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Abstract - The need to evaluate the transient stability of power systems is inevitable and crucial in order to ensure that they will 

continue to operate efficiently after interruptions. In the present investigation, an attempt is made to use machine learning 

methods, particularly the XGBoost and the Random Forest models, with the objective of predicting the stability of the power 

systems after a fault has occurred. Thus, the dataset used by the models has several generator and bus parameters, as well as 
pre and post-fault conditions; the objective is to identify if the system stability is stable or unstable. In general, it is possible to 

conclude that the use of a hybrid model, combining the XGBoost and Random Forest techniques, outperforms each model 

separately. This is the case because it has the merits of both methods as it combines the two methods to identify the similarities 

of the two plans. In this case, the effectiveness of the proposed approach is assessed using evaluation parameters like accuracy, 

precision, recall rate, and F1-score. Furthermore, the study gives an understanding of the stability measures most affected by 

the characteristics and those that affect stability predictions. By applying more complex modes of predictive modeling, this work 

contributes to advancing the reliability and efficacy of power grid management. 

Keywords - Transient stability, Machine learning, Power systems, XGBoost, Random Forest.  

1. Introduction  
The transient stability of power systems is one of the most 

important aspects to ensure grid reliability. It becomes even 

more critical with the increased penetration of renewable 

energy sources. Traditional assessment of transient stability 

based on time-domain simulation and direct methods has been 

proven to suffer from shortcomings in both accuracy and 

computational effectiveness when power systems, equipped 

with distributed generations and uncertain renewable inputs, 

turn to be more complex and dynamic [1, 2]. This has raised 
interest in Machine Learning (ML) and Artificial Intelligence 

(AI) methods to improve transient stability prediction and 

management in modern power grids. The ensemble learning 

technique, particularly with Extreme Gradient Boosting 

(XGBoost) and Random Forest, presents efficacy in accurate 

system stability prediction under diverse operating conditions 

and fault scenarios utilizing large datasets and advanced 

feature selection techniques [3]. 

More recent advances in ML for the assessment of the 

stability of power systems have been on the integration of deep 

learning models like CNNs and RNNs, which capture 

complex temporal and spatial patterns within power system 

data [3, 4]. Moreover, these models are improved in 

adaptiveness and efficiency by utilizing transfer learning 

techniques and AutoML, reducing manual effort on feature 

engineering and parameter tuning within real-time stability 
assessments [5]. The additional support that such technologies 

will give in revolutionizing transient stability assessment is 

the deployment of real-time monitoring systems with 

emergency control using AI for timely and accurate 

information in the operation and prevention of blackouts [5].  

Consistent with these advances, Transient Stability 

Assessment (TSA) in power systems using machine learning 

techniques has advanced dramatically. The higher penetration 

of renewable sources and the complexity of today’s power 

grids demanded robust and accurate TSA. One of the exciting 

studies used machine learning techniques, in particular, 
Extreme Gradient Boosting and Random Forests, to develop 

dynamic stability analysis for power systems. The study 

illustrated flexibility in applying machine learning algorithms 

in the face of variations in parameters and structure for power 

systems by deriving significant improvements in the accuracy 

of results when taken concerning system topology [4]. 

Another study presented an improved form of TSA by 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:d.salman@just.edu.so


Diaa Salman et al. / IJEEE, 11(8), 236-247, 2024 

237 

combining feature selection using mRMR and ensemble 

learning implemented by WTA. The model demonstrated high 

accuracy in transient stability prediction through real-time 

data from comprehensive Area Monitoring Systems (WAMS), 

complemented with features based on electromagnetic power 

and voltage amplitude [5]. Another hybrid approach based on 
automated machine learning through auto-feature selection 

and Bayesian optimization has been proposed in a generalized 

form. The rationale behind this approach is to enhance the 

interpretation and deployment effectiveness of TSA models. 

Some other investigation reports have extended this by 

introducing CatBoost, a gradient boosting algorithm, 

combined with SHAP analysis for feature importance in 

testing the power systems [6].  

Some studies have investigated deep learning models 

using stacked autoencoders combined with voting ensemble 

classifiers to address TSA challenges. These models have 

shown the capacity to handle big data by predicting reliable 
stability, which is an essential feature in the real-time 

operation of a power system. In addition to these, a 

hierarchical approach has also been developed to predict 

transient stability, which uses multiple support vector 

machines. This method achieves a compromise between 

accuracy in prediction and time of response, given 

misjudgments for unstable instances. This shortcoming is 

addressed by constructing different ensemble classifiers for 

each layer of the hierarchical scheme [7]. Furthermore, the 

work of a critical review on data-driven TSA approaches also 

presented the principles, prospects, and challenges in the field. 
The feature extraction, selection, model construction, and 

online learning toward effective TSA models significantly rest 

on this work [1].  

There is another innovative way of using trajectory 

clusters to define the most relevant features towards TSA 

better. Applying Support Vector Machine (SVM) models 

enhances the robustness of the TSA system in various 

conditions, therefore improving the accuracy of the prediction 

[8]. On the other hand, other recent reviews concern the 

application of artificial intelligence techniques to machine, 

deep, and reinforcement learning for TSA. Some of these 

include the benefits and challenges of different AI approaches, 
emphasizing the need for advanced data generation, 

processing, and the deployment of models. Finally, techniques 

have been reviewed to improve the transient stability of 

renewable-rich power systems. These research works discuss 

the challenges that result from the low inertia features of 

renewables but proffer amelioration towards enhancing 

stability through advanced converter/inverter topologies, and 

their control means [9].  

Consequently, transient stability is becoming a highly 

pertinent area of concern with the increasing complexity and 

penetration level of renewable energy sources. Traditional 
tools for transient stability studies include both time domain-

based simulators and direct methods that have typically 

revealed limitations in accuracy, computational efficiency, 

and, more importantly, applicability for recent power grids 

with high variability and distributed generations. Previous 

studies have focused on applying many machine learning 

models to enhance the prediction accuracy of their TSA 
models and strive for efficiency. In this regard, Extreme 

Gradient Boosting (XGBoost) and Random Forest (RF) are 

ensemble learning methods that have shown great promise. 

Efforts must be made to investigate hybrid approaches that 

combine strength from a wider variety of machine learning 

models for better robustness and performance.  

In this regard, the study aims to close this gap by 

developing and evaluating a hybrid XGBoost-RF model in 

predicting the transient stability of power systems; 

specifically, it will use the IEEE New England 39-Bus Test 

System. It includes the benefits of two models: XGBoost and 

Random Forest. The hybrid model ensures better predictive 
accuracy and reliability than the single model. The 

methodology involves data acquisition, pre-processing, 

feature selection, and model development, followed by 

training and validation using appropriate metrics. The results 

demonstrated that the hybrid XGBoost-RF model outperforms 

other individual models for improved accuracy, precision, 

recall, and F1 scores. The crucial information provided 

through this research will advance the assessment of the 

stability of a power grid, provide insights into the critical 

stability features, and enhance the reliability and management 

of the grid. 

2. Models Description 
The reliability of power systems is also very important, 

and they need to run continuously in order to maintain the 
stability and adequacy of today’s power systems. As the power 

systems become more complicated and the load demands 

higher, transient stability, which refers to the system’s ability 

to remain in phase with a sudden disturbance such as a fault, 

becomes important. Transient stability is an essential factor in 

power system security and its behavior during disturbances. It 

determines the system’s capacity to remain stable and regain 

operating stability after a disturbance without a chain reaction 

of failures or blackouts. 

The main research aim of this study is to build and 

evaluate the performance of XGBoost, RF, and the XGBoost-
RF hybrid model for the assessment of transient stability in the 

power system. To evaluate the models’ performance, 

accuracy, precision, recall, and F1-score indicators are 

applied. Furthermore, the study seeks to establish some of the 

main attributes that impact on stability predictions so as to 

help power system operators and engineers. A novel ensemble 

learning technique for TSA is put forth by Kunac et al. (2020) 

[10]. This has been presented as an ML approach to 

classification as a binary problem, and it is suggested that this 

approach be employed. They discuss the problems that are 
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intrinsic to datasets that are imbalanced and derived from 

network measurements that have been obtained from PMUs 

installed in the distribution network during disturbances. It 

employs a wide assortment of base learners who are grouped 

in a voting committee to enhance robustness and accuracy. 

This is done in order to address the fact that there are issues of 
duplication and the problem of multicolinearity with many 

features. It is a method that integrates a pre-processing stage 

of feature selection that employs importance analysis based on 

various decision tree-based models. This further validates the 

efficiency of the ensemble learning model and its ability to 

work for the TSA. Their approach is theoretically sound, and 

when evaluated on the IEEE New England 39-bus test system, 

they are able to perform reasonably well, especially when 

dealing with imbalanced sample distributions and differential 

misclassification costs during testing. 

Zhang et al. (2021) propose an active learning-based 

approach to power system TSA that deals with the issues of 
data acquisition for the offline training phase and the problem 

of frequent updates of the models due to changes in the grid 

[11]. Building on the highly widespread usage of PMUs, the 

method begins generating unlabeled samples through short-

time simulations of various operational conditions and faults. 

Important TSA characteristics are chosen, and some of the 

samples are kept for long-term imitation to indicate their 

transience. These labeled samples are used to train a random 

forest model. It involves the high information entropy data 

from the remaining unlabeled samples are picked and labeled, 

used in the retraining of the model until the accuracy 
converges. When applied to a power system, the proposed 

method achieves drastic improvement in offline simulation 

time, model efficiency, and insensitivity to wide-area noise, 

proving its applicability for real-time TSA. 

In the context of the growing demand for electricity, 

Wang et al. (2021) describe a method to predict transient 

stability based on the Long Short-Term Memory (LSTM) 

network, a type of recurrent neural network [12]. This method 

seeks to determine in advance the possibility of transient 

stability in order to maintain system stability. To compare the 

performance of the proposed LSTM-based approach, the work 

compares it with a multi-layer support vector machine on the 
IEEE 9-bus system and tests it on the New England 39-bus 

system. The training and testing data for the LSTM network is 

created through time-domain simulation with the aid of the 

power system analysis toolbox. Numerical analysis of 

simulation data suggests that the proposed LSTM-based 

method enhances the classification accuracy for stability 

prediction, thus validating its potential for enhancing the 

transient stability assessment of power systems. 

2.1. Extreme Gradient Boosting (XGBoost) 

One of the most famous efficient and scalable algorithms 

of gradient boosting machines is Extreme Gradient Boosting 
(XGBoost). This ensemble learning method proposes 

combining the predictive power of several weak learners into 

constructing a strong learner. XGBoost optimizes the 

objective function using gradient descent, and it also uses a 

regularization term that prevents model overfitting [13]. 

ℒ(Θ) = ∑  𝑛𝑖=1 𝑙(𝑦𝑖 , �̂�𝑖) + ∑  𝐾
𝑘=1 Ω(𝑓𝑘)           (1) 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆∑  𝑇𝑗=1 𝑤𝑗

2                (2) 

𝑔𝑖 =
∂𝑙(𝑦𝑖 ,�̂�𝑖)

∂�̂�𝑖
, ℎ𝑖 =

∂2𝑙(𝑦𝑖,�̂�𝑖)

∂�̂�𝑖
2              (3) 

𝑤𝑗 = −
∑  𝑖∈𝐼𝑗
𝑔𝑖

∑  𝑖∈𝐼𝑗
ℎ𝑖+𝜆

                    (4) 

XGBoost has proved to be a very dominant and efficient 

algorithm in machine learning. Equation 1 defines the overall 

objective function for the case of XGBoost, where l represents 

the differentiable convex loss function measuring the 

difference between predictions ŷi and its target yi. Ω is the 

regularization term for the penalty associated with model 

complexity fk In particular, the regularization term Ω has been 

defined with equation 2, where T is the number of leaves in 

the tree, λ is the regularization parameter, and wj are the 

weights in the leaf, thus ensuring that it is productive and 

generalizes well for unknown data. 

As Equation (3) shows, gradient gi and Hessian hi are 

correspondingly the first and second derivatives of the loss 
function, which are used to update model parameters and play 

a large part in model optimization. The leaf weight wj is 

optimized using the formula provided in Equation (4), where 

Ij represents the set of data points assigned to leaf j, ensuring 

each leaf in the decision tree is weighted appropriately based 

on the contribution of the data points it contains. Figure 1 

shows a schematic representation of the XGBoost model 

architecture, illustrating the process flow and key components 

involved in model building and training. Table 1 describes the 

structure and summary statistics of the dataset used in this 
study, which comprises 3120 instances with 350 features, 

where 80% of the instances are labelled as stable and 20% as 

unstable. The fault types are distributed as follows: single-

phase faults constitute 70%, double-phase faults account for 

20%, and three-phase faults make up 10%. 

 

 
 

 

 

 
 

 

 
Fig. 1 Schematic representation of the XGBoost model architecture [14] 
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Table 1. Description of the dataset structure and summary statistics 

Description Value 

Number of instances 3120 

Number of features 350 

Class distribution (stable) 80% 

Class distribution (unstable) 20% 

Fault Types Distribution 

Single-phase 70% 

Double-phase 20% 

Three-phase 10% 

2.2. Random Forest 

Random Forest (RF) is a collective learning technique 

that generates numerous decision trees during the training 

phase and produces the most frequent class occurrence for 

classification objectives or the average prediction for 

regression tasks [15]. Building each tree using a random 
subset of the training data and features, RF reduces overfitting 

and improves generalization. The prediction for an instance x 
using a Random Forest is given by: 

�̂� =
1

𝑁
∑  𝑁𝑖=1 ℎ𝑖(𝑥)    (5) 

Equation 5 illustrates how the prediction is made by 

averaging the predictions hi(x) of all N trees in the forest, thus 
providing a robust and reliable outcome. The trees are built 

using the following steps: 

 Bootstrap Sampling: Randomly sample n instances from 
the training set with replacement. 

 Feature Selection: At each node, randomly select m 

features from the total p features. 

 Node Splitting: Split the node using the feature that 

provides the best split according to a certain criterion 

(e.g., Gini impurity, information gain). 

Gini impurity for a node, used for selecting the best 

feature, is defined as: 

𝐺 = ∑  𝐶𝑖=1 𝑝𝑖(1 − 𝑝𝑖)          (6) 

In Equation 6, C is the number of classes and pi is the 

proportion of instances of class i in the node. This impurity 

measure helps identify the feature that best separates the 

classes, thereby enhancing the tree’s decision-making process. 

Random Forest operates by constructing multiple 

decision trees during training. The output is the mode of the 

classes (classification) or mean prediction (regression) of the 

individual trees. Figure 2 shows a schematic representation of 

the Random Forest model architecture, highlighting the 

ensemble of decision trees and their contribution to the final 

prediction [16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2 Schematic representation of the Random Forest model  

2.3. Hybrid XGBoost - RF Model 
The hybrid XGBoost-RF model combines the strengths of 

both XGBoost and Random Forest to improve prediction 

accuracy and robustness [17]. This approach leverages the 

sequential boosting nature of XGBoost with the parallel 

ensemble strategy of RF. The hybrid model follows these 

steps: 

 Feature Importance with RF: Train a Random Forest 
model to rank the features based on their importance, 

which helps in selecting the most relevant features for the 

subsequent XGBoost model. 

 Feature Selection: Select the top-ranked features 

identified by the Random Forest model. 

 Boosting with XGBoost: Use the selected features to train 

an XGBoost model, which refines the predictions by 

focusing on the misclassified instances. 

The combined prediction y of the model is given by: 

�̂� = 𝛼�̂�XGBoost + (1 − 𝛼)�̂�𝑅𝐹           (7) 

According to Equation 7, ŷXGBoost  is the prediction made 

by the XGBoost model, while ŷRF is the prediction resulting 

from the Random Forest model. For this case, having α 

enough as a weighting factor ensures sufficient generalized 

cross-validation to balance contributions by both models. 

Training Data 
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Training 
Sample n for 

Training 

Tree Model 1 Tree Model 2 Tree Model n 

Voting Test Data 

Forecast 
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With the hybrid approach, the model will help in reducing 

variance because of RF’s low value and bias due to XGBoost’s 

low bias value; hence, high accuracy and reliability can be 

attained in the predicted system designed. Thus, a 

hybridizedXGBoost–RF model will incorporate the two major 

strengths of XGBoost and Random Forest. It is expected that 
such a hybrid model will leverage these strengths from both 

modelling approaches to strive ahead in improving overall 

prediction accuracy and robustness. Figure 3 Schematic 

representation of the hybrid model architecture for the 

integration of XGBoost-RF to enhance predictive 

performance. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

Fig. 3 Schematic architecture of the hybrid XGBoost-RF model  

Table 2 compares the hyperparameters of an XGBoost 

model with those of a Random Forest model. What is shown 

in the table is different settings for each model to fine-tune its 

performance. For example, on the side of the XGBoost, it uses 

a learning rate of 0.1 with 100 boosting rounds, while on the 

side of Random Forest, there will be the implementation of 
100 trees without maximum depth, allowing the trees to grow 

until all leaves are pure. 

The two models have their different ways of feature 

selection and fighting overfitting. Among parameters for fine-

tuning the boost process, there exists the learning_rate and 

colsample_bytree in the case of XGBoost, whereas Random 

Forest has n_estimators and max_features as critical 

parameters leading to the robust ensemble of decision trees in 

its form. All of this proves how each model improves 

prediction accuracy and model performance distinctly. 

Table 2. Configurations for XGBoost and Random Forest models 

Model Parameter Explanation 
Best 

Value 

XGBoost 

 

Learning 

Rate 

Shrinkage step 

to avoid 

overfitting 

0.1 

Boosting 

Rounds 

Number of 

iterations for 

boosting 

100 

Tree Depth 

Maximum 

depth a tree 

can reach 

6 

Child 

Weight 

Minimum 

instance 

weight sum 
required in a 

child 

1 

Sample 

Ratio 

Proportion of 

training data 

used in each 

boosting 

iteration 

0.8 

Column 

Ratio 

Proportion of 

columns used 

in tree 

construction 

0.8 

 

 

 

 

Random 

Forest 

 

Tree Count 
Total number 

of trees 
100 

Max Tree 

Depth 

Maximum 

allowable tree 

depth 

None 

Split 
Requirement 

Minimum 

samples 
needed to split 

a node 

2 

Leaf 

Requirement 

Minimum 

samples 

needed at a 

leaf node 

1 

Feature 

Count 

Number of 

features 

considered for 

the best split 

The 

square 

root of the 

total 

features 

2.4. Data Description  

The dataset comprises 350 features derived from PMU-

type signals combined with phasor measurements. These 
features were generated through 9360 systematic electro-

mechanical transient simulations in MATLAB®/Simulink, 

based on the IEEE New England 39-bus power system test 

case network. This database was created to be open and 

accessible, facilitating experimentation with various machine 

learning techniques for Transient Stability Assessment (TSA) 

of electrical power systems [18]. 

Training Dataset 

Primary Models 

Random Forest 

Algorithm 

Refined Training 

Dataset 

XGBoost 

Algorithm 

Logistic Regression 

Model 

Ultimate Prediction 
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The dataset comprehensively covers different load and 

generation levels for the New England 39-bus benchmark 

power system. It includes all three primary types of short-

circuit events at any line location: three-phase, two-phase, and 

single-phase faults. The network’s power consumption was 

adjusted to 80%, 90%, 100%, 110%, and 120% of the 
fundamental system load levels. Short circuits were positioned 

either on the busbar or the transmission line (TL), occurring at 

20%, 40%, 60%, and 80% of the line length. Features were 

effectively extracted through direct analysis of time-domain 

signals at the pickup time (pre-fault value) and trip time (post-

fault value) of the corresponding distance protection relays. 

The dataset is stochastic, comprising 3120 cases 

constructed from 9360 systematic simulations. It includes a 

statistical distribution of fault types: single-phase faults 

(70%), double-phase faults (20%), and three-phase faults 

(10%). Additionally, the dataset exhibits class imbalance, with 

less than twenty percent of instances belonging to the unstable 
class. Table 3 lists the feature names in the dataset. 

Table 3. Dataset features description 

No. Feature Description 

1 WmGx 
Rotor speed for each generator Gx, from 

G1 to G10 

2 DThetaGx 
Rotor angle deviation for each generator 

Gx, from G1 to G10 

3 ThetaGx 
Rotor mechanical angle for each 

generator Gx, from G1 to G10 

4 VtGx 
Stator voltage for each generator Gx, 

from G1 to G10 

5 IdGx 
Stator d-component current for each 

generator Gx, from G1 to G10 

6 IqGx 
Stator q-component current for each 

generator Gx, from G1 to G10 

7 LAfvGx 
Pre-fault power load angle for each 

generator Gx, from G1 to G10 

8 LAlvGx 
Post-fault power load angle for each 

generator Gx, from G1 to G10 

9 PfvGx 

Pre-fault value of the generator active 

power for each generator Gx, from G1 to 

G10 

10 PlvGx 

Post-fault value of the generator active 

power for each generator Gx, from G1 to 

G10 

11 QfvGx 

Pre-fault value of the generator reactive 

power for each generator Gx, from G1 to 

G10 

12 QlvGx 

Post-fault value of the generator reactive 

power for each generator Gx, from G1 to 

G10 

13 VAfvBx 
Pre-fault bus voltage magnitude in phase 

A for each bus Bx, from B1 to B39 

14 VBfvBx 
Pre-fault bus voltage magnitude in phase 

B for each bus Bx, from B1 to B39 

15 VCfvBx 
Pre-fault bus voltage magnitude in phase 

C for each bus Bx, from B1 to B39 

16 VAlvBx 
Post-fault bus voltage magnitude in 

phase A for each bus Bx, from B1 to B39 

17 VBlvBx 
Post-fault bus voltage magnitude in 

phase B for each bus Bx, from B1 to B39 

18 VClvBx 
Post-fault bus voltage magnitude in 

phase C for each bus Bx, from B1 to B39 

19 Stability 

Binary indicator (0/1) that determines if 

the power system was stable or unstable 

(0 - stable, 1 

2.5. Working Structure  

The analysis is initiated with data acquisition; the study 

ensures that it acquires massive data on features like rotor 

speed, rotor angle deviation, stator voltage, pre and post-fault 

power, and stability factors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Workflow of the research 
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After data collection, data pre-processing is done to 

handle any missing values and scale the data if needed. The 

data is then divided into train and test data sets for the purpose 

of model performance assessment. Feature selection is 

performed to select the most important features for 

classification and sort them according to their importance 
using an initial model. After that, the model-building process 

is done, where each of the XGBoost and Random Forest 

models is constructed individually and then integrated into a 

single, hybrid XGBoost-RF model. The models are trained 

with the training set. As for evaluating the models, there are 

several measures like accuracy, precision, recall, and F1-

score. Further, the evaluation of the model is done by 

analyzing the ROC curve and the Precision-Recall curve. Last 

but not least, the variables that are most influential in 

supporting the model’s decision are extracted and displayed. 

3. Results and Discussions 
This paper compares three models, namely, XGBoost, 

RF, and a combined model of XGBoost-RF, for the purpose 

of assessing their proficiency in identifying transient stability 

in the IEEE New England 39-bus test system. The 

performance of these models is assessed using several metrics: 
Precision, recall, F1 score, and overall accuracy of the model. 

These metrics are vital in assessing the capability of the 

models to distinguish between stable and unstable states and, 

hence, accuracy and reliability in power system stability 

analysis. Table 4 illustrates the overall metrics results of the 

three models. 

The model that was chosen for this task – XGBoost – 

performs quite well with an overall accuracy of 0. 89. For class 
0 (stable), recall is 0. 95; thus, the stability of the prediction is 

highly likely to be true in 95 percent of the cases. The recall is 

0. 89, which indicates the model correctly detects 89 percent 

of all actual stable instances. The F1 score, which is the 

average of the precision and recall rates and is a more accurate 

measure than the individual rates, is 0.89, which is almost 

equal to the Flesch-Kincaid Grade Level and Flesch Reading 

Ease. For class 1, which is unstable, the precision of the model 

is 0.86, and a recall of 0. 90, giving an F1 score of 0.88. It is 

important to note that the macro average of these metrics is 

equal to 0.89, which indicates reasonable pass rates for both 
classes. Another measure that is also equal to 0 is the weighted 

average of 0.89, which shows the model maintains a fairly 

steady performance over the set. 

The overall accuracy found in the RF model is higher 

compared to previous models with a value of 0. 99. Since class 

0 has no true positive instances, precision is 0 for this class. 

91, recall is 0. 90, and F1-score is 0. 90, which means that the 

model is able to select proper instances that will remain stable 
and give the correct prediction. In class 1, the precision is 0. 

85, recall is 0. 90, and F1-score is 0.88, slightly outperforming 

XGBoost by increasing the capacity of detecting unstable 

instances. The average of macro precision, recall, and F1-

score is 0. 90, 0. 89, and 0. 12 and 89, respectively, which 

shows more attendance balance between both classes. The 

weighted averages, which incorporate the distribution of 

instances, remain at 0.90, 0.89, and 0.89, which attest to the 

reliability and usefulness of the proposed model. 

The combined XGBoost-RF model performs even better 
than the standalone XGBoost and RF models by attaining a 

high accuracy of 0. 99. It has a zero false positive rate for class 

0, meaning that it has a perfect precision of 1. 00, showing that 

all of the stable instances that we predicted are correct and that 

recall is 0. 99 as well as an F1-score of 0.99. This shows how 

the model can accurately determine the stable state, which is 

an important feature of the model.  

For class 1, precision is 0. 96, and recall is 1. For the 

actual unstable instances, it has an accuracy of 00, meaning 

that all the actual unstable instances are correctly captured. 

The F1-score is 0. 98. As for the macro average of the hybrid 

model, the precision is 0, the recall is 0, and the F1-score is 0. 
98, 0. 99, and 0. 99 in the case of the model compared to 87 

and 93, respectively, in case of the two different classes, which 

shows the model has better recognition capability in both the 

classes. All the weighted average values were equal to 0. 99%, 

thereby ascertaining the high reliability of the model in 

determining the stability of the power system. 

The result of the comparison shows that both XGBoost 

and RF models offer good predictive capabilities; however, 

the hybrid XGBoost-RF model offers perfect predictive 

performance in terms of precision, recall, and the F1-score. It 

can be seen that the performance of the hybrid model is better 
in terms of accuracy, and the model is balanced for the stable 

as well as unstable classes, which makes it the most suitable 

model for the prediction of transient stability in the IEEE New 

England 39-bus test system. This shows that it can effectively 

be used in areas that need high accuracy and reliability in 

managing power system stability. 

The most important features that affect the accuracy of 

the transient stability prediction model in the IEEE New 

England 39-bus test system are presented in the form of a bar 

chart in Figure 5. Feature importance in the context of 
machine learning refers to the significance of the features for 

building decision trees in the context of the ensemble model. 

The feature importance in the XGBoost-RF hybrid model is 

based on the XGBoost and Random Forest algorithms, and 

with the help of both algorithms, these important features are 

accurately identified and weighted. 

The features captured in the chart are ordered based on 

the importance score, which estimates the impact of the 

feature on the prediction error. The features with the highest 

coefficients are more important for the model, as they allow 

the stability or instability of states to be determined. It is 
expected that the most relevant features are rotor speed 
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(WmGx), rotor angle deviation (DThetaGx), stator voltage 

(VtGx), as well as active and reactive power values before and 

after the fault (PfvGx, PlvGx, QfvGx, QlvGx). It also aids in 

knowing which factors of the power system contribute most to 

transient stability, thus enabling the monitoring of the system 

and the formulation of control measures. With regard to the 

features that are most salient, engineers and researchers can 

direct their attention to the most relevant aspects of the power 

system, which might result in increased stability and 

reliability.

Table 4. Performance metrics comparison of XGBoost, RF, and XGBoost-RF hybrid models 

Model Class Precision Recall F1-Score 

XGBoost 

0 0.95 0.89 0.89 

1 0.86 0.90 0.88 

Accuracy - - 0.89 

Macro avg 0.88 0.89 0.89 

Weighted avg 0.89 0.89 0.89 

RF 

0 0.91 0.90 0.90 

1 0.85 0.9 0.88 

Accuracy - - 0.99 

Macro avg 0.90 0.89 0.89 

Weighted avg 0.90 0.89 0.89 

XGBoost-RF 

0 1.00 0.99 0.99 

1 0.96 1.00 0.98 

Accuracy - - 0.99 

Macro avg 0.98 0.99 0.99 

Weighted avg 0.99 0.99 0.99 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 The top features of importance in the prediction model
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Figure 6 represents the ROC curve of the XGBoost-RF 

hybrid model for the prediction of the transient stability of the 

IEEE New England 39-bus test system, as shown in the figure 

below. The ROC curve is one of the most common and basic 

statistical measures used for the assessment of binary 

classification models. It maps TPR against FPR for different 
threshold levels, presenting a holistic picture of the model. In 

this figure, the hybrid model is proved to be close to the top 

left corner of the ROC curve plot, which means the model has 

almost perfect classification performance. The TPR 

(sensitivity or recall) indicates the share of actual positives 

that are classified correctly by the model. In contrast, the FPR 

(1-specificity) indicates the share of actual negatives that are 

classified as positive. 

The nature of the curve, especially at the top left corner, 

where it almost touches the axes, depicts an almost perfect 

classifier with a relatively high AUC. An AUC close to 1 

indicates that the model is extremely effective in properly 
classifying the stable and unstable states in the power system 

with overall low false positive rates and high true positive 

rates. The ROC curve of nearly 90 degrees is enough to 

support the reliability and accuracy of the model in identifying 

the transient stability of the power systems and thus can be 

considered a good tool for power system stability analysis. 

The ROC curve showing high performance proves the 

efficiency of the proposed hybrid method, combining the best 

features of the XGBoost and Random Forest algorithms. 

Figure 7 shows the Precision-Recall (PR) curve obtained 

for the XGBoost-RF hybrid model, which was applied in 
predicting the transient stability of the IEEE New England 39-

bus test system. PR curve is considered to be more effective 

for analyzing the performance of binary classifiers, especially 

in the case of large amounts of unbalanced data. It graphs 

Precision, which is the proportion of the total number of 

positive predictions made by the model to the total number of 

actual positive cases, against Recall, which is the ratio of the 

total number of correct positive predictions to the total number 

of actual positive cases for different threshold levels. 

In this figure, the PR curve for the hybrid model appears 

to have excellent performance, with an Average Precision 

(AP) of 1. This curve demonstrates that when Recall is 1, 
meaning all actual positives are included in the sample, 

Precision is still extremely high, near 0. 99. This means that 

for all the true positive instances, the model does not only 

identify them but also incurs very minimal false positive 

errors. The high precision at full recall indicates that the 

proposed model is very reliable for identifying the stable and 

unstable states that exist in the power system without having 

to sacrifice the accuracy of the model. A high AP score and 

the shape of the PR curve, which is in its favour, proved that 

the proposed hybrid model strikes the right balance between 

precision and recall and, therefore, can be recommended for 
use in predicting the transient stability of power systems. This 

performance metric again validates that the proposed 

XGBoost-RF hybrid model outperforms the other models and 

proves its ability to predict accurate and reliable results, which 

is more important for balancing the stability and reliability of 

the power systems. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
Fig. 6 Binary classifier performance evaluation of the model using 

receiver operating characteristic curve 

 
 

 

 
 

 

 
 

 

 

 
 
 

 

 
 

Fig. 7 Precision-recall curve of the model 

Figure 8 describes the performance of the XGBoost-RF 
hybrid model in terms of the stability of the IEEE New 

England 39-bus test system in terms of the confusion matrix. 

The model achieved high accuracy by classifying 488 of 493 

stable instances correctly (True Positives) and all the 131 

unstable instances as False Positives (True Negatives). It 

committed only five classification mistakes of assigning stable 

instances as unstable (False Positives), while it did not 

misclassify any unstable instances as stable (False Negatives). 

This shows a high value of True Positives and True Negatives, 

proving the efficiency of the model and the low False Positives 
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and False Negatives. The absence of false positives and no 

false negatives also indicates the effectiveness of the model 

and its importance in maintaining the stability of the power 

supply by detecting instabilities. 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

Fig. 8 Confusion matrix heatmap 

Figure 9 captures the fluctuation in the training and 

validation of the XGBoost-RF model in relation to a specific 

hyperparameter. The graph shown below depicts how the 

model performance behaves when this parameter is varied, 

providing information about the right tuning to be done in 

order to maximize the generalization of the model to unseen 

data. The training score tends to be initialized high and may 

slightly drop as the parameter value increases; on the other 

hand, the validation score initially increases, reaches the 

maximum, and then may decrease, which implies overfitting 

in case of a high parameter value. Finding the highest value of 
the validation score assists in defining a proper parameter to 

reduce overfitting while increasing the model’s prediction 

capability and robustness. This analysis is important in 

enhancing the model and making it perform better in the IEEE 

New England 39-bus test system data. 

In Figure 10, the bar chart represents the identification of 

the 30 most critical features employed by the XGBoost-RF 

mixed model for the transient stability assessment of the IEEE 

New England 39-bus test system. For each feature, the 

probability density function is illustrated both for class 0, 

which corresponds to the stable state, and class 1, which 

corresponds to the unstable state, so that a comparison can be 
made of how these features differ between the two classes. By 

analyzing these distributions, it is possible to understand what 

differentiates the model and which features it uses to make the 

predictions. This visualization is useful in understanding the 

aspects that have high separability between the classes and, 

hence, are valuable in the classification task. It also provides 

an understanding of the underlying patterns of power system 

stability.

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 
 

Fig. 9 Training and validation scores change with a specific parameter 
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Fig. 10 The distribution of the most important features for the two classes

4. Conclusion  
The current work shows how machine learning models, 

such as XGBoost, RF, and a combined XGBoost with RF 

model, can be used to forecast transient stability in the IEEE 

New England 39-bus test system. The chosen algorithms’ 

ability to classify stable and unstable states was measured 

using such parameters as precision, recall, F1-score, and 

accuracy. The overall accuracy of the model was 89%, 
proving that the XGBoost model is quite stable and has a good 

predictive analysis.  

However, while the RF model enhanced a bit in 

identifying unstable cases, the accuracy rate was higher at 

99%. However, the proposed combined XGBoost-RF model 

performed even better than the individual models of XGBoost 

and RF with an accuracy level of 99%. This hybrid model 

outperformed the individual models, based on precision, 

recall, and F1-scores, which show the stable and unstable 

classes’ performance. The study shows that the XGBoost-RF 

model is the most appropriate for transient stability prediction, 

hence its recommendation for power systems. The paper also 
showed that features affecting the model accuracy of the 

system are the rotor speed, rotor angle deviation, stator 

voltage, as well and active and reactive power values before 

and after the fault. Thus, applying modern approaches to 

machine learning, this research supports the continuous 
development of power grid management reliability and 

efficiency. The findings from this research could be useful in 

the enhancement of stability assessment techniques that assist 

in the stability and secure operation of contemporary power 

systems in view of growing demands and risks. Possible 

directions for future work include the use of real-time data 

feeds and more sophisticated deep learning methodologies to 

enhance the accuracy and timeliness of the stability 

assessment, which would be helpful in developing more 

complex and adaptive stability assessment frameworks for 

smart grid systems in the ever-changing environment. 
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