[1], S[2], … }  = {
−A[0]

2
,

−A[0]

2
+ A[0],   

−A[0]

2
+ A[0] −

B[0],
−A[0]

2
+ A[0] − B[0] − A[1], … }    (3) 

It can noticed that these terms are being added and 

subtracted alternately, starting from the addition of A[n] 

followed by a subtraction of B[n]. The general form for S[n] 

can be written depending on whether n is even or odd. 

S[2k] =
−A[0]

2
+ ∑ (A[i] − B[i])k−1

i=0     (4) 

  for even n = 2k                       

The sequence comprises an even number of additions 

and subtractions. 

𝐒[𝟐𝐤 + 𝟏] =
−𝐀[𝟎]

𝟐
+ ∑ (𝐀[𝐢])𝐤

𝐢=𝟎 − ∑ (𝐁[𝐢])𝐤−𝟏
𝐢=𝟎   (5) 

𝐟𝐨𝐫 𝐨𝐝𝐝 𝐧 = 𝟐𝐤 + 𝟏 

Similarly, the above sequence comprises an odd number 

of additions and subtractions. Equations 4 and 5 can be 

combined into a single expression, and it can be written as, 

𝐒[𝐧] =
−𝐀[𝟎]

𝟐
+ ∑ (𝐀[𝐢])

⌊
𝐧

𝟐
⌋

𝐢=𝟎
− ∑ (𝐁[𝐢])

⌊
𝐧−𝟏

𝟐
⌋

𝐢=𝟎
     (6) 

Where ⌊x⌋ represents the floor function that represents the 

highest integer value that is smaller than or equal to x. 

3.3.2. Dither Symmetry Angle (DSA) Calculation 

The values in the DSA represent a good compromise in 

representing the dither-induced errors. Let us consider the 

sequence values 𝑥𝑛, where n is the step in the sequence. 

{𝑥0, 𝑥1, 𝑥2, … } =   {0,
𝐴[0]−𝐵[0]

2
,

𝐴[0]−𝐵[0]

2
+

𝐴[1]−𝐵[0]

2
,   

𝐴[0]−𝐵[0]

2
+

𝐴[1]−𝐵[0]

2
+

𝐴[1]−𝐵[1]

2
, … }   (7) 

This will go by adding (A[i] − B[j])/2 where i is the 

current index of A and j is the index of B from two steps back. 

It can be seen that every time the index is even, the current A 

and B of ⌊(n − 2)/2⌋ are used, and every time the index is 

odd, the same A is used as the last step and the current B. 

To write in general term 𝑥𝑛, it should be made clear how 

A and B are indexed. 

𝑥2𝑘 = 𝑥2𝑘−1 +
𝐴[𝑘]−𝐵[𝑘−1]

2
 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛 = 2𝑘    (8) 

𝑥2𝑘+1 = 𝑥2𝑘 +
𝐴[𝑘]−𝐵[𝑘]

2
 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛 = 2𝑘 + 1   (9) 

Thus, the general form for 𝑥𝑛, from Equations 8 and 9, 

can be written as follows: 

 𝑥𝑛 = 0                               𝑓𝑜𝑟 𝑛 = 0                 

=  𝑥𝑛−1 +
𝐴

⌈
𝑛
2

⌉
−𝐵

⌊
𝑛−1

2
⌋

2
     𝑓𝑜𝑟 𝑛 > 0        (10) 

Where ⌈𝑛/2⌉ is ceiling function, which returns the 

smallest integer greater than or equal to 𝑛/2. ⌊(𝑛 − 1)/2⌋ is 

the floor function, which returns the largest integer less than 

or equal to (𝑛 − 1)/2. 

𝑆𝑥𝑦 = 0 ∗ 𝑥0 + 1 ∗ 𝑥1 + 2 ∗ 𝑥2 + 3 ∗ 𝑥3 + ⋯ 𝑁 ∗ 𝑥𝑁   (11) 

Equation 11 represents the sum of the product of each 

index 𝑛 and the corresponding value 𝑥𝑛 for a given number of 

Randomized 

Reversal Points 

B[n] 

A[n] 

θ
d
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N indices. This is a weighted sum, where the weights are the 

indices, and it is used to compute the slope in linear regression. 

Let 𝑆𝑥𝑥 be the sum of the squares of the indices, 

determining the variance of the indices. 

𝑆𝑥𝑥 = 02 + 12 + 22 + 32 + ⋯ 𝑁2   (12) 

Let 𝑆𝑦 represents the total sum of the data points. 

𝑆𝑦 = 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + ⋯ 𝑥𝑁         (13) 

Let Sx be the sum of the indices from 0 to N.  

𝑆𝑥 = 0 + 1 + 2 + 3 + ⋯ 𝑁             (14) 

Now, calculating the slope 𝑎 of the best-fit line through 

the data points (𝑛, 𝑥𝑛). The slope represents the rate of change 

of 𝑥𝑛 concerning 𝑛. 

𝑎 =
𝑆𝑥𝑦−

𝑆𝑥∗𝑆𝑦
𝑁

𝑆𝑥𝑥−
𝑆𝑥∗𝑆𝑥

𝑁

    (15) 

Next, calculate the intercept 𝑏 of the best-fit line, which 

is the expected value of 𝑥𝑛 when 𝑛 = 0. 

𝑏 = 𝑆𝑦 −
𝑎∗𝑆𝑥

𝑁
   (16) 

Derive the 𝐷𝑆𝐴[𝑛] value for each index 𝑛. This involves 

finding the difference between the actual value of 𝑥𝑛 and the 

linear regression line  𝑎𝑛 + 𝑏. 

𝐷𝑆𝐴[𝑛] = 𝑥𝑛 − (𝑎 ∗ 𝑛 + 𝑏),     
𝑊ℎ𝑒𝑟𝑒 𝑛 = 0 𝑡𝑜 𝑁    

Equation 17 represents 𝐷𝑆𝐴[𝑛], showing the deviation of 
the actual data points from the estimated linear trend. This 

helps in understanding the errors or variations in the data that 

are not explained by the linear model. 

3.4. Reinforcement Learning Framework 

DDPG algorithm [12] is utilized because it is stable, 

accurate, optimal, and efficient in solving problems with 

continuous action spaces. The DDPG algorithm balances 

performance with computational complexity well. 

3.4.1. State Representation 

The state representation includes: 

 Dynamic Dither Angle, DDA(𝜃𝑛): The dynamic angular 
measurement of the gyroscope. 

 Previous DDAngles (𝜃𝑛−1,𝜃𝑛−2,...):  Historical states of 

the gyroscope. 

 Dither Symmetry Angle Values (𝐷𝑆𝐴[𝑛]): Measure of 
dither-induced errors. 

 PRN Values (𝑃𝑅𝑁𝐴[𝑛], 𝑃𝑅𝑁𝐵[𝑛]): Noise added to the 
dither angles. 

 Error Metrics: Difference between expected and 

measured angles. 

3.4.2. Action Representation 
The actions involve adjusting the values for the dither 

angles 𝐴[𝑛] and B[𝑛]. Specifically, the RL agent takes the 

following actions. 

Up  : row = max(row-1, 1) 

Down : row = min(row+1, nRows) 

Left : col  = max(col-1, 1) 

Right : col  = min(col+1, nCols) 

These actions move the reference point up, down, left, or 

right [14] inside the grid's boundaries. Below is a thorough 

description of every action. The “Up” operation increments 

the location in the grid by one row. To ensure it stays within 

bounds, the position is changed to the maximum of the current 

row minus one and one. The “Down” operation moves the 

location one row lower. To keep it from going past the last 

row, the position is adjusted to the minimum of the current 

row plus one and the total number of rows (nRows).  

The “Left” operation shifts the position of one column to 

the left, ensuring it stays within the first column by setting the 

position to the maximum of the current column minus one and 

one. The “Right” operation moves the position one column to 

the right, ensuring it does not go beyond the last column by 

setting the position to the minimum of the current column plus 

one and the total number of columns (nCols). These 

movements within the grid ensure that the position remains 

inside the grid's boundaries. The max and min functions are 

used to handle cases where a movement might cause the 
location to go outside the grid. 

3.4.3. Reward Function Design 

The reward function in reinforcement learning [15] plays 

a significant role as it guides the agent's decision process 

through immediate feedback on the agent's actions. 

Mathematically, the reward function describes how an agent 

must update its policy and value estimation. 

𝑅 = 𝜅 ⋅ (𝐴 − 𝐿) + 𝛿            (18) 

Where κ is a scaling factor to adjust the overall influence 

of the combined metrics, A is the accuracy metric, defined as 

Equation 19. 

𝐴 =  γ.
1

𝑛
∑ (𝜃𝑖 − 𝜃𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)

2𝑁−1
𝑖=0                 (19) 

γ is a scaling factor. N is the number of components or 

observations. θi is the value observed at the i-th position, and 

θexpected is the expected value for θ. L is the lock-in effect 

metric, defined as, 
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𝐿 =  𝛼. 𝐿𝑠𝑡𝑎𝑡𝑖𝑐 + 𝛽. 𝐿𝑑𝑦𝑛𝑎𝑚𝑖𝑐      (20) 

α and β are weighting factors. Lstatic and Ldynamic are the 

static and dynamic lock-in effect metrics, respectively. δ is a 

constant offset value to ensure that the reward has a desirable 
range and is not zero nor negative.This makes the reward 

function one of the most important guiding mechanisms in the 

decision-making process for any agent through immediate 

feedback on its actions. Here are a few essential reasons: 

Objective Definition: The reward function defines the 

task's objectives by assigning numerical values to different 

states and actions. It communicates what outcomes are 

desirable (positive rewards) and undesirable (negative 

rewards or zero rewards). 

Feedback Loop: Rewards generate a feedback loop 

through which the agent learns by performing actions. A 
reward the agent receives based on an action puts the agent's 

ability to plan into practice in a way that maximizes 

cumulative rewards during the course of the action's lifetime. 

Behavioural Guidance: Rewards shape the agent's 

behaviour, encouraging actions that result in higher rewards 

and discouraging those resulting in lower rewards. This goes 

a long way in directing the agent toward learning optimal 

strategies in pursuit of the desired objectives of the task. 

3.4.4. Algorithm 

→Initialize Environment and Parameters. 

a. Load the reward matrix R from a .csv file. 

b. Define the grid world environment dimensions, the 
number of rows nrows and columns ncols. 

c. Calculate the total number of states nStates = nRows×nCols. 

d. Define the number of actions nActions as 4. 

→Identify Goal State 

a. Locate the goal state by finding the position with the 

maximum reward in the reward matrix R. 

b. Convert this position to the corresponding state index. 

→Initialize Q-Table 

a. Create a Q-table with dimensions nStates×nActions Initially 

set to zero. 

→Set Hyperparameters 
a. Learning rate α. 

b. Discount factor γ. 

c. Exploration rate ϵ. 

d. Maximum number of episodes maxEpisodes. 

e. Maximum steps per episode maxSteps. 

→ Loop for training 

a. For each episode (from 1 to maxEpisodes). 

 Randomly initialize the starting state. 

 For each step within an episode (from 1 to 

maxSteps). 

 Choose an action using the epsilon-greedy 

policy. 
• With probability ϵ, select a random action. 

• Otherwise, select the action with the highest 

Q-value for the current state. 

 Execute the chosen action and observe the 

next state and reward using the ‘takeAction’ 

function. 

 Update the Q-value. 
• Update the Q-value for the current state-

action pair using the Q-learning update rule. 

• 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) ←
𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) + 𝛼(𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛾 ∗
𝑚𝑎𝑥𝑄(𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒, 𝑎′) − 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛)) 

• Transition to the next state. 

• Check if the goal state is reached; if so, end 

the current episode. 

End for each step. 
    End for each episode. 

→Performance Tracking and Visualization. 

a. Track the total reward obtained in each episode. 

b. Plot the total reward per episode to visualize the 

learning progress. 

3.4.5. Block Diagram 

Figure 2 illustrates a reinforcement learning system 

designed to control a dither motor in an environment. The 

DDPG Reinforcement Learning algorithm is used to manage 

updates and generate the next action. The reward function 

evaluates performance metrics such as accuracy and lock-in 

effect, providing incentives for the RL algorithm. 

The Epsilon-Greedy policy operates based on a 

probability distribution to balance exploration and 

exploitation [16]. Specifically, with a small probability ϵ, a 

random action is selected, and with the remaining probability 

1−ϵ, the best action based on current knowledge is chosen. 

This selection process can be represented as a random action 

with probability ϵ and argmaxaQ(st,a) with probability 1−ϵ. 

Here, a is the action taken at time t, Q(st,a) represents the 

estimated value of taking action a in state st, and argmaxa 

denotes the action that maximizes the Q-value. 

For the random action part, if all actions are equally 
likely, a uniform distribution can be used: Random 

action≃Uniform(A), where A is the set of all possible actions. 

These can be combined into a single equation using a random 

variable X, which is uniformly distributed between 0 and 1, 

for the selection process. 

𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝐴),       𝑖𝑓 𝑋 < 𝜖       (21) 

𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑆𝑡 , 𝑎),     𝑖𝑓 𝑋 ≥ 𝜖,      (22) 

𝑤ℎ𝑒𝑟𝑒 𝑋 ≃ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

Equations 21 and 22 capture the essence of the epsilon-

greedy policy by combining exploration and exploitation 

phases into a single decision-making process, as shown in 

Figure 3.
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Fig. 2 DDPG based RL framework with RLG environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3 Epsilon-Greedy policy flowchart for action selection 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Experimental setup components and interactions 

4. Experimental Setup 
Figure 4 presents the test bench for the lock-in errors 

optimization of RLG through Reinforcement Learning. The 

chassis of NI PXIe-1082 is considered as the RL agent and 

will supervise tasks involved in data acquisition and control. 

A signal processing board interfaced with the chassis 

processes RLG signals and generates state inputs and rewards 

function calculation through the defined performance indexes. 

The RLG furnishes measurements of angular velocities, which 

are analyzed by the signal processing board. The RL agent 

uses that data to send control signals back to the RLG and 

change the dither amplitude and PRN values of the 

parameters, which helps to maintain the feedback loop for 
constant optimization. 

Figure 5 shows a LabVIEW-based setup for a 

Reinforcement Learning agent controlling [6] an RLG system. 

It integrates Anaconda Python sessions within LabVIEW to 

execute the RL algorithm [17]. Performance metrics and 

current states are input into the Python session, where the RL 

agent processes them to generate rewards and determine 

actions using an epsilon-greedy policy. The agent adjusts the 

PRN values through three sets, optimizing the RLG's 

performance. The setup includes monitoring states and 

metrics, ensuring real-time feedback and continuous 
improvement. This configuration allows seamless interaction 

between LabVIEW and Python for efficient RL 

implementation. 

4.1. Simulation Environment 

Therefore, for the accurate simulation of the RLG system 

and to test the effectiveness of the method proposed, a 
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comprehensive simulation environment is developed. The 

simulation environment embodies the critical components of 

the RLG and injects its dynamics from mechanical dithering, 

PRN injection, and the Reinforcement Learning (RL) 

framework. MATLAB/Simulink was utilized to model and 

simulate the RLG system. The implementation of the 
Reinforcement Learning algorithm was completed using 

Python libraries, such as TensorFlow, Keras, and Stable 

Baselines3, within the Anaconda IDE. The Gym library 

created a custom environment where the RLG system 

interfaces with the RL algorithm.  

4.2. System Parameters and Configuration 

The simulation was set up with realistic parameters to 

closely mimic the behavior of an actual RLG system. The key 

parameters are described below. Table 1 outlines the key 

parameters for the RLG, which is integral to the system's 

precision and accuracy. The dither frequency ensures the 

stability of the gyroscope's output. The Dither Amplitude, 
dynamically adjusted through Pseudo-Random Noise (PRN) 

values, allows real-time modulation to optimize performance 

under varying conditions. The laser wavelength is known for 

its stability and coherence. The cavity length influences the 

scale factor and sensitivity of the RLG. 

Table 1. RLG parameters 

Parameter Value 

Dither Frequency 357.8 Hz 

Dither Amplitude 
Adjusted dynamically through 

PRN values 

Laser Wavelength 632.8 nm 

Cavity Length 32cm 

Table 2 specifies the parameters related to the Pseudo-

Random Noise (PRN) utilized in the system. The frequency 

range of the PRN provides a broad spectrum that enhances the 

robustness of the dither signal.  

The amplitude range ensures sufficient variability to 

prevent signal degradation while maintaining control. The 
update interval for the PRN values is set at every 10 

milliseconds, allowing for rapid adjustments and fine-tuning 

of the system's performance. 

Table 2. PRN parameters 

Parameter Value 

Frequency range 0.1 to 10Hz 

Amplitude range 0.01 to 0.1 radians 

Update Interval Every 10ms 

Table 3 lists the Reinforcement Learning (RL) 

parameters employed in the systems optimization. The DDPG 
continuously creates action spaces that balance exploration 

and exploitation effectively. The learning rate dictates the 

speed of learning and convergence of the RL agent. The 

discount factor reflects the agent's preference for long-term 

rewards over immediate gains.  

The policy network is described as a DDPG agent with 
fewer episodes and steps, tailored for efficient learning 

without extensive computational demands. Finally, the 

training episodes total 1000, providing a substantial dataset for 

the agent to learn and refine its policy.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Block diagram of LabVIEW based reinforcement learning agent 

Performance metrics 

Current States 

Environment Name 

Python Version 

F 
0 

abc 

abc 

abc 

abc 

Open Anaconda Python Session 

no_of_stateInputs 

no_of_Rewards 

Rewards 

Open Anaconda Python Session 

Epsilog-Greedy 

Monitor States 

Monitor Metrics 

5 

5 

error out 

Adjust PRN Values set1 

Adjust PRN Values set2 

Adjust PRN Values set3 

MODULE 

PATH 



Thoudoju Sreeramulu et al. / IJEEE, 10(1), 1-11, 2024 

 

184 

Table 3. RL parameters 

Parameter Value 

Algorithm DDPG 

Learning Rate 0.1 sec 

Discount Factor(γ) 0.9 

Policy Network 
DDPG agent with fewer 

episodes and steps 

Training Episodes 1000 

Steps per Episode 100 

5. Experimental Results 
Table 4 illustrates the effects of added noise on the values 

A[n] and B[n], as well as the differences A[n]-B[n], compared 

to a scenario without noise. Using Equation 6, the Dynamic 

Dither Angle (DDA) is plotted and displayed in Figure 6. 
Similarly, using Equation 17, the Dither Symmetry Angle 

(DSA) is plotted and shown in Figure 7. These plots represent 

the statistical signal analysis of adding noise to the ring dither. 

Table 4. Comparison of measurements with and without added noise 

Sample 

Number 

(n) 

Added noise 

(pulses) 

Without noise 

(pulses) 

A[n] B[n] 
A[n]-

B[n] 
A[n] B[n] 

A[n]-

B[n] 

0 214 214 0 217 217 0 

1 214 213 1 217 217 0 

2 212 211 1 217 217 0 

3 210 210 0 217 217 0 

4 210 209 1 217 217 0 

5 208 207 1 217 217 0 

6 206 206 0 217 217 0 

. - - - - - - 

. - - - - - - 

4095 197 198 -1 217 217 0 

 

 

 

 

 

 

 
Fig. 6 Dynamic Dither Angle (DDA) over time 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Dither Symmetry Angle (DSA) over time 

5.1. Data Collection and Processing 
To evaluate the performance of the proposed method, data 

was collected from the simulation environment over multiple 

episodes. The types of data collected are listed in Table 5.  

Table 5. Data collection and processing 

Data Type Description 

DDA(𝜃𝑛) Measured at each step 

Previous Angle Historical states of the RLG 

DSA 
Calculated based on the method 

described 

PRN Values 
Adjustments made by the RL 

agent 

Error Metrics 
Difference between the 

expected and measured angles. 

The data was then processed to generate performance 

metrics, including lock-in occurrence and measurement 

accuracy. These metrics were used to assess the effectiveness 

of the proposed method. 

5.2. Performance Metrics 

The following metrics (see Table 6) were used to evaluate 

the performance of the proposed methodology. 

Tabe 6. Performance metrics 

Metric Description 

Lock-in Occurrence 
Frequency and duration of static 

and dynamic lock-in events. 

Measurement 

Accuracy 

Mean Squared Error (MSE) 

between the expected and 

measured angles. 

Convergence Rate 

Number of episodes required for 

the RL agent to converge to an 

optimal policy. 

Computational 

Efficiency 

Time taken for training and 

inference. 
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5.3. Experimental Procedure 

The experimental procedure involved the steps outlined 

in Table 7. 

Table 7. Experimental procedure 

Step Description 

Initialization 
Initialize the RLG system parameters, 

PRN values, and the RL agent. 

Training 

Train the RL agent using the DDPG 

algorithm in the simulated environment. 

The agent adjusts the PRN values based 

on the state inputs and receives rewards 

based on the performance metrics. 

Evaluation 

After training, evaluate the RL agent's 

performance by running multiple test 
episodes. Collect data on lock-in 

occurrence and measurement accuracy. 

Analysis 

Analyze the collected data to determine 

the effectiveness of the proposed method 

in reducing lock-in effects and improving 

accuracy. 

5.4. Validation 

To validate the simulation results, the proposed method 

was compared with traditional dithering methods and static 

PRN injection. The details of the validation process are 

provided in Table 8. 

Table 8. Validation 

Step Description 

Baseline 

Comparison 

Comparing the results with a baseline 

where no PRN was injected and only 

mechanical dithering was used. 

Statistical 

Analysis 

Performing statistical tests to determine 

the significance of the improvements 

observed. 

5.5. Results and Analysis 

Figure 8 illustrates how an algorithm learns over 1000 
episodes with 40% of randomized data. The x-axis represents 

the episodes, while the y-axis shows the total reward. The plot 

displays the algorithm's performance for each episode, with 

noticeable variation. Despite these fluctuations, the rewards 

tend to center around a mean value, indicating that the system 

has stabilized its performance after the initial learning phase. 

The occasional sharp drops, such as the significant one around 

episode 430, may indicate underperforming episodes or 

exploration phases. 

Figure 9 shows the learning progress of an algorithm over 

1000 episodes for 13% of randomized data, with a 13% error 
on randomized data (sample size 4096*3). The rewards are 

generally stable around a mean value, but there are notable 

dips at several points, suggesting occasional poor performance 

or periods of exploration. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Learning process showing error (spike) in 40% of randomized 

data (sample size = 4096) 

 

 

 

 

 

 

 

 

 
 

 
Fig. 9 Learning process showing error (spikes) in 13% randomized data 

(sample size=4096*3) 

Figure 10 suggests that the sample size of 40,960 is large 

enough to estimate a population parameter with a 3% margin 

of error at a specific confidence level. This small margin of 

error indicates a high degree of precision in estimating the true 

population parameter, as larger sample sizes typically result in 

smaller margins of error. The cumulative reward progress over 

episodes is plotted on a graph that oscillates around a 

particular mean, reflecting improved performance in the 

learning process. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Learning process showing error (spikes) of 3% for randomized 

data (sample size=4096*10) 
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6. Conclusion 
This research introduces a novel method for enhancing 

the performance of Ring Laser Gyroscopes (RLGs) by 

integrating Statistical Signal Processing (SSP) and 

Reinforcement Learning (RL). It tackles the significant issue 

of static and dynamic lock-in effects that reduce the accuracy 

of RLGs, especially in low angular rate conditions. 

By introducing the concepts of Dynamic Dither Angle 

(DDA) and Dither Symmetry Angle (DSA), a framework is 
developed to effectively capture the cumulative and balanced 

effects of dither pulses. The DDA and DSA calculations 

provide detailed insights into the error patterns induced by 

dithering, allowing for precise adjustments to reduce lock-in 

effects. 

Using the Deep Deterministic Policy Gradient (DDPG) 

algorithm further strengthens this approach. The DDPG-based 

RL framework dynamically optimizes the Pseudo-Random 

Noise (PRN) values, effectively minimizing both static and 

dynamic lock-in occurrences. This dynamic adjustment is 

achieved through the interaction of the RL agent with the RLG 

system, continuously refining the dither strategy based on 

feedback from performance metrics such as lock-in 

occurrence and angular measurement accuracy. 

Extensive simulations validated the efficacy of the 

proposed methods, demonstrating significant reductions in 
lock-in effects and notable improvements in gyroscope 

performance. The integration of SSP and RL offers a robust 

and efficient solution, advancing RLG technology and making 

it more reliable for precise navigation applications. 

In conclusion, this research successfully combines 

Statistical Signal Processing with Reinforcement Learning to 

address a critical challenge in RLG performance. The 

proposed approach not only reduces lock-in effects but also 

enhances the overall accuracy and reliability of RLGs, paving 

the way for their more effective use in advanced navigation 

systems. Future work could explore further optimizations and 

real-world implementations to solidify these findings and 
extend their applicability. 
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