
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 9, 39-56, September 2024

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I9P104 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Improving Detection of Induction Motor Bearing Faults:

A Study on Hyperparameter Tuning and ResNet-18

Layer Modification

Lydiah Aywa Sikinyi1,5*, Christopher Maina Muriithi1,2, Livingstone Ngoo1,3, Duncan Shitubi4

1Department of Electrical Engineering, Pan African University, Institute for Basic Sciences Technology and Innovation,

Nairobi, Kenya.
2Department of Electrical and Electronics Engineering, Murang’a University of Technology, Murang’a, Kenya.

3Department of Electrical and Electronics Engineering, Multimedia University of Kenya, Nairobi, Kenya.
4Software Developer, DEFEND Organization, Toronto, Canada.

5Department of Electrical and Communication Engineering, Masinde Muliro University of Science and Technology,

Kakamega, Kenya.

*Corresponding Author : Lydiah.sikinyi@gmail.com

Received: 02 July 2024 Revised: 04 August 2024 Accepted: 02 September 2024 Published: 28 September 2024

Abstract - Detecting incipient bearing faults of an induction motor is crucial for minimizing downtime, reducing maintenance

costs, and ensuring safety. In this study, a novel approach to improve the detection accuracy of induction motor bearing faults

using a combination of hyperparameter tuning and modifications to the Residual Network - 18 (ResNet-18) architecture is

investigated. The effect of optimizing these aspects to enhance ResNet-18’s ability to classify various fault types within a dataset

of bearing vibration signals is explored. This research focuses on ResNet-18 architecture, which has demonstrated remarkable

performance in various image classification tasks, to evaluate the impact of specific modifications to its layers in order to

improve further its suitability for bearing fault detection. The appropriate balance between model complexity and interpretability

is achieved by altering the depth, width, and skip connections within ResNet-18. Next, parameters such as batch sizes, learning

rates, L2 regularization, number of epochs, and optimizer are investigated by systematically tuning these hyperparameters and

applying layer modifications, a new Bayesian Optimized Squeeze and Excitation ResNet model, which has a higher training

accuracy of 98.44%, a validation accuracy of 99.48%, testing accuracy of 99.48%, and lower computational cost, as compared

to the ResNet-18 model, is achieved. The proposed BOSE-ResNet contributes to the development of a more effective and precise

bearing fault diagnosis model while enhancing machinery reliability in industrial applications and providing valuable insights

for practitioners and researchers in the field of condition-based maintenance.

Keywords - Bayesian optimization, Fault diagnosis, Hyperparameters, ResNet-18, Squeeze and excitation block.

1. Introduction
The smooth operation of induction motors is vital in

various industrial applications, and any malfunction can result

in unexpected downtime and costly maintenance. The

induction motor has numerous components that are prone to

faults, such as stator windings, rotor bars, bearings, cooling

systems, external connections, and terminals, to mention a

few.

Bearings, which have the highest probability of failure at

41%, [1] play a pivotal role in ensuring the smooth and

efficient operation of the induction motor. Accurate detection

of incipient bearing faults is crucial for preventive

maintenance and ensuring the reliability of induction motors.

If undetected, bearing faults can lead to severe consequences

such as increased energy consumption, reduced operational

lifespan, and, in extreme cases, catastrophic failures. Recently,

there has been a spiked interest in leveraging advanced

machine-learning techniques for the early detection of faults

in induction motor bearings.

Traditional fault diagnosis methods often rely on expert

knowledge and manual feature engineering, which may not be

scalable or adaptable to complex and evolving systems. Deep

learning models, particularly Convolutional Neural Networks

(CNNs), have emerged as powerful tools, allowing for timely

interventions and preventing unexpected breakdowns due to

their ability to learn complex patterns and representations

from raw data [2]. However, very few studies have detailed

the impact of tuning different hyperparameters and combining

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Lydiah.sikinyi@gmail.com

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

40

hyperparameter optimization with ResNet-18 architecture

modifications. Existing models also often suffer from high

computational costs. This research aims to address these gaps

by exploring how these techniques can work together to

improve the detection of bearing faults in induction motors.

In this paper, the focus is on improving the detection of

induction motor bearing faults by reducing the computational

cost while enhancing the accuracy and efficiency of fault

diagnosis through a comprehensive investigation into

hyperparameter tuning and modifications to the Residual

Network - 18 (ResNet-18) architecture.

ResNet-18 is a widely used Convolutional Neural

Network (CNN) known for its effectiveness in image

classification tasks. The architecture's distinctive feature of

residual connections helps address the vanishing gradient

problem, allowing for the training of deeper networks [3].

This study investigates the combined effect of

hyperparameter tuning and ResNet-18 layer modification on

improving the detection of induction motor bearing faults. It

contributes to the development of a highly accurate and cost-

efficient Bayesian Optimized Squeeze and Excitation

Residual Network through modifications to the ResNet-18

architecture to tailor it specifically for the intricate features

present in vibration signals associated with bearing faults.

Additionally, a comprehensive study on hyperparameter

tuning, which is a crucial step in optimizing the performance

of deep learning models, is done. By systematically adjusting

parameters such as learning rates, batch sizes, and

regularization terms, the accuracy and performance of the new

model in identifying subtle variations indicative of bearing

faults is enhanced.

By combining the power of transfer learning with

advancements in deep learning architectures, the aim is to

create a model capable of outperforming existing approaches

by enhancing the model’s ability to accurately classify various

fault types within a dataset of bearing vibration signals,

reducing the computational time, and paving the way for

reliable and efficient operation of induction motors in diverse

industrial settings.

The rest of the paper is organized as follows: Section 2

presents a detailed review of related works in the field of fault

diagnosis using ResNets. An overview of the methodology

comprising data pre-processing, ResNet-18 layer

modification, hyperparameter tuning, and model evaluation is

given in Section 3. The experimental findings and analysis are

shown in Section 4, and Section 5 concludes by summarising

the key findings and directing on possible areas for future

research.

2. Related Work
In [4], researchers have looked at various approaches to

improve early fault diagnosis in induction motors and prevent

breakdowns. Vibration analysis is generally used for the

detection of mechanical faults since it is easily measurable,

highly accurate, and reliable [5]. A variety of signal

processing techniques, including the Fourier Transform (FT),

Empirical Mode Decomposition (EMD), and Wavelet

Transform (WT), have been extensively utilized to extract

features from the preprocessed vibration signal that are

indicative of bearing health. Following the extraction of

characteristics, machine learning or statistical methods are

employed to classify the bearing condition.

These techniques analyze the vibration signals generated

by the motor bearings to identify abnormalities associated

with bearing faults. FT decomposes the signal into its

frequency components but is unable to handle non-stationary

signals. WT is more advanced and analyzes both frequency

and time information, making it more suitable for non-

stationary fault signatures [6]. EMD decomposes the signal

into intrinsic mode functions that represent specific frequency

components, which is beneficial in isolating fault-related

frequencies from complex vibration signals containing

multiple components and background noise.

A randomized Fisher Discriminant Analysis-based

bearing fault diagnosis method was proposed in [7], which

firstly required the extraction of time-domain features from

the raw vibration signals. However, choosing an appropriate

type of signal processing technique to be used with shallow

machine learning algorithms such as Support Vector

Machines (SVMs), decision trees, linear regression, and

random forests, to mention a few, requires human expertise

[2].

CNNs have gained popularity in the field of bearing fault

diagnosis since they can automatically learn relevant features

from raw data, eliminating the need for domain expertise in

feature selection and allowing the model to identify the most

discriminative features for the specific task at hand [8]. A

CNN analyzes images and extracts important features. While

increasing the number of stacked layers in a neural network

can enrich features by enabling the model to identify more

intricate connections within the data, this benefit is

counterbalanced by the potential for vanishing/exploding

gradients.

Normalized initialization and intermediate normalization

layers have made significant progress in solving this issue by

allowing networks with multiple layers to start converging for

Stochastic Gradient Descent (SGD) with backpropagation. In

[9], the problem of degradation was addressed by introducing

a deep residual learning framework. Architectures like ResNet

introduce shortcut connections that skip over some layers,

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

41

allowing the gradient to flow directly from earlier layers to

later layers and bypassing the vanishing gradient issue in the

skipped layers. The original ResNet-18 architecture, with its

18 layers, has been widely used in various applications due to

its balance between performance and computational

efficiency. Subsequent research has led to the development of

deeper ResNet variants, such as ResNet-50 and ResNet-101,

which have achieved state-of-the-art results in image

classification. However, the application of these deeper

architectures to bearing fault diagnosis is relatively limited

due to their high computational cost.

The Domain Adaptation ResNet structure is selected in

[10] to help mitigate training errors that typically arise in

deeper networks, achieving a 94.22% accuracy rate. In

comparison, a classification accuracy of 97.54% is achieved

when the Principal Component Analysis is used to fuse

features from multiple sensors and feed to a hybrid SVM-

ResNet model [11]. These studies demonstrate the potential of

ResNet for fault classification tasks, and the effectiveness of

squeeze and excitation ResNet models is highlighted in [3]

after a signal-to-image method using continuous wavelet

transform outperformed the ResNet family achieving a high

accuracy of 93% for rolling bearing fault diagnosis.

Various optimization techniques have been employed to

find optimal hyperparameter settings. Bayesian Optimization

has emerged as a popular choice due to its efficiency in

exploring the search space. A Bayesian Optimization ResNet-

18 was employed in [12] to diagnose motor bearing faults

since after comparing it to transfer learning models such as

ResNet-50, LeNet-5, VGG-16, and so on, it gave the highest

classification accuracy. The ResNet-18’s learning rate,

momentum, and L2 regularization hyperparameters were

optimized to achieve a training accuracy of 89.50%. Its

diagnostic accuracy was 99.31% for faults without the

addition of simulated industrial noise from the hydrogen

station and 92% with the addition of noise. Jaber et al.

proposed a ResNet-based deep learning multilayer fault

detection model achieving an accuracy of 83.5% for the data

transmission ratio, [13] while a fault diagnosis method based

on the Markov transition field and residual networks was able

to achieve an accuracy of greater than 98.52% in the

identification of rolling bearings faults with various degrees of

severity and locations [14]. However, compared to shallow

neural network-based techniques, it needed a longer training

time since it was trained from scratch.

From previous research, it is evident that deep learning

has shown great potential in bearing fault diagnosis, but

several challenges remain. It is also clear that the performance

of the ResNet-18 can be improved either by fine-tuning the

hyperparameters [15, 16] or by adjusting the layers [17]. The

main aim of this research will, therefore, be to improve the

accuracy of detecting induction motor bearing faults and

reduce the computational cost of the ResNet-18 model through

a combination of hyperparameter tuning and layer

modification.

3. Methodology
3.1. Bearing Dataset

In this work, the Paderborn University (PU) bearing

dataset is used since it is a well-known benchmark dataset

widely used for research in fault diagnosis and prognostics. It

consists of synchronously measured motor currents and

vibration signals obtained from a test rig with high resolution

and sampling rate. The dataset consists of 6 healthy states for

reference and 26 damaged states of ball bearings of type 6203,

of which 12 are artificially damaged bearings, and 14 are

bearings with real damages caused by accelerated lifetime

tests [18]. To ensure the robustness of condition monitoring

methods at different operating conditions, the PU data was

collected using accelerometers placed on the test rig, capturing

the vibrations generated by the rotating bearings under

different combinations of operating conditions, i.e. at different

rotational speeds of the drive system, radial force onto the test

bearing and load torque, while temperature was kept at 45-50

°C during all experiments [18]. The dataset diversity was

essential for training the model to recognize and classify

various fault patterns accurately. For each of the settings, 20

measurements of 4 seconds each were recorded and saved as

MATLAB files [19].

Subsequently, the frequency and time values of the PU

pre-processed data are arranged into a 2D matrix format to

come up with images to be fed into the deep learning

algorithm since CNNs are known to be great image classifiers.

The images function in MATLAB, which scales image data to

the full range of the current colormap and displays the image,

is employed to generate a color-coded image, where the

intensity of vibration is depicted across different frequencies

and time intervals [20]. The original image obtained was of

656 rows, 875 columns, and 3 Red Green Blue channels, i.e.

size [656x875x3]. The images were scaled and cropped to

224x224x3 RGB images to enhance the recognition of the

target objects by the model and also avoid overfitting the

network. The improved ResNet-18 can then interpret these

images to identify patterns or anomalies indicative of faults in

induction motor bearings, thereby contributing to real-time

classification.

The faults from the PU dataset included healthy, outer

race, inner race, and a combination of inner and outer race

faults, each introduced at different levels of severity to

simulate realistic degradation scenarios. Each fault type

manifests distinct vibration patterns, as shown in Figure 1. A

total of 2632 images were created for the 4 different classes,

i.e. one class for the healthy state and three classes for the

faulty states. Subsets for training, validating, and testing were

created from the bearing images dataset to facilitate model

evaluation, training, and validation. 15% of the images from

the 4 classes were left aside for testing, while the remaining

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

42

2464 images were randomly divided to end up with 70% for

training and 15% for validation. These images are then

uploaded to MATLAB’s Deep Network Designer App and are

used to train and test the various models.

Fig. 1 Bearing data images for (a) Combination fault

(N09_M07_F10_KB27_3), (b) Healthy (N15_M01_F10_K001_19),

(c) Inner race fault (N09_M07_F10_KI01_7), and (d) Outer race fault

(N15_M07_F04_KA05_10).

3.2. ResNet-18 Network Architecture

ResNet-18 is a CNN architecture that was introduced by

Kaiming He et al. [9] after researchers discovered that merely

adding more layers could lead to performance degradation.

ResNet-18 introduces residual connections, also known

as skip connections, which allow the network to learn residual

functions in order to address the challenge of vanishing

gradients that arises when training very deep neural networks.

It is well known for achieving good accuracy on image

classification tasks while maintaining a relatively low

computational cost compared to other deep networks.

The architecture of ResNet-18 consists of a convolutional

layer followed by a max pooling layer and residual blocks,

each containing a series of two or three convolutional layers

with batch normalization and activation functions. The final

layers include global average pooling and a fully connected

layer for classification, as shown in Figure 2.

 Fig. 2 The ResNet-18 architecture

(a) (b)

(c) (d)

Image Input
224x224x3

Conv 1,7x7, 64

Batch Normalization

ReLU

Max Pooling, 3x3

Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization Batch Normalization

Batch Normalization

Batch Normalization Batch Normalization Batch Normalization Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Batch Normalization

ReLU

ReLU

ReLU ReLU

ReLU ReLU

ReLU

ReLU

ReLU
ReLU

ReLU
ReLU

ReLU ReLU

ReLU

ReLU

Global Average

Pooling

Fully Connected (4)

Softmax

Classification

Addition Layer
Addition Layer Addition Layer Addition Layer

Addition Layer

Addition Layer Addition Layer Addition Layer

Conv 2a, 3x3, 64

Conv 2a, 3x3, 64

Conv 2b, 3x3, 64

Conv 2b, 3x3, 64

Conv 3b, 3x3, 128

Conv 3b, 3x3, 128

Conv 4b, 3x3, 256

Conv 4b, 3x3, 256

Conv 5b, 3x3, 512

Conv 5b, 3x3, 512

Conv 3a, 3x3, 128 Conv 4a, 3x3, 256 Conv 5a, 3x3, 512

Conv 3a, 3x3, 128
Conv 4a, 3x3, 256 Conv 5a, 3x3, 512

Conv 3a2, 1x1, 128
Conv 4a2, 1x1, 256 Conv 5a2, 1x1, 512

Residual Block

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

43

3.2.1. Image Input Layer

This layer accepts Two-Dimensional (2-D) images of

fixed size [224x224x3], i.e. RGB image with 224x224 pixels

and 3 color channels as the neural network’s input, ensuring

that the input images are compatible with the subsequent

layers of the network. Z-score data normalization is applied to

transform the mean of all values to become zero and the

standard deviation to become one.

The purpose of z-score normalization is to make different

features more directly comparable and to ensure that they

contribute equally to the learning process [21, 22]. It helps

improve the convergence and stability of the training process,

especially when features have different scales or distributions.

The z-score normalization transformation for feature x is

expressed as:

Z=(x-μ)/σ (1)

Where z is the standardized value (z-score) of the feature,

x is the original feature value, 𝜇 is the mean of the feature

across the training dataset, and 𝜎 is the standard deviation of

where z is the standardized value (z-score) of the feature, x is

the original feature value, 𝜇 is the mean of the feature across

the training dataset, and 𝜎 is the standard deviation of the

feature across the training dataset. By subtracting the mean,

the data distribution is shifted to have a mean of zero, thus

helping to prevent bias while dividing the data by the standard

deviation scales, ensuring that features with different scales

contribute equally during training.

3.2.2. Convolution Layer

The 2-D convolutional (conv) layer performs feature

extraction by applying sliding convolutional filters (kernels)

to the 2-D input to produce feature maps that highlight specific

patterns or features present in the input data [23]. This layer

convolves the input by calculating the dot product of the

weights and the input, moving the filters along the input both

vertically and horizontally, and then adding a bias term.

The weights of the filters in the convolutional layer are

learnable parameters, which are optimized during the training

process using Stochastic Gradient Descent with Momentum

(SGDM) to minimize the loss function, enabling the network

to learn meaningful representations of the input image. The

convolutional layers incorporate padding and stride

parameters to control the spatial dimensions of the output

feature maps.

The padding adds extra border pixels around the input

image, preserving spatial information and mitigating the

reduction in spatial dimensions caused by the convolution

operation. Stride influences the output feature maps' spatial

resolution by determining the step size of the filter that slides

over the input image. The first convolutional layer of the

ResNet-18 has 64 filters with a kernel size of 7x7, stride of 2,

and padding of 3. The data format is a string of spatial (S),

Channel (C), and batch (B) characters, where each character

describes the type of the corresponding data dimension. This

convolution layer feeds [112(S) x 112(S) x 64(C) x 1(B)] to

the batch normalization and Rectified Linear Unit (ReLU)

activation layers that come after it. If nxn is the image size, fxf

is the kernel size, p is the padding, s is the stride, C represents

the number of channels, and N is the batch size, the output of

the convolution is calculated as follows: [23]

Output = [
n+2p−f

s
+ 1] × [

n+2p−f

s
+ 1] × C × N (2)

3.2.3. Batch Normalization (BN) Layer

This layer is used between the convolutional layers and

ReLU layers to minimize internal covariate shift, accelerate

training of the convolutional neural network, and reduce

network initialization sensitivity [24]. The batch

normalization layer normalizes a mini-batch of data by

calculating the mean (µ) and standard deviation (σ) of the

activations across all observations for each channel separately.

Each activation value (xi) in the mini-batch is normalized

using the formula:

𝑥�̂� =
𝑥𝑖−𝜇

√𝜎2−𝜀
 (3)

Where ε is a relatively small constant added to the

denominator to avoid division by zero and improve numerical

stability, after normalization, the input is scaled using a

learnable scale factor γ and shifted by a learnable offset β.

𝑦𝑖 = 𝛾. 𝑥�̂� + 𝛽 (4)

These learnable parameters allow the network to recover

the original scale and shift the data after normalization, thus

restoring the data to the desired range. They allow the network

to maintain flexibility and avoid excessive normalization

effects.

3.2.4. Rectified Linear Unit (ReLU) Layer

A BN layer and a ReLU activation function follow each

convolutional layer. The key role of the ReLU activation

function is to introduce non-linearity into the model, enabling

the network to recognize intricate patterns and correlations. It

does this by performing a threshold operation on each element

of the input, where any value less than zero is set to zero [25],

i.e.

𝑓(𝑥) = max(0, 𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (5)

The ReLU is a popular choice in neural networks due to

its computational efficiency [26] and ability to mitigate the

vanishing gradient issue.

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

44

3.2.5. Pooling Layer

Pooling is a technique used to reduce the spatial

dimensions of feature maps and assists in extracting important

features [27] while lowering computational complexity. The

input is divided into small pooling regions, and the maximum

of each region is then calculated by a 2-D max pooling layer,

which conducts down-sampling. The max pooling layer of

ResNet-18 features a 3 x 3 pool size, a stride of 2, and padding

of 1. It reduces the influence of noise and is effective for image

recognition, where identifying the most prominent edges or

corners is crucial [28].

The ResNet-18 architecture also has a 2-D global average

pooling layer, which is carried out down-sampling by

calculating the mean of the input's height and width

dimensions. It calculates the average of all activation values

within the entire feature map and reduces the feature map to a

single value for each channel. This layer preserves spatial

information by considering all activations within the feature

map. It works well with fully connected layers, effectively

reducing feature maps before the final classification layer. It

minimizes the number of parameters and helps avoid

overfitting [29].

3.2.6. Residual Block

The residual block is a structure within the ResNet-18

architecture that includes a shortcut or skip connection that

connects the output of an earlier layer to a later layer,

bypassing intermediate convolutional operations. These

blocks allow information to flow more smoothly through the

deep network.

There are two types of skip connections: identity shortcut

connection and convolutional shortcut connection, [30] as

shown in Figure 3. The identity shortcut connection performs

an identity mapping (no transformation), ensuring that the

information passing through the shortcut remains consistent

with the overall network's structure.

Convolutional shortcut connections are similar to identity

blocks but include a convolutional layer in the shortcut path.

The purpose of this convolutional layer is to adjust the

dimensions so that the input and output match. The output of

the identity shortcut connection is defined by the following

equation: [23]

𝑦 = 𝐹(𝑥) + 𝑥 (6)

While the output of the convolutional shortcut connection

is given by [23],

𝑦 = 𝐹(𝑥) + 𝑊. 𝑥 (7)

Where x is the input of the residual block, F(x) is a non-

linear mapping function of the stacked operation layers in a

residual unit, and W represents a linear projection. The

residual block is followed by an addition layer, which adds

inputs from multiple neural network layers element-wise,

allowing for both the original input and the transformed output

to be combined before feeding the output to the ReLU.

Fig. 3 Types of shortcut connections: (a) Identity shortcut connection,

and (b) Convolutional shortcut connection.

3.2.7. Fully Connected Layer

A Fully Connected (FC) layer multiplies the input from

the residual block by a weight matrix. Then, it adds a bias

vector, performing a linear transformation to produce the four

output classes for classification. A softmax layer then outputs

probabilities for the various classes. Equation (8) illustrates

how the softmax function uses the exponential function on

each input and then normalizes the outputs to make sure they

add up to 100% [31].

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑛

𝑗=1

 (8)

Where 𝜎(𝑧𝑖) is the output of and 𝑧𝑖 is the input to the

softmax function for the i-th element, n represents the total

number of elements in the input vector, and j denotes the

output class.

The classification layer is the final step in the network,

where the output from the softmax layer is used to make a

prediction. The final classification is determined by selecting

the class with the highest probability. Metrics used to evaluate

the performance of the model, such as accuracy, precision,

recall, and F1-score, are then computed by comparing the

output of the classification layer with the ground truth.

3.3. Layer Modification of ResNet-18

This study investigates the impact of specific structural

modifications on the performance of the ResNet-18

architecture. The goal is to examine how the following

changes affect the model's accuracy, computational

efficiency, and generalization capability.

Batch Normalization

Batch Normalization Batch Normalization

Batch Normalization Batch Normalization

ReLU ReLU

Conv 2a, 3x3, 64

Conv 2a, 3x3, 64

Conv 2b, 3x3, 64

Conv 2b, 3x3, 64 Conv 2b2, 1x1 64

F(x) F(x)
X

Identity

W*x

F(x) + x

(a) (b)

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

45

3.3.1. Removal of Residual Blocks

Residual blocks were removed one block at a time from

the ResNet-18 architecture, attempting to gain insight into the

network's behavior and performance under varying levels of

depth and complexity by measuring the impact on model

accuracy and convergence.

Firstly, residual block 5b was removed, followed by the

removal of residual block 5a. Though the training time was

reduced, it was evident that the test accuracy was becoming

less precise. All the ‘b’ blocks were then removed, and since

the results only got worse, the modification strategy had to be

changed. The addition of several convolutional layers was the

next option to experiment with.

3.3.2. Addition of Convolutional Layers

Two convolutional layers of filter size 16 and 32, each

followed by BN and ReLU layers, were added before the first

residual block, allowing the network to learn more low-level

features from the input data. This was an attempt to help the

network extract more relevant information, leading to better

performance and potentially faster convergence during

training.

The additional convolutional layers were given a stride of

2 in order to reduce the spatial dimensions of the feature maps

earlier in the network, aiming to decrease the computational

cost of the subsequent layers as they had to process feature

maps with smaller spatial sizes.

3.3.3. Removal of Shortcut Connections

This alteration led to a standard feedforward architecture

with sequential layers, similar to the traditional deep neural

network, allowing the authors to observe how much the

residual structure contributes to learning efficiency and

accuracy.

The shortcut connections are the defining characteristics

of ResNet-18 that allow gradients to flow more easily during

backpropagation. When removed, the model may suffer from

vanishing gradients, leading to difficulty in learning deeper

features, thus slowing the training time and reducing the

accuracy.

3.3.4. Addition of Fully Connected Layers

Fully connected layers of various output sizes were added

to the network after the global average pooling layer. It is

known that adding a fully connected layer can increase the

model's capacity to learn high-level features before the final

classification.

However, the risk of overfitting and higher computational

time was to be mitigated by adding a BN layer to regularize

the output, and a ReLU could also be introduced to capture

non-linearity and allow the network to learn more complex

patterns.

3.3.5. Addition of Squeeze and Excitation Block

Five Squeeze and Excitation (SE) blocks were added to

the most promising network after the experiments above in an

attempt to improve the results found [32]. Figure 4 shows the

proposed model that gave the best results.

The squeeze operation involved using global average

pooling [33] to reduce each channel in the feature map to a

single value, creating a compact representation of the entire

feature map. The squeeze operation 𝑧𝑐 can be represented as:

[33].

𝑍𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1

 (9)

Where 𝑢𝑐 represents the feature map for the c-th channel,

H and W are the height and width of the feature map, and 𝐹𝑠𝑞

denotes the squeeze function.

The FC layer followed the squeeze operation to reduce

the dimensionality by a factor of 𝑟, a ReLU to introduce non-

linearity, another FC to restore the initial dimensionality, and

a sigmoid function to produce a scaling factor between 0 and

1 for each channel [34].

The excitation operation applies a gating mechanism to

the squeezed feature descriptor, followed by a sigmoid

activation to obtain channel-wise scaling factors. The

excitation operation 𝑠𝑐 can be formulated as:

𝑆𝑐 = 𝐹𝑒𝑥(𝑧, 𝑊) = 𝜎(𝑔(𝑧, 𝑊)) = 𝜎(𝑊2𝛿(𝑊1𝑧)) (10)

Where 𝐹𝑒𝑥 denotes the excitation function, g is a gating

mechanism (FC with ReLU activation), W represents the

learnable parameters of the gating mechanism, σ is the

sigmoid activation function, 𝛿 refers to the ReLU function,

𝑊1 𝜖 ℝ
𝐶

𝑟
×𝐶 𝑎𝑛𝑑 𝑊2 𝜖 ℝ𝐶×

𝐶

𝑟
 [33].

The SE block shown in Figure 5 then recalibrates the

output of the residual block before adding it to the shortcut

connection. Its final output is obtained by:

𝑥�̃� = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐 , 𝑠𝑐) = 𝑠𝑐 . 𝑢𝑐 (11)

Where 𝑥�̃� represents the output feature map for the c-th

channel, 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐 , 𝑠𝑐) refers to channel-wise multiplication

between the scalar 𝑠𝑐 and the feature map 𝑢𝑐 𝜖 ℝ𝐻×𝑊
 [33].

This Squeeze and Excitation Residual Network (SE-

ResNet) architecture, having shown exemplary performance,

was chosen for further experimentation with different

hyperparameters, i.e. learning rate, batch size, number of

epochs, and different solvers, to find the optimal configuration

for the model.

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

46

Fig. 4 The proposed squeeze and excitation ResNet

3.4. Hyperparameter Tuning

This section describes the approach used for

hyperparameter tuning to identify the optimal configuration

for the proposed architecture. The process aimed to enhance

the model's performance by adjusting key parameters such as

batch size, the learning rate, the number of epochs, and the

choice of optimization algorithms (solvers). Other

hyperparameters like L2 regularization, momentum, and

number of hidden units were also tuned to ensure the best

performance for the model.

The learning rate, which determines the step size at each

iteration during optimization, was a critical hyperparameter in

this work. A well-chosen learning rate significantly influences

the training speed. A high learning rate might lead you past

the optimal solution and into areas of higher loss, , while a

small learning rate, will slow convergence or even get stuck
in suboptimal solutions [35]. Using a logarithmic scale,

different learning rates were experimented on.

Batch size represents the number of samples processed in

one iteration before updating the model weights. The optimal

batch size is also identified through experimentation varying

from 32 to 256. On the other hand, the number of epochs refers

to the number of times the entire dataset is used for training.

This is selected carefully to ensure balance and avoid

overfitting or underfitting. Optimization algorithms like

Stochastic Gradient Descent with Momentum (SGDM),

Adaptive Moment Estimation (Adam), and Root Mean Square

Propagation (RMSProp) are responsible for updating the

internal parameters (weights and biases) of the model based

on the calculated loss function. Each solver was explored to

choose the best-performing optimizer while keeping all

parameters, such as learning rate, batch size, and number of

epochs, to mention a few, constant.

Fig. 5 The squeeze and excitation block

Image Input
224x224x3

Conv 1a,7x7, 1`6 ReLU BN

Conv 1b,7x7, 16 ReLU BN

Conv 1c,7x7, 16 ReLU BN

Max Pooling

Basic Block 2a SE Block

Multiplication Layer

Addition Layer

ReLU

Basic Block 2b SE Block

Multiplication Layer

Addition Layer

ReLU

Conv. Connection

Basic Block 3a

SE Block

Multiplication Layer

Addition Layer

ReLU

Conv. Connection

Basic Block 4a

SE Block

Multiplication Layer

Addition Layer

ReLU

Conv. Connection

Basic Block 5a

SE Block

Multiplication Layer

Addition Layer

ReLU

Batch Normalization

Global Average Pooling

Fully Connected (4)

Softmax

Classification

Fully Connected (256)

ReLU

Global Average Pooling

Fully Connected

Fully Connected

Sigmoid

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

47

3.5. Bayesian Optimization of SE-ResNet

Bayesian Optimization (BO) is a statistical method for

optimizing objective functions. It improves the search speed

by using past performances of hyperparameters to determine

future decisions [36]. The Bayesian Optimized SE-ResNet

(BOSE-ResNet) was used to find optimal hyperparameters

efficiently using fewer evaluations than the exhaustive sweep

performed on the SE-ResNet.

Firstly, a range of possible values for the initial learning

rate (0.007 – 0.012), the momentum (0.8 – 0.98), and L2-

regularization (1 x10-5 – 1 x 10-2) were chosen based on the

results from the hyperparameter tuning of the SE-ResNet.

SGDM optimization algorithm was chosen, and the minibatch

size was held constant at 128. The BO strategy was then used

to train the model, which is done by selecting a random set of

parameters and evaluating the performance. It then

incorporates the new data point and updates the belief about

the objective function. The next set of hyperparameters to be

evaluated was repeatedly determined based on the updated

belief until the stopping criterion of 30 trials was met. The

maximum run time was set to infinity to ensure all 30 trials

with different hyperparameter combinations were sampled.

3.6. Performance Metrics

To ensure unbiased performance evaluation and help

avoid overfitting, the dataset was divided into a 70% train set,

a 15% validation set, and a 15% test set. This ensured that the

model was able to be tested on unseen data, thus providing

insight into its ability to generalize. The performance of the

proposed fault diagnosis model was evaluated using primary

metrics such as accuracy, precision, F1 score, and recall.

These were evaluated as follows: [37].

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (12)

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13)

Recall (Sensitivity)=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14)

F1-Score=2x
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (15)

True Positive (TP) refers to the number of cases where the

model correctly predicted a positive outcome, True Negative

(TN) indicates the number of cases where the model correctly

predicted a negative outcome, False Positive (FP) is the

number of cases where the model incorrectly predicted a

positive outcome, and False Negative (FN) represents the

number of cases where the model incorrectly predicted a

negative outcome [37].

Using the same graph to plot the training and validation

accuracy and loss curves, it was possible to assess whether the

model was overfitting or underfitting. High training

performance accompanied by low validation performance

meant the model was overfitting while underfitting was when

both training and validation performance was low. The

original ResNet-18 model, without any modifications, served

as the baseline; therefore, the performance of each modified

ResNet-18 architecture was compared against it. The

computational cost was also assessed by comparing the

training time of the different models.

3.7. Software and Hardware Environment

The experiments were performed on MATLAB R2023a

Deep Network Designer App using a device with the

following specifications: Windows 11 Home, 11th Generation

Intel (R) Core (TM) i7-1165G7 @ 2.80GHz processor,

Random Access Memory (RAM) of 16 GB, and a storage of

512 GB SSD. Even though this device does not have a

Graphics Processing Unit (GPU), its specifications allowed

for the assessment of computational speed and training

efficiency, providing insights into the model's performance in

a typical environment.

Since CPUs are generally slower for deep learning

training compared to GPUs due to their limited parallel

processing capabilities, [4] a computationally efficient model

on CPU will perform exceptionally well on GPU. However,

since most industries have access to devices similar to the one

used in this paper, this study shows that there will be no need

to invest in a device specifically for condition monitoring of

induction motors.

4. Results and Discussion
ResNet-18’s concept of residual connections was

introduced to enable much deeper architectures while

maintaining efficient training. Its relatively shallow depth

makes it computationally more efficient than deeper versions

of ResNets while still providing the benefits of residual

learning. With its simplicity in mind, it was chosen as the

starting point for layer modification and hyperparameter

tuning.

4.1. Performance of ResNet-18 Architecture

The validation dataset was used to verify the ResNet-18

model after it had been trained on the training dataset.

Different learning rates varied on a logarithmic scale, i.e.

0.001, 0.01, 0.1, and 1, were experimented on, while other

parameters such as a mini-batch-size of 128, validation

frequency of 14 iterations, a total of 20 epochs, and the SGDM

solver were held constant. A learning rate of 0.01 was selected

since this experiment had the highest validation accuracy. The

model was then tested on completely unseen images, and the

test accuracy was 78.91%.

Figure 6 shows the results of the training and validation

graphs obtained from training the ResNet-18 model using the

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

48

selected parameters above. In contrast, Table 1 shows the

results of the training accuracy, validation accuracy, testing

accuracy, and the time it took to perform the experiments

when the learning rate was varied. The confusion matrices for

the training data, the validation data, and the testing data when

the learning rate is 0.01 are shown in Figure 7.

Fig. 6 Training (blue) and validation (black) graphs of ResNet-18

Table 1. Performance of ResNet-18 with various learning rates

Sl. No. Elapsed Time Learning Rate Training Accuracy Validation Accuracy Test Accuracy

1
93 min

18 sec
0.001 100% 80.47% 35.16%

2
92 min

40 sec
0.01 100% 95.57% 78.91%

3
94 min

9 sec
0.1 84.35% 82.81% 72.40%

4
91 min

33 sec
1 37.75% 36.98% 38.28%

Fig. 7 Confusion matrix for (a) Training data, (b) Validation data, and (c) Testing data when using ResNet-18 architecture.

0 50 100 150 200 250

10 20

100

80

60

40

20

0

A
cc

u
ra

cy
 (

%
)

Iteration

Final

168
336

616
672

100.0% 100.0% 100.0% 100.0%

100.0%
100.0%
100.0%
100.0%

Combination
Healthy

Inner Race
Outer Race T

ru
e

C
la

ss

Combination Healthy Inner Race Outer Race
Predicted Class

(a)

36
63

128
140

97.3% 94.0% 92.1% 99.3%

100.0%
87.5%
97.0%
97.2%

Combination
Healthy

Inner Race
Outer Race T

ru
e

C
la

ss

Combination Healthy Inner Race Outer Race
Predicted Class

9

1 3
1 2 1

12.5%
3.0%
2.8%

(b)

36

1

108

Combination

Healthy

Inner Race

Outer Race

T
ru

e
C

la
ss

Combination Healthy Inner Race Outer Race
Predicted Class

4

39

131

32

35 1

1

(c)

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

49

4.2. Model Performance after Modifications to ResNet-18

Architecture

From the experiments performed on the ResNet-18

architecture, it was evident that this network was not able to

perform well on unseen data. This led to its modification in an

attempt to increase its efficiency. Firstly, layer 5b was

removed. This led to a decrease in computational time, as

expected, but the test accuracy was negatively affected.

Removing layer 5a further decreased the computational time,

but the test accuracy did not improve. This is because layers

5a and 5b have the largest filter size of 512 for the ResNet-18

network; thus, removing these layers reduces the overall

capacity of the model to learn complex representations from

the input data.

Without the final residual blocks, the model overfits the

training data, as it cannot learn more complex patterns that

generalize well to unseen test data [38]. Having noted the

importance of the 512-filter size, the original ResNet-18 was

modified to exclude layers 2b, 3b, 4b and 5b. The test accuracy

further decreased, prompting the return of layer 2b to the

network. With only 3b, 4b and 5b removed from the network,

the test accuracy was slightly better than when all the ‘b’

layers were removed.

Though removing one residual block at a time led to

reduced training time, it also reduced the model's capacity to

learn complex features, leading to lower test accuracy. Two

convolutional layers of filter sizes 16 and 32, each followed

by BN and ReLU, were added to the modified network

immediately after the input layer. These layers captured more

fine-grained and informative features from the input, leading

to faster convergence during training and better generalization

of the test set.

An FC layer of output size 256, followed by a BN layer,

was inserted after the global average pooling layer, which

improved the network's performance. However, adding more

FC layers to the network reduced the model’s

performance. All the skip connections were then removed

from the original ResNet-18 architecture, giving a test

accuracy of 97.92%, but the computational time was very

high. Adding two convolutional layers of filter sizes 16 and 32

reduced the computational cost and slightly increased the test

accuracy.

Squeeze and excitation blocks were then added to the

modified ResNet-18 network, which had two convolutional

layers added to it and layers 3b, 4b, and 5b removed. This

network increased the test accuracy to 98.698%. This Squeeze

and Excitation Residual Network (SE-ResNet) model is

selected for further experimentation, and hyperparameters

such as learning rate, batch size, number of epochs, and the

type of solver are fine-tuned to achieve higher performance.

Table 2 shows some of the modifications done to the ResNet-

18 architecture to improve its performance.

Table 2. Model performance for different modifications to ResNet-18

Sl.

No.
Network

Learning

Rate

No. of

Iterations

Batch

Size

Validation

Frequency

Validation

Accuracy

Test

Accuracy
Time

Elapsed

1 Original ResNet-18 0.01 20 128 14 95.57% 78.906%
92 min 40

sec

2 Original ResNet-18 – Layer 5b 0.01 20 128 14 98.18% 73.177%
83 mins 19

sec

3
Original ResNet-18 – Layers 5b

and 5a
0.01 20 128 14 96.35% 75.521%

79 mins 27

sec

4
Original ResNet-18 – Layers 5b,

4b and 3b
0.01 20 128 14 96.61% 75.781%

70 mins 37

sec

5
Original ResNet-18 - All ‘b’

Layers
0.01 20 128 14 93.49% 63.802%

63 mins 51

sec

6

Original ResNet-18 + 2 conv.
layers of filter sizes 16 and 32,

each followed by BN and ReLU
0.01 20 128 14 96.61% 96.875%

28 mins 23

sec

7

Original ResNet-18 + 2 conv.

layers of filter sizes 16 and 32,

each followed by BN and ReLU –

all ‘b’ layers

0.01 20 128 14 96.09% 95.050%
24mins

13sec

8

Original ResNet-18 – Layers 5b,

4b & 3b + 2 conv. layers (16,32) +

FC256 (followed by BN)
0.01 20 128 14 97.92% 97.656%

24 mins

35 sec

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

50

4.3. Hyperparameter Tuning of the Proposed Model

The proposed SE-ResNet was subjected to further

experimentation to improve its test accuracy. In order to

identify the optimal conditions, several experiments with

different combinations of parameters were performed, and the

results are summarized in Figure 8. The learning rates

experimented on were 0.008, 0.009, 0.01, 0.011 and 0.012. A

learning rate of 0.011 gave the best results. This parameter was

then held constant while batch sizes 32, 64, 128, and 256 were

experimented on. The best performance was seen with a batch

size of 128.

From the graphs, it was evident that from around the 10th

epoch, the training curve remained constant. Different epochs

of 10, 15, 20, and 50 were therefore tested to find out the

impact of the number of epochs on accuracy. It was noted that

increasing the number of epochs did not improve the accuracy.

The number of epochs selected to ensure that the highest

accuracy was obtained in the least time was 20 epochs.

Finally, keeping all other parameters constant, different

solvers were tried, i.e. SGDM, Adam and RMSProp. Table 3

shows the results from hyperparameter tuning. The SGDM is

computationally cheap and relatively easy to implement.

However, it can be slow to converge and requires careful

tuning of the learning rate so as not to oscillate or lead to

suboptimal solutions. Adam and RMSProp try to address these

challenges. Adam incorporates adaptive learning rates for

each parameter, estimating both the first and second moments

of the gradients, leading to faster convergence and potentially

smoother optimization compared to SGDM.

(a)

(b)

92%

93%

94%

95%

96%

97%

98%

99%

100%

0.008 0.009 0.011 0.012 0.01

T
es

ti
n

g
 A

cc
u

ra
cy

Learning Rate

92%

93%

94%

95%

96%

97%

98%

99%

100%

32 64 128 256

T
es

ti
n

g
 A

cc
u
ra

cy

Batch-size

9

Original ResNet-18 – Layers 5b,

4b & 3b + 2 conv. layers (16,32) +

FC256 + FC128 + FC64 (each +

BN)

0.01 20 128 14 94.27% 96.354%
24 mins

39 sec

10
Original ResNet-18 – Layers 5b,

4b & 3b + 2 conv. layers (16,32)
0.01 20 128 14 96.88% 98.177%

24 mins

21 sec

11
Original ResNet-18 – all skip

connections
0.01 20 128 14 97.14% 97.917%

76 mins

46 sec

12

Original ResNet-18 – all skip

connections + 2 conv. layers

(16,32)
0.01 20 128 14 97.66% 98.177%

28 mins

14 sec

13

Original ResNet-18 – all skip

connections + 5 SE Blocks +

2conv. layers (16,32)
0.01 20 128 14 96.35% 98.438%

29 mins

12 sec

14

Original ResNet-18 – Layers 5b,

4b & 3b + 2 conv. layers (16,32) +

5 SE Blocks + FC256
0.01 20 128 14 97.66% 98.698%

22 mins

52 sec

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

51

(c)

(d)

Fig. 8 Graphs of testing accuracy against (a) Learning rate, (b) Batch-size, (c) Number of epochs, and (d) Solver.

Table 3. Hyperparameter tuning of SE-ResNET

Sl.

No.

Learning

Rate

Number

of Epochs
Batch-Size

Weight

Decay

Validation

Accuracy

Training

Accuracy
Time Elapsed Solver

1 0.008 20 128 0.0001 98.96% 98.177% 31 min 48 sec SGDM

2 0.009 20 128 0.0001 98.96% 97.660% 32 min 35 sec SGDM

3 0.011 20 128 0.0001 99.22% 98.958% 32 min 53 sec SGDM

4 0.012 20 128 0.0001 95.83% 94.790% 33 min 22 sec SGDM

5 0.01 20 128 0.0001 98.44% 97.396% 36 min 43 sec SGDM

6 0.011 20 32 0.0001 96.35% 97.135% 52 mins 18 sec SGDM

7 0.011 20 64 0.0001 98.70% 98.698% 35 mins 35 sec SGDM

8 0.011 20 256 0.0001 98.70% 97.917% 29 mins 38 sec SGDM

9 0.011 10 128 0.0001 97.40% 96.875% 17 mins 28 sec SGDM

10 0.011 15 128 0.0001 98.18% 98.438% 33 mins 17 sec SGDM

11 0.011 50 128 0.0001 98.18% 96.615% 100 mins 23 sec SGDM

12 0.011 20 128 0.0001 96.35% 96.097% 42 mins 38 sec SGDM

13 0.011 20 128 0.0001 98.96% 98.177% 31 min 48 sec SGDM

14 0.011 20 128 0.0001 98.96% 97.660% 32 min 35 sec Adam

15 0.011 20 128 0.0001 90.89% 90.365% 24 mins 30 sec RMSProp

16 0.011 20 128 0.0005 96.88% 97.135% 24 mins 42 sec SGDM

17 0.011 20 128 0.00005 97.14% 97.396% 26 mins 55 sec SGDM

18 0.011 20 128 0.00001 96.09% 97.396% 41 mins 46 sec SGDM

19 0.011 20 128 0.001 94.79% 97.917% 25 mins 51 sec SGDM

20 0.011 20 128 0.01 97.40% 98.177% 23 mins 10 sec SGDM

RMSProp focuses on the recent history of gradients using

a decaying average of squared gradients, thus helping to adjust

learning rates dynamically based on the parameter's update

history. The SGDM, which adjusts the model parameters

iteratively in the direction opposite the loss function's

gradient, ensuring the model gradually moves towards

minimizing the loss, was the best-performing solver and was

therefore selected for the proposed model. With a batch size

of 128 examples, weight decay of 0.0001, momentum of 0.9,

and stochastic gradient descent with momentum, the SE-

ResNet model was trained to produce the best results. The

model needed to learn from this tiny bit of weight decay in

order to decrease its training error. The weight decay term is

added to the loss function, and during training, it encourages

the model to learn simpler patterns by penalizing large weight

values. The equation for velocity is [31],

𝑣𝑖+1 = 0.9. 𝑣𝑖 − 0.0001. 𝜆. 𝑤𝑖 − 𝜆. ⟨
𝜕𝐿

𝜕𝑤
|𝑤𝑖⟩ 𝐷𝑖

 (16)

Where, 𝑣𝑖+1 is the updated velocity, 𝑣𝑖 is the current

velocity, 𝜆 is the learning rate, 𝑤𝑖 is the current weight,
𝜕𝐿 𝜕𝑤⁄ |𝑤𝑖is the gradient of the loss function 𝐿 with respect to

the weight 𝑤 at the current iteration 𝑖, and ⟨
𝜕𝐿

𝜕𝑤
|𝑤𝑖⟩

denotes the

average over the mini-batch 𝐷𝑖. The momentum and weight

92%

93%

94%

95%

96%

97%

98%

99%

100%

10 15 20 50

T
es

ti
n

g
 A

cc
u
ra

cy

Number of Epochs

86%

88%

90%

92%

94%

96%

98%

100%

Adam RMSProp SGDM

T
es

ti
n

g
 A

cc
u
ra

cy

Solver

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

52

decay are 0.9 and 0.0001, respectively [26]. The equation of

the updated weight can be calculated as [31]:

𝑤𝑖+1 = 𝑤𝑖 + 𝑣𝑖+1 (17)

Figure 9 shows the testing confusion matrix, while Figure
10 shows the training and validation confusion matrices. The

training and validation graphs were plotted on the same axis,

providing a clear and direct comparison between training and

validation metrics such as accuracy and loss. It was also

helpful in monitoring overfitting and underfitting. Figure 11

and Figure 12 show the accuracy and loss graphs, respectively.

Other performance metrics of the SE-ResNet are presented in

Table 4.

Fig. 9 Confusion matrix of testing dataset for the SE-ResNet

(a)

(b)

Fig. 10 Confusion matrix of (a) Training, and (b) Validation datasets for the SE-ResNet.

Fig. 11 Training (blue) and validation (black) accuracy graph for the SE-ResNet

35

1

143

Combination

Healthy

Inner Race

Outer Race

T
ru

e
C

la
ss

Combination Healthy Inner Race Outer Race
Predicted Class

1

1

131

71

1

168

336

616

672

100.0% 100.0% 100.0% 100.0%

100.0%

100.0%

100.0%

100.0%

Combination

Healthy

Inner Race

Outer Race T
ru

e
C

la
ss

Combination Healthy Inner Race Outer Race
Predicted Class

35

72

131

143

100.0% 100.0% 99.2% 98.6%

97.2%

100.0%

99.2%

99.3%

Combination

Healthy

Inner Race

Outer Race T
ru

e
C

la
ss

Combination Healthy Inner Race Outer Race
Predicted Class

1

1

1

2.8%

0.8%

0.7%

0 50 100 150 200 250
10 20

100

80

60

40

20

0

A
cc

u
ra

cy
 (

%
)

Iteration

Final

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

53

Fig. 12 Training (red) and validation (black) loss graph for the SE-ResNet

Table 4. Performance metrics for SE-ResNet

Class Precision Recall F1-score

Combination 1.0000 0.9722 0.9859

Healthy 1.0000 0.9861 0.9930

Inner Race 0.9776 0.9924 0.9850

Outer Race 0.9931 0.9931 0.9931

Average 0.9927 0.9860 0.9893

4.4. Model Performance of the BOSE-ResNet Architecture

After 30 trials, the Bayesian Optimized Squeeze and

Excitation Residual Network (BOSE-ResNet) achieved the

highest validation accuracy when the hyperparameters were as

follows: a learning rate of 0.0119, Momentum of 0.9122, and

L2 regularization of 3.52 ⨯ 10-5. The training accuracy of the

model was 98.4375%, and its validation accuracy was

99.4792%.

The model achieved a test accuracy of 99.479%, which

was higher than the SE-ResNet’s test accuracy. This small

discrepancy between the training and test accuracy shows that

the model generalized well to unseen data. These results

suggest that Bayesian Optimization effectively tuned the

hyperparameters, leading to a highly accurate and robust

BOSE-ResNet model. Figure 13 and Figure 14 show the

training and validation accuracy and loss graphs, respectively,

while Figure 15 shows the training and validation dataset

confusion matrices of the BOSE-ResNet model. Figure 16

shows the test dataset confusion matrix.

Fig. 13 Training (blue) and validation (black) accuracy graph for the BOSE-ResNet

Fig. 14 Training (red) and validation (black) loss graph for the BOSE-ResNet

0 50 100 150 200 250
10 20

2

1.5

1

0.5

0

L
o

ss

Iteration

Final

0 50 100 150 200 250 300
10 20

100

80

60

40

20

0

A
cc

u
ra

cy
 (

%
)

Iteration

Final

0 50 100 150 200 250 300
10 20

2

1.5

1

0.5

0

L
o

ss

Iteration

Final

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

54

(a)

(b)

Fig. 15 Confusion matrix for (a) Training, and (b) Validation datasets of the BOSE-ResNet.

Fig. 16 Confusion matrix of testing dataset for the BOSE-ResNet

A detailed analysis of performance metrics indicated high

levels of both precision and recall, as shown in Table 5. This

indicates that the model can correctly identify most of the

bearing faults (high recall) while minimizing false alarms

(high precision). Notably, after only 25 minutes and 39

seconds of training, only two healthy samples were incorrectly

classified as inner race bearing faults, highlighting the model's

robustness in distinguishing between different fault

conditions.

Table 5. Performance metrics for BOSE-ResNet

Class Precision Recall F1-score

Combination 1.0000 1.0000 1.0000

Healthy 1.0000 0.9722 0.9859

Inner Race 0.9851 1.0000 0.9925

Outer Race 1.0000 1.0000 1.0000

Average 0.9963 0.9931 0.9946

5. Conclusion
This study provides insight into the impact of

architectural modifications and hyperparameter tuning on the

ResNet-18 model's performance, guiding further research on

enhancing induction motor bearing fault detection. The

BOSE-ResNet model, which incorporates squeeze and

excitation blocks and additional convolutional layers to its

architecture, demonstrated superior performance in terms of

accuracy and computational efficiency compared to the

original ResNet-18 model. By employing Bayesian

Optimization, the hyperparameter space was efficiently

explored, and optimal configurations for the SE-ResNet were

identified. The BOSE-ResNet architecture showcased

exceptional performance with an impressive test accuracy of

99.48%, and a comprehensive evaluation of the model’s

168

336

614

672

100.0% 99.4% 100.0% 100.0%

100.0%

100.0%

99.7%

100.0%

Combination

Healthy

Inner Race

Outer Race

T
ru

e
C

la
ss

Combination Healthy Inner Race Outer Race
Predicted Class

0.3%

0.6%

2

35

72

131

144

100.0% 98.6% 100.0% 99.3%

97.2%

100.0%

99.2%

100.0%

Combination

Healthy

Inner Race

Outer Race

T
ru

e
C

la
ss

Combination Healthy Inner Race Outer Race
Predicted Class

0.8%

1.4%

1

1

0.7%

2.8%

36

144

Combination

Healthy

Inner Race

Outer Race

T
ru

e
C

la
ss

Combination Healthy Inner Race Outer Race
Predicted Class

2

132

70

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

55

performance metrics, such as F1 score, recall, and precision,

proved high effectiveness and its ability to classify bearing

faults accurately. The accuracy of the BOSE-ResNet in the test

phase of the experiment was found to be 20.574% higher than

the classical ResNet-18 (78.906%).

The reduction of computational time through structural

modifications by 72.32% (from 92 mins 40 sec by the ResNet-

18 model to 25 mins 39 sec by the BOSE-ResNet model)

further enhanced the practicality and efficiency of the

proposed approach. The insights gained from the confusion

matrix analysis provided a deeper understanding of the

model's classification capabilities, enabling targeted

improvements for future iterations.

The high accuracy, improved computational efficiency,

and robust performance presented in this study validate the

efficacy of the proposed BOSE-ResNet model and pave the

way for further advancements in condition monitoring and

bearing fault diagnosis using deep learning techniques. With

its impressive results, this approach stands as a promising

solution for accurate and reliable bearing fault diagnosis, with

the potential to enhance the performance and reliability of

induction motors in real-world industrial settings.

Future research could explore the application of the

BOSE-ResNet model to a wider range of bearing fault types

and different bearing datasets. Additionally, investigating the

transferability of the optimized hyperparameters to other tasks

and hardware platforms would be valuable.

Funding Statement
The Pan African University Institute for Basic Sciences,

Technology, and Innovation funded this research.

References
[1] Guilherme Beraldi Lucas et al., “Sensors Applied to Bearing Fault Detection in Three-Phase Induction Motors,” Engineering Proceedings,

vol. 10, no. 1, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] David Gonzalez-Jimenez et al., “Data-Driven Fault Diagnosis for Electric Drives: A Review,” Sensors, vol. 21, no. 12, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[3] Guoguo Wu et al., “Signal-to-Image: Rolling Bearing Fault Diagnosis Using ResNet Family Deep-Learning Models,” Processes, vol. 11,

no. 5, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Laith Alzubaidi et al., “Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions,” Journal

of Big Data, vol. 8, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Niloy Sikder et al., “Induction Motor Bearing Fault Classification Using Extreme Learning Machine Based on Power Features,” Arabian

Journal for Science and Engineering, vol. 46, no. 9, pp. 8475-8491, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Dada Saheb Ramteke, Anand Parey, and Ram Bilas Pachori, “A New Automated Classification Framework for Gear Fault Diagnosis

Using Fourier-Bessel Domain-Based Empirical Wavelet Transform,” Machines, vol. 11, no. 12, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[7] Hejun Ye et al., “Bearing Fault Diagnosis Based on Randomized Fisher Discriminant Analysis,” Sensors, vol. 22, no. 21, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Long Wen, Xinyu Li, and Liang Gao, “A Transfer Convolutional Neural Network for Fault Diagnosis Based on ResNet-50,” Neural

Computing and Applications, vol. 32, no. 10, pp. 6111-6124, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] Kaiming He et al., “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, USA, pp. 770-778, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[10] Yi Liu et al., “A Domain Adaption ResNet Model to Detect Faults in Roller Bearings Using Vibro-Acoustic Data,” Sensors, vol. 23, no.

6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Zhenzhong Xu et al., “Hybrid Multimodal Feature Fusion with Multi-Sensor for Bearing Fault Diagnosis,” Sensors, vol. 24, no. 6, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Shuyi Liu et al., “Fault Diagnosis Strategy Based on BOA-ResNet18 Method for Motor Bearing Signals with Simulated Hydrogen

Refueling Station Operating Noise,” Applied Sciences, vol. 14, no. 1, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[13] Mustafa Musa Jaber et al., “Resnet-Based Deep Learning Multilayer Fault Detection Model-Based Fault Diagnosis,” Multimedia Tools

and Applications, vol. 83, no. 7, pp. 19277-19300, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[14] Jialin Yan, Jiangming Kan, and Haifeng Luo, “Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network,”

Sensors, vol. 22, no. 10, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Guoxin Sui, and Yong Yu, “Bayesian Contextual Bandits for Hyper Parameter Optimization,” IEEE Access, vol. 8, pp. 42971-42979,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Modupe Odusami et al., “Analysis of features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in

Magnetic Resonance Images Using a Finetuned Resnet18 Network,” Diagnostics, vol. 11, no. 6, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

https://doi.org/10.3390/ecsa-8-11319
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sensors+Applied+to+Bearing+Fault+Detection+in+Three-Phase+Induction+Motors&btnG=
https://www.mdpi.com/2673-4591/10/1/40
https://doi.org/10.3390/s21124024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data-Driven+Fault+Diagnosis+for+Electric+Drives%3A+A+Review&btnG=
https://www.mdpi.com/1424-8220/21/12/4024
https://doi.org/10.3390/pr11051527
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Signal-to-Image%3A+Rolling+Bearing+Fault+Diagnosis+Using+ResNet+Family+Deep-Learning+Models&btnG=
https://www.mdpi.com/2227-9717/11/5/1527
https://doi.org/10.1186/s40537-021-00444-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+of+deep+learning%3A+concepts%2C+CNN+architectures%2C+challenges%2C+applications%2C+future+directions&btnG=
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8
https://doi.org/10.1007/s13369-021-05527-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Induction+Motor+Bearing+Fault+Classification+Using+Extreme+Learning+Machine+Based+on+Power+Features&btnG=
https://link.springer.com/article/10.1007/s13369-021-05527-5
https://doi.org/10.3390/machines11121055
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Automated+Classification+Framework+for+Gear+Fault+Diagnosis+Using+Fourier%E2%80%93Bessel+Domain-Based+Empirical+Wavelet+Transform&btnG=
https://www.mdpi.com/2075-1702/11/12/1055
https://doi.org/10.3390/s22218093
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bearing+Fault+Diagnosis+Based+on+Randomized+Fisher+Discriminant+Analysis&btnG=
https://www.mdpi.com/1424-8220/22/21/8093
https://doi.org/10.1007/s00521-019-04097-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+transfer+convolutional+neural+network+for+fault+diagnosis+based+on+ResNet-50&btnG=
https://link.springer.com/article/10.1007/s00521-019-04097-w
https://doi.org/10.1109/CVPR.2016.90
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=K+he%2C+X+Zhang%2C+Deep+residual+learning+for+image+recognition&btnG=
https://ieeexplore.ieee.org/document/7780459
https://doi.org/10.3390/s23063068
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Domain+Adaption+ResNet+Model+to+Detect+Faults+in+Roller+Bearings+Using+Vibro-Acoustic+Data&btnG=
https://www.mdpi.com/1424-8220/23/6/3068
https://doi.org/10.3390/s24061792
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+Multimodal+Feature+Fusion+with+Multi-Sensor+for+Bearing+Fault+Diagnosis&btnG=
https://www.mdpi.com/1424-8220/24/6/1792
https://doi.org/10.3390/app14010157
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+Diagnosis+Strategy+Based+on+BOA-ResNet18+Method+for+Motor+Bearing+Signals+with+Simulated+Hydrogen+Refueling+Station+Operating+Noise&btnG=
https://www.mdpi.com/2076-3417/14/1/157
https://doi.org/10.1007/s11042-023-16233-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resnet-based+deep+learning+multilayer+fault+detection+model-based+fault+diagnosis&btnG=
https://link.springer.com/article/10.1007/s11042-023-16233-9
https://doi.org/10.3390/s22103936
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rolling+Bearing+Fault+Diagnosis+Based+on+Markov+Transition+Field+and+Residual+Network&btnG=
https://www.mdpi.com/1424-8220/22/10/3936
https://doi.org/10.1109/ACCESS.2020.2977129
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bayesian+Contextual+Bandits+for+Hyper+Parameter+Optimization&btnG=
https://ieeexplore.ieee.org/document/9017927
https://doi.org/10.3390/diagnostics11061071
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+features+of+alzheimer%E2%80%99s+disease%3A+Detection+of+early+stage+from+functional+brain+changes+in+magnetic+resonance+images+using+a+finetuned+resnet18+network&btnG=
https://www.mdpi.com/2075-4418/11/6/1071

Lydiah Aywa Sikinyi et al. / IJEEE, 11(9), 39-56, 2024

56

[17] Miao He, and David He, “Deep Learning Based Approach for Bearing Fault Diagnosis,” IEEE Transactions on Industry Applications,

vol. 53, no. 3, pp. 3057-3065, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[18] Christian Lessmeier et al., “Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current

Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification,” PHM Society European Conference, vol. 3, no. 1,

2016. [CrossRef] [Google Scholar] [Publisher Link]

[19] Data Sets and Download, Design and Drive Technology (KAt), Paderborn University, 2024. [Online]. Available: https://mb.uni-

paderborn.de/en/kat/research/kat-datacenter/bearing-datacenter/data-sets-and-download

[20] Display Image with Scaled Colors - MATLAB imagesc, MathWorks, 2024. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/imagesc.html

[21] Dimas Aryo Anggoro, and Wiwit Supriyanti, “Improving Accuracy Bb Applying Z-Score Normalization in Linear Regression and

Polynomial Regression Model for Real Estate Data,” International Journal of Emerging Trends in Engineering Research, vol. 7, no. 11,

pp. 549-555, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[22] Roy Jafari, Hands-On Data Preprocessing in Python : Learn How to Effectively Prepare Data for Successful Data Analytics, O’Reilly,

Packt Publishing, 2022. [Google Scholar] [Publisher Link]

[23] Charu C. Aggarwal, Neural Networks and Deep Learning: A Textbook, Springer Cham, 2nd ed., pp. 1-529, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[24] Sergey Ioffe, and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,”

32nd International Conference on Machine Learning (ICML), vol. 37, pp. 448-456, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[25] Phil Kim, MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence, Apress Berkeley, CA, 1st ed.,

pp. 1-151, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,”

Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[27] Shuiqin Zhou et al., “Application of Convolutional Neural Network in Motor Bearing Fault Diagnosis,” Computational Intelligence and

Neuroscience, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[28] François Chollet, Deep Learning with Python, Second Edition, Manning, 2021. [Google Scholar] [Publisher Link]

[29] Fu Zhu et al., “An Improved MobileNet Network with Wavelet Energy and Global Average Pooling for Rotating Machinery Fault

Diagnosis,” Sensors, vol. 22, no. 12, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[30] K.A. Saneera Hemantha Kulathilake et al., “A Review on Deep Learning approaches for Low-Dose Computed Tomography Restoration,”

Complex and Intelligent Systems, vol. 9, no. 3, pp. 2713-2745, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[31] Jeff Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,” Genetic Programming and Evolvable Machines,

vol. 19, no. 1-2, pp. 305-307, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[32] Meng-Hao Guo et al., “Attention Mechanisms in Computer Vision: A Survey,” Computational Visual Media, vol. 8, no. 3, pp. 331-368,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[33] Dongwoo Lee et al., “A Study on the Super Resolution Combining Spatial Attention and Channel Attention,” Applied Sciences, vol. 13,

no. 6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[34] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-Excitation Networks,” 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, pp. 7132-7141, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[35] Yanzhao Wu et al., “Demystifying Learning Rate Policies for High Accuracy Training of Deep Neural Networks,” 2019 IEEE

International Conference on Big Data (Big Data), Los Angeles, CA, USA, pp. 1971-1980, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[36] Zhen Li, Yang Wang, and Jianeng Ma, “Fault Diagnosis of Motor Bearings Based on a Convolutional Long Short-Term Memory Network

of Bayesian Optimization,” IEEE Access, vol. 9, pp. 97546-97556, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[37] Mettu Srinivas et al., Machine Learning Algorithms and Applications,” Scrivener Publishing LLC, 1st ed., pp. 1-335, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[38] Syifa Auliyah Hasanah et al., “A Deep Learning Review of ResNet Architecture for Lung Disease Identification in CXR Image,” Applied

Sciences, vol. 13, no. 24, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TIA.2017.2661250
https://scholar.google.com/scholar?q=Deep+Learning+Based+Approach+for+Bearing+Fault+Diagnosis&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/7836314
https://doi.org/10.36001/phme.2016.v3i1.1577
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Condition+Monitoring+of+Bearing+Damage+in+Electromechanical+Drive+Systems+by+Using+Motor+Current+Signals+of+Electric+Motors%3A+A+Benchmark+Data+Set+for+Data-Driven+Classification&btnG=
https://www.papers.phmsociety.org/index.php/phme/article/view/1577
https://doi.org/10.30534/ijeter/2019/247112019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+accuracy+Bb+applying+Z-score+normalization+in+linear+regression+and+polynomial+regression+model+for+real+estate+data&btnG=
https://www.warse.org/IJETER/static/pdf/file/ijeter247112019.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hands-On+Data+Preprocessing+in+Python%E2%80%AF%3A+Learn+How+to+Effectively+Prepare+Data+for+Successful+Data+Analytics&btnG=
https://www.oreilly.com/library/view/hands-on-data-preprocessing/9781801072137/
https://doi.org/10.1007/978-3-031-29642-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Charu+C%2C+Neural+Networks+and+Deep+Learning%3A+A+Textbook%2C+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Charu+C%2C+Neural+Networks+and+Deep+Learning%3A+A+Textbook%2C+&btnG=
https://link.springer.com/book/10.1007/978-3-031-29642-0
https://doi.org/10.48550/arXiv.1502.03167
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Batch+Normalization%3A+Accelerating+Deep+Network+Training+by+Reducing+Internal+Covariate+Shift&btnG=
https://dl.acm.org/doi/10.5555/3045118.3045167
https://doi.org/10.1007/978-1-4842-2845-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kim%2C+MATLAB+Deep+Learning%2C%E2%80%9D+MATLAB+Deep+Learning&btnG=
https://link.springer.com/book/10.1007/978-1-4842-2845-6
https://doi.org/10.1145/3065386
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ImageNet+Classification+with+Deep+Convolutional+Neural+Networks&btnG=
https://dl.acm.org/doi/abs/10.1145/3065386
https://doi.org/10.1155/2022/9231305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Convolutional+Neural+Network+in+Motor+Bearing+Fault+Diagnosis&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2022/9231305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F+Chollet%2C+Deep+Learning+with+Python%2C+Second+Edition&btnG=
https://www.manning.com/books/deep-learning-with-python-second-edition
https://doi.org/10.3390/s22124427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Improved+MobileNet+Network+with+Wavelet+Energy+and+Global+Average+Pooling+for+Rotating+Machinery+Fault+Diagnosis&btnG=
https://www.mdpi.com/1424-8220/22/12/4427
https://doi.org/10.1007/s40747-021-00405-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+on+Deep+Learning+approaches+for+low-dose+Computed+Tomography+restoration&btnG=
https://link.springer.com/article/10.1007/s40747-021-00405-x
https://doi.org/10.1007/s10710-017-9314-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ian+Goodfellow%2C+Yoshua+Bengio%2C+and+Aaron+Courville%3A+Deep+learning&btnG=
https://link.springer.com/article/10.1007/s10710-017-9314-z
https://doi.org/10.1007/s41095-022-0271-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Attention+mechanisms+in+computer+vision%3A+A+survey&btnG=
https://link.springer.com/article/10.1007/s41095-022-0271-y
https://doi.org/10.3390/app13063408
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Study+on+the+Super+Resolution+Combining+Spatial+Attention+and+Channel+Attention&btnG=
https://www.mdpi.com/2076-3417/13/6/3408
https://doi.org/10.1109/CVPR.2018.00745
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hu+J%2C+Squeeze-and-Excitation+Networks&btnG=
https://ieeexplore.ieee.org/document/8578843
https://doi.org/10.1109/BigData47090.2019.9006104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Demystifying+Learning+Rate+Policies+for+High+Accuracy+Training+of+Deep+Neural+Networks&btnG=
https://ieeexplore.ieee.org/document/9006104?denied=
https://ieeexplore.ieee.org/document/9006104?denied=
https://doi.org/10.1109/ACCESS.2021.3093363
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+Diagnosis+of+Motor+Bearings+Based+on+a+Convolutional+Long+Short-Term+Memory+Network+of+Bayesian+Optimization&btnG=
https://ieeexplore.ieee.org/document/9467273
https://doi.org/10.1002/9781119769262
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M+Srinivas%2C+Machine+learning+algorithms+and+applications&btnG=
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119769262
https://doi.org/10.3390/app132413111
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Deep+Learning+Review+of+ResNet+Architecture+for+Lung+Disease+Identification+in+CXR+Image&btnG=
https://www.mdpi.com/2076-3417/13/24/13111

