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Abstract - During the last few decades, the optimization-based data-driven approach has been widely used for generating 

membership functions in fuzzy-based systems, where the shapes of membership functions are mostly considered either triangular 

or trapezoidal. However, the number of parameters that are required to be estimated for a triangular membership function is 

three (left vertex, center, and right vertex). For a trapezoidal membership function, it is four (left base point, left shoulder, right 

base point, and right shoulder). Whereas, the number of parameters required for a Gaussian membership function is two (mean 

and standard deviation). Therefore, a fuzzy system modelled using the Gaussian membership function can significantly reduce 

the number of parameters when the number of subsets for the antecedent and consequent membership functions is large. 

However, not much attention is given to designing fuzzy models with Gaussian-shaped membership functions; most of the 

existing fuzzy modelling techniques impose many restrictions on the membership functions’ parameters. As a result, the flexibility 

and scope of the optimization techniques are reduced. This study, therefore, suggests a novel optimization-based technique to 

frame fuzzy membership functions in which the membership functions are Gaussian-shaped, and very few restrictions are 

imposed on the parameter selection. A comparative analysis is carried out between the conventional method and the proposed 
method with different optimization techniques (Differential Evolution (DE), Particle Swarm Optimization (PSO), and Genetic 

Algorithm (GA)) to approximate four standard nonlinear functions.  

Keywords - Differential Evolution, Fuzzy system, Genetic Algorithm, Membership Function, Particle Swarm Optimization. 

1. Introduction  
The basic principles of fuzzy modelling were formulated 

by Zadeh [1] with the aim of approximately but effectively 

describing the behaviours of complex or ill-defined systems. 
In the last few decades, fuzzy models have been widely used 

in different fields of science, engineering, social science, 

medical diagnosis and treatment, etc. [2-4]. There are two 

broad types of fuzzy models, viz., the Mamdani fuzzy model 

and the Takagi-Sugeno fuzzy model. The Mamdani model is 

a linguistic model that is based on a collection of IF-THEN 

rules, with the antecedent and the consequent both fuzzy [5]. 

The Sugeno models are formed by rules with fuzzy antecedent 

and functional consequent [6]. In this paper, the experiment is 

conducted on the modelling of the Mamdani-type fuzzy 

system.  

The major tasks involved in modelling a Mamdani-type 

fuzzy-based system are the generation of fuzzy Membership 

Functions (MFs) for the antecedent and consequent, formation 

of the rule base, development of a fuzzy inference engine, and 

finally, the defuzzification for the crisp output [7, 8]. The 

construction of membership functions plays a pivotal role in 

the design process of a Mamdani-type fuzzy model. One 

conventional way to formulate membership functions is to 

divide the input and output spaces equally to generate the 

antecedent and consequent membership functions, 

respectively.  

Another method of modelling fuzzy systems is to use 

expert knowledge. However, knowledge-based membership 

function generation has some limitations. Sometimes, the 

expert in the particular domain is not available, or the experts' 
opinions may differ from one another. Therefore, researchers 

[9-11] have developed different approaches, such as 

clustering-based approach [12-14], neural network-based 

approach [15], density-based technique [16], statistical 

approach [17, 18], and optimization-based method [19-23], 

etc., to derive the fuzzy models’ membership functions.  

In the last few decades, optimization techniques, due to 

their ability to automatically generate the optimum value of 

parameters, have been extensively used for the generation of 

MFs of fuzzy systems. In such an approach, the optimization 

techniques are used either to fine-tune the membership 

functions after initial guesses or to generate the membership 
functions automatically. Different optimization techniques, 
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http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Anup Kumar Mallick et al. / IJEEE, 10(8), 217-225, 2024 

218 

viz., GA, PSO, and DE, have been used to generate the 

membership functions optimally.  

Karr et al. [19] have employed GA to model a fuzzy 

controller for balancing a cart pole. Herrera et al. [20] have 

used a genetic algorithm to tune fuzzy rules and fit fuzzy 

membership functions for balancing an inverted pendulum. 

The membership functions for a single input-single output 

system where the output points are squares of the input points 

are determined using a genetic algorithm in [21]. Zhang et al. 

[22] optimize the membership function for a general industrial 

process with dead time, saturation, and time delay using a 

genetic algorithm. Safaee et al. [23] apply PSO and GA to 

generate the membership functions in the design of a quad 

rotor.  

Although several research findings claim the efficacy of 

the optimized fuzzy systems over the conventional fuzzy 

systems, the major problem in the optimum generation of 

membership functions is the restrictions imposed on the 

parameters, which in turn reduces the search space for the 

optimization problem. For example, in [20], the authors 

update a fuzzy number by four parameters, and the 
formulation of these four parameters sufficiently restricts the 

parameters of membership functions.  

Zhang et al. [22] put several constraints on the position of 

membership functions. They [22] consider triangular-shaped 

membership functions and restrict the position of the centers 

and the two vertexes of the membership functions. As the 

number of constraints increases, the flexibility and scope of 

generating new positions for the parameters for the 

membership functions reduces. Moreover, it is found that 

most of the optimization-based MF generation techniques 

have considered the shape of the MFs, either triangular [21-

23] or trapezoidal [20], whereas both shapes require more 
parameters to be selected for their formation. 

Motivated by the above-discussed problems in 

membership function generation, this paper suggests a novel 

technique for constructing MFs for the antecedent and 

consequent in a Mamdani-type fuzzy system. The shapes of 

the membership functions of both the antecedent and 

consequent are considered as Gaussian. The performances of 

the proposed model with varying optimization techniques 

(DE, PSO, and GA) are compared with the conventional fuzzy 

system modelling method in predicting four standard 

nonlinear functions, viz., a cube function, a square function, a 
square root function, and an exponential function. 

2. Theoretical Preliminaries 
The presented paper devises an optimization-based 

membership function generation technique for a Mamdani-

type fuzzy system. Hence, basic concepts of a Mamdani-type 

fuzzy system, fuzzy membership functions, and optimization 

techniques are discussed briefly in this section.  

2.1. Mamdani-Type Fuzzy System 

 

 

 

 

 

 

 
 

Fig. 1 Block diagram of a Mamdani-type fuzzy system 

Figure 1 shows the block diagram of a Mamdani-type 

fuzzy system. It consists of a fuzzifier, a knowledge base, a 

fuzzy inference engine, and a defuzzifier. The knowledge base 

comprises a rule base and a database. The rule base consists 

of a set of fuzzy If-Then rules, and the database keeps the MFs 

of the input and output variables. The fuzzifier, with the help 

of antecedent MF, converts real-world crisp input to its 

corresponding fuzzy value. The fuzzy inference engine fires 

appropriate rules of the rule base with varying firing strength 

and provides fuzzy outputs of each fired rule. The defuzzifier 

generates a crisp output from the aggregated FIS output for 
real-world applications using the defuzzification method.  

2.2. Mamdani-type Fuzzy System 

A membership function µA(x) is defined by the following 

mapping:  

: [0,1], .x x X
A

            (1) 

Where x is a real number describing an object, X is the 

universe of discourse, and A is a subset of X. The membership 

function in fuzzy logic maps an attribute or object to a positive 

real number in the interval [0, 1]. Because of its function-like 

mapping characteristics, it is called a membership function 
[24]. 

The membership functions used for mapping input 

variables and output variables are termed antecedent 

membership function and consequence membership function, 

respectively. Theoretically, any function can serve as a 

membership function for a given fuzzy set [25]. The shape of 

the membership function depends on the context of the 

applications. Different methods of generating membership 

functions have been proposed in the literature, some of which 

are outlined in the introduction section of this article.  

2.3. Optimization Techniques 

Optimization is a technique that aims to maximize or 
minimize a function in the design of a system. The function, 

here, termed a cost or objective function, attempts to fulfil 

some performance specifications or targets. The optimization 

techniques return a set of parameters’ values to obtain the best 

possible result for the design of the underlying system. 
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There are several optimization techniques or algorithms, 

such as GA, PSO, DE, etc. GA relies on the possibility of 

generating better children from fitter parents and the survival 

of the fittest. PSO is inspired by the social movement of 

organisms in a bird flock or fish school.  

Differential evolution [28–30] is a search algorithm that 
optimizes a problem by iteratively developing a candidate 

solution through an evolutionary process with little or no 

assumption about the underlying optimization problem and is 

capable of rapidly exploring large design areas. The 

optimization techniques are used for various purposes; 

optimal generation of membership functions in a fuzzy system 

is one such application. 

3. Proposed Model 
The design of the proposed model broadly involves four 

major steps: generation of fuzzy MFs, formation of a fuzzy 

rule base, rule firing by the inference engine, and 

defuzzification of the fuzzy output. The novelty of the 

suggested method lies in its first step, i.e., the generation of 

the fuzzy MFs, which is thus illustrated in detail. The other 

three steps, viz., formation of fuzzy rules, the firing of rules 

by the fuzzy inference engine, and finally, defuzzification, are 

done in the conventional methods of fuzzy system design; 

hence, these three steps are described in brief. 

3.1. Generation of Fuzzy Membership Functions  

The proposed model is designed for a single-input, single-

output system. The input variable represented by antecedent 

MF and the output variable represented by consequent MF are 

both comprised of three fuzzy subsets: low, medium, and high, 

and the MFs are assumed to be Gaussian-shaped. The 

minimum and maximum values of the variables are considered 

as the mean of low subset and high subset, respectively, for 

both antecedent and consequent. The mean of the subset 

middle and the Standard Deviations (SDs) of all three subsets 

for the antecedent and the consequent are determined using an 

optimization technique. In the evolutionary algorithm, the 

composition of an individual is given in Figure 2. 

 

 
Fig. 2 Individual representing the membership functions’ parameters 

Here, SDLA, SDMA, SDHA denote SDs of the MFs 

representing the input variable for its low, medium, and high 

subsets, respectively; CMA and CMC represent the medium 

subset’s mean values for the input variable and the output 

variable, respectively; and SDLC, SDMC, and SDHC are the 
notions of SDs for the low, medium, and high subsets of the 

output variable, respectively. The optimization algorithm in 

each iteration aims to reduce the objective function given in 

Equation (1). 

2

1

(( ( ) ( ))
N

i

f g i d i


                    (2) 

Here, N represents the number of data points, g(i) and d(i) 

denote, respectively, the given output and the derived output 
obtained using the proposed technique for the i-th input x(i). 

The best population found at the last iteration of the 

optimization technique is translated as membership functions’ 

parameters.  

This paper proposes and compares the generation of 

membership functions' parameters using three different 

evolutionary algorithms (GA, PSO, and DE). The procedures 

for generating the parameters of MFs using GA, PSO, and DE 

are given in Algorithms 1, 2, and 3, respectively. 

Algorithm 1. Parameter optimization of member functions using GA 

Input:     Population size (n), maximum number of iterations (itrmax), crossover, and mutation probabilities.  

Output:  Membership functions’ parameters. 

1:    Generate initial population or parents (nx8)  

2: Set iteration=0 

3: Compute the fitness of the parents using objective function in Equation (1)  

4:    while  iteration < itrmax  do 

5:          Increment iteration by 1 

6:             Form the mating pool from the parents through binary tournament selection 

7:             Perform crossover & mutation  

8:             Compute the fitness of the offspring using objective function in Equation (1) 

9:             Update parents for the next generation by taking the best fit n chromosomes among the parents & 

                 the children 

10:   end while 

Return    best chromosome 
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Algorithm 2. Parameter optimization of member functions using PSO 

Input:       Swarm size (n), maximum number of iterations (itrmax), w, c1, c2. 

Output:    Membership functions’ parameters. 

1:  Generate initial particles (nx8) and initial velocity(old) 

2:  Set iteration=0 

3:  Compute the fitness of each particle using objective function in Equation (1) 

4:  Assign the current position as the pbest of each particle  

5:  Assign the best position of all particles as the gbest 

6:  while iteration < itrmax do 

7:           Increment iteration by 1 

8:           Compute the new velocity of each particle as,  

                 velocity(new)=w*velocity(old)+ c1*(pbest- position(old))+c2*(gbest-position(old))  

9:           Update the position of each particle by, 

              position(new)=position(old)+velocity(new) 

10:         Compute  fitness of each particle with its updated position using objection function in Equation (1) 

11:         Update the pbest of each particle and the gbest of all particles 

12:  end while 

Return    best chromosome 

     

Algorithm 3. Parameter optimization of member functions using DE 

Input:      Population size (n), maximum number of                            

                 Iterations (itrmax), crossover probability (CR). 

Output:   Membership functions’ parameters. 

1:    Generate initial target vectors (nx8)  

2: Set iteration=0 

3: Compute the fitness of the target vectors using objective function in Equation (1) and find the best 

target vector pbest 

4:     while iteration < itrmax do 

5:          Increment iteration by 1 

6:             Generate F by the Quantile function of the Cauchy distribution 

7:             for i=1:n  

8:                Generate donor vector by, 

                   donor vector(i)=target vector(i)+ F(pbest-target vector(i)+target vector(r1)-target vector(r2)), 

such that r1≠r2≠i 

9:                   Perform recombination between target vector(i) and donor vector(i) with CR to generate trial 

vector(i) 

10:                 Compute the fitness of the trial vector(i) using objective function in Equation (1)  

11:                 Replace the target vector(i) by trial vector(i), if trial vector is fitter  

                 end for 

12:            Update target vectors and pbest for the next iteration   

13:      end while 

Return     best chromosome 
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3.2. Fuzzy Rule Base  

To illustrate the proposed method, a single input-single 

output system is considered with a set of rules (R1-R3) as 

given below. 

R1: If input is low, then output is low. 

R2: If input is medium, then output is medium. 
R3: If input is high, then output is high. 

3.3. Fuzzy Inference Engine 

The Fuzzy Inference Engine (FIS) infers the three rules in 

the rule base with different firing strengths of [0, 1]. The final 

fuzzy output of the FIS is obtained by aggregating the outputs 

of all three rules using the fuzzy MAX operator.  

3.4. Defuzzification 

There are different defuzzification techniques [31], each 

with some advantages and disadvantages. The proposed 

model uses one of the most popular defuzzification 

techniques, Mean of Maxima (MOM) [32], to find the final 

crisp output. 

4. Simulation Results 
The performance of the proposed fuzzy system is 

validated on four nonlinear functions, viz., a cube function, a 

square function, a square root function, and an exponential 

function, as given in Equations (3) to (6) respectively.      

3 for 0 2y x x       (3) 

2 for 0 3y x x      (4)          

for 0 9y x x                  (5) 

for 0 3xy e x                           (6)  

Where x and y are the notions of input and output, 

respectively, to quantitatively measure and compare the 

outputs of the suggested fuzzy model and the conventional 

fuzzy model, two error metrics, viz., average sum squared 

error ((here denoted by ASSE) and average error (here denoted 

by AE) are used. The expressions of these two error indices 
are given by Equations (7) and (8). 

𝐴𝑆𝑆𝐸 =
1

𝑟
∑ (𝑒(𝑘) − 𝑝(𝑘))2𝑟
𝑘=1  (7) 

𝐴𝐸 =
1

𝑟
∑ |𝑒(𝑘) − 𝑝(𝑘)|𝑟
𝑘=1  (8) 

Here, e(k) and p(k) represent the exact output and 

predicted output of the k-th test point, and r is the size of the 

test points. For unbiased comparison, the shape of the 
membership functions for the conventional fuzzy system is 

also considered Gaussian, with the low subset and high subset 

as the right-sided Gaussian and left-sided Gaussian, 

respectively. The mean of the subset middle of the 

conventional fuzzy system is set at the midpoint of the input 

variable for the antecedent and the midpoint of the output 

variable for the consequent. The standard deviations of the 

membership functions for the conventional fuzzy system are 

all calculated as 1/6th of the respective variable.  

In this paper, the conventional fuzzy model is denoted by 

CFM and the Proposed Fuzzy Models (PFMs), whose 
membership functions are generated by GA, PSO, and DE, are 

denoted by PFM-GA, PFM-PSO, and PFM-DE, respectively. 

The performances of the fuzzy models (CFM, PFM-GA, 

PFM-PSO, and PFM-DE) are tested on 11 equally spaced data 

points of the four nonlinear functions considered here. The 

actual and predicted outputs for the test data points of the cube 

function, square function, square root function, and 

exponential function are depicted in Figures 3, 4, 5, and  6, 

respectively.  

 

 

 

 

 

 

 

 
 

Fig. 3 Actual (o) and predicted (*) output for the cube function as estimated by (a) CFM (b) PFM-GA (c) PFM-PSO (d) PFM-DE 
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Fig. 4 Actual (o) and predicted (*) output for the square function as estimated by (a) CFM, (b) PFM-GA, (c) PFM-PSO, and (d) PFM-DE. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Fig. 5 Actual (o) and predicted (*) output for the square root function as estimated by (a) CFM, (b) PFM-GA, (c) PFM-PSO, and (d) PFM-DE. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Actual (o) and predicted (*) output for the exponential function as estimated by (a) CFM (b) PFM-GA (c) PFM-PSO (d) PFM-DE 
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Table 1. Comparative performances of the fuzzy models with respect to ASSE 

Test Functions 

Fuzzy Models 

CFM PFM-GA PFM-PSO PFM-DE 

Cube 5.061847 0.005818 0.109382 0.054487 

Square 3.440291 0.099593 0.098489 0.006995 

Square root 0.362491 0.002987 0.038995 0.003597 

Exponential 18.006377 0.173327 0.080090 0.082414 

Table 2. Comparative performances of the fuzzy models with respect to AE 

Test Functions 

Fuzzy Models 

CFM PFM-GA PFM-PSO PFM-DE 

Cube 1.800000 0.052364 0.219636 0.178182 

Square 1.366364 0.233182 0.225000 0.065455 

Square root 0.444238 0.044234 0.134281 0.044415 

Exponential 3.289064 0.343060 0.218723 0.236512 
 

The errors in predicting the four non-linear functions 

were noted, and the values of the error indices are presented 

in Tables 1 and 2 to compare the performances of the 

suggested fuzzy model and the conventional fuzzy model 

quantitatively.   

5. Result Discussion 
From Figure 3(a), it is seen that the Conventional Fuzzy 

Model (CFM) has predicted the correct output of the cube 

function at very few points, rising to the very high values of 

ASSE (approximately 5.062) and AE (approximately 1.80), as 

are found from Tables 1 & 2. From Figures 3(b) - 3(d), it is 

seen that all the proposed models (PFM-GA, PFM-PSO, and 

PFM-DE) are outperforming the conventional fuzzy model. 

Among the proposed models, PFM-PSO & PFM-DE are 
predicting the cube function at some points accurately, 

whereas, at some other points, there exist minor deviations 

from the actual outputs.  

From Tables 1 and 2, it is seen that the average sum 

squared error for PFM-PSO & PFM-DE are 0.109 and 0.054, 

respectively, and the average error for PFM-PSO & PFM-DE 

are 0.220 and 0.178, respectively. The best performance in the 
prediction of the cube function is obtained by PFM-GA. From 

Figure 3(b), it is noticed that except at a very few points, PFM-

GA has predicted the output accurately. From Tables 1 and 2, 

it appears that the values of ASSE & AE in predicting the cube 

functions at the test points by PFM-GA are 0.006 and 0.052, 

respectively. Similar to the cube function, the square function 

has not been predicted well by the conventional fuzzy model, 

as seen in Figure 4(a), and it encompasses very large errors, as 

found in the result tables (Tables 1 and 2). From Figures 4(b) 

and 4(c), it is seen that the performance of PFM-GA and PFM-

PSO are very similar, and they predict the square function 

accurately at some points and deviate from the actual outputs 

at some other points.  

The square function has been quite satisfactorily 

predicted by PFM-DE, as seen in Figure 4(d). It is further 

supported by the values of the error indices, as shown in 

Tables 1 and 2. PFM-DE, with values of 0.007 and 0.0655 for 

ASSE and AE, respectively, outperforms the other three 

methods in predicting the square function. Figure 5(a) 

indicates that for the square root function, the performance of 

the conventional fuzzy model is not appreciable, and it is 

imperative from Tables 1 and 2, too.  

From Figures 5(b)-5(d), it is noticed that PFA-GA and 

PFM-DE are making sufficiently good predictions, whereas 

PFM-PSO, although performing better than the conventional 

fuzzy model, at some points, its predicted outputs are much 

deviated from the actual output values. From the tables of 

results, it is seen that among the four models, the square root 

function has been best predicted by the PFM-GA. The 

exponential function, as seen from Figures 6(b)–6(d), at the 

test points is predicted very well by all three proposed models. 
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In terms of errors, this function has been best predicted by 

PFM-PSO, as found in Tables 1 and 2. 

6. Conclusion 
This paper proposes a novel optimization-based 

technique for designing a fuzzy model with Gaussian-shaped 

membership functions. The simulation results demonstrate 

that the proposed model outperforms the traditional fuzzy 

model in approximating the four nonlinear functions 

considered here. It is expected that the suggested fuzzy 

modeling technique will be adopted in various domains of 

fuzzy-based system design to generate membership functions 

from data. The suggested technique has been applied to model 

a Mamdani-type fuzzy system. Efforts may be put into 

designing a Sugeno-type fuzzy system utilizing the proposed 

method. Further research may also be conducted to achieve 

better results using multi-objective optimization algorithms 

instead of single-objective optimization algorithms in the 
design process.  
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