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Abstract - Detecting incipient bearing faults of an induction motor is crucial for minimizing downtime, reducing maintenance 

costs, and ensuring safety. In this study, a novel approach to improve the detection accuracy of induction motor bearing faults 

using a combination of hyperparameter tuning and modifications to the Residual Network - 18 (ResNet-18) architecture is 

investigated. The effect of optimizing these aspects to enhance ResNet-18’s ability to classify various fault types within a dataset 

of bearing vibration signals is explored. This research focuses on ResNet-18 architecture, which has demonstrated remarkable 

performance in various image classification tasks, to evaluate the impact of specific modifications to its layers in order to 

improve further its suitability for bearing fault detection. The appropriate balance between model complexity and interpretability 

is achieved by altering the depth, width, and skip connections within ResNet-18. Next, parameters such as batch sizes, learning 

rates, L2 regularization, number of epochs, and optimizer are investigated by systematically tuning these hyperparameters and 

applying layer modifications, a new Bayesian Optimized Squeeze and Excitation ResNet model, which has a higher training 

accuracy of 98.44%, a validation accuracy of 99.48%, testing accuracy of 99.48%, and lower computational cost, as compared 

to the ResNet-18 model, is achieved. The proposed BOSE-ResNet contributes to the development of a more effective and precise 

bearing fault diagnosis model while enhancing machinery reliability in industrial applications and providing valuable insights 

for practitioners and researchers in the field of condition-based maintenance. 

Keywords - Bayesian optimization, Fault diagnosis, Hyperparameters, ResNet-18, Squeeze and excitation block. 

1. Introduction 
The smooth operation of induction motors is vital in 

various industrial applications, and any malfunction can result 

in unexpected downtime and costly maintenance. The 

induction motor has numerous components that are prone to 

faults, such as stator windings, rotor bars, bearings, cooling 

systems, external connections, and terminals, to mention a 

few.  

Bearings, which have the highest probability of failure at 

41%, [1] play a pivotal role in ensuring the smooth and 

efficient operation of the induction motor. Accurate detection 

of incipient bearing faults is crucial for preventive 

maintenance and ensuring the reliability of induction motors. 

If undetected, bearing faults can lead to severe consequences 

such as increased energy consumption, reduced operational 

lifespan, and, in extreme cases, catastrophic failures. Recently, 

there has been a spiked interest in leveraging advanced 

machine-learning techniques for the early detection of faults 

in induction motor bearings.  

Traditional fault diagnosis methods often rely on expert 

knowledge and manual feature engineering, which may not be 

scalable or adaptable to complex and evolving systems. Deep 

learning models, particularly Convolutional Neural Networks 

(CNNs), have emerged as powerful tools, allowing for timely 

interventions and preventing unexpected breakdowns due to 

their ability to learn complex patterns and representations 

from raw data [2]. However, very few studies have detailed 

the impact of tuning different hyperparameters and combining 
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hyperparameter optimization with ResNet-18 architecture 

modifications. Existing models also often suffer from high 

computational costs. This research aims to address these gaps 

by exploring how these techniques can work together to 

improve the detection of bearing faults in induction motors. 

In this paper, the focus is on improving the detection of 

induction motor bearing faults by reducing the computational 

cost while enhancing the accuracy and efficiency of fault 

diagnosis through a comprehensive investigation into 

hyperparameter tuning and modifications to the Residual 

Network - 18 (ResNet-18) architecture.  

ResNet-18 is a widely used Convolutional Neural 

Network (CNN) known for its effectiveness in image 

classification tasks. The architecture's distinctive feature of 

residual connections helps address the vanishing gradient 

problem, allowing for the training of deeper networks [3]. 

This study investigates the combined effect of 

hyperparameter tuning and ResNet-18 layer modification on 

improving the detection of induction motor bearing faults. It 

contributes to the development of a highly accurate and cost-

efficient Bayesian Optimized Squeeze and Excitation 

Residual Network through modifications to the ResNet-18 

architecture to tailor it specifically for the intricate features 

present in vibration signals associated with bearing faults.  

Additionally, a comprehensive study on hyperparameter 

tuning, which is a crucial step in optimizing the performance 

of deep learning models, is done. By systematically adjusting 

parameters such as learning rates, batch sizes, and 

regularization terms, the accuracy and performance of the new 

model in identifying subtle variations indicative of bearing 

faults is enhanced. 

By combining the power of transfer learning with 

advancements in deep learning architectures, the aim is to 

create a model capable of outperforming existing approaches 

by enhancing the model’s ability to accurately classify various 

fault types within a dataset of bearing vibration signals, 

reducing the computational time, and paving the way for 

reliable and efficient operation of induction motors in diverse 

industrial settings. 

The rest of the paper is organized as follows: Section 2 

presents a detailed review of related works in the field of fault 

diagnosis using ResNets. An overview of the methodology 

comprising data pre-processing, ResNet-18 layer 

modification, hyperparameter tuning, and model evaluation is 

given in Section 3. The experimental findings and analysis are 

shown in Section 4, and Section 5 concludes by summarising 

the key findings and directing on possible areas for future 

research. 

2. Related Work 
In [4], researchers have looked at various approaches to 

improve early fault diagnosis in induction motors and prevent 

breakdowns. Vibration analysis is generally used for the 

detection of mechanical faults since it is easily measurable, 

highly accurate, and reliable [5]. A variety of signal 

processing techniques, including the Fourier Transform (FT), 

Empirical Mode Decomposition (EMD), and Wavelet 

Transform (WT), have been extensively utilized to extract 

features from the preprocessed vibration signal that are 

indicative of bearing health. Following the extraction of 

characteristics, machine learning or statistical methods are 

employed to classify the bearing condition.  

These techniques analyze the vibration signals generated 

by the motor bearings to identify abnormalities associated 

with bearing faults. FT decomposes the signal into its 

frequency components but is unable to handle non-stationary 

signals. WT is more advanced and analyzes both frequency 

and time information, making it more suitable for non-

stationary fault signatures [6]. EMD decomposes the signal 

into intrinsic mode functions that represent specific frequency 

components, which is beneficial in isolating fault-related 

frequencies from complex vibration signals containing 

multiple components and background noise.  

A randomized Fisher Discriminant Analysis-based 

bearing fault diagnosis method was proposed in [7], which 

firstly required the extraction of time-domain features from 

the raw vibration signals. However, choosing an appropriate 

type of signal processing technique to be used with shallow 

machine learning algorithms such as Support Vector 

Machines (SVMs), decision trees, linear regression, and 

random forests, to mention a few, requires human expertise 

[2].  

CNNs have gained popularity in the field of bearing fault 

diagnosis since they can automatically learn relevant features 

from raw data, eliminating the need for domain expertise in 

feature selection and allowing the model to identify the most 

discriminative features for the specific task at hand [8]. A 

CNN analyzes images and extracts important features. While 

increasing the number of stacked layers in a neural network 

can enrich features by enabling the model to identify more 

intricate connections within the data, this benefit is 

counterbalanced by the potential for vanishing/exploding 

gradients.  

Normalized initialization and intermediate normalization 

layers have made significant progress in solving this issue by 

allowing networks with multiple layers to start converging for 

Stochastic Gradient Descent (SGD) with backpropagation. In 

[9], the problem of degradation was addressed by introducing 

a deep residual learning framework. Architectures like ResNet 

introduce shortcut connections that skip over some layers, 
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allowing the gradient to flow directly from earlier layers to 

later layers and bypassing the vanishing gradient issue in the 

skipped layers. The original ResNet-18 architecture, with its 

18 layers, has been widely used in various applications due to 

its balance between performance and computational 

efficiency. Subsequent research has led to the development of 

deeper ResNet variants, such as ResNet-50 and ResNet-101, 

which have achieved state-of-the-art results in image 

classification. However, the application of these deeper 

architectures to bearing fault diagnosis is relatively limited 

due to their high computational cost. 

The Domain Adaptation ResNet structure is selected in 

[10] to help mitigate training errors that typically arise in 

deeper networks, achieving a 94.22% accuracy rate. In 

comparison, a classification accuracy of 97.54% is achieved 

when the Principal Component Analysis is used to fuse 

features from multiple sensors and feed to a hybrid SVM-

ResNet model [11]. These studies demonstrate the potential of 

ResNet for fault classification tasks, and the effectiveness of 

squeeze and excitation ResNet models is highlighted in [3] 

after a signal-to-image method using continuous wavelet 

transform outperformed the ResNet family achieving a high 

accuracy of 93% for rolling bearing fault diagnosis. 

Various optimization techniques have been employed to 

find optimal hyperparameter settings. Bayesian Optimization 

has emerged as a popular choice due to its efficiency in 

exploring the search space. A Bayesian Optimization ResNet-

18 was employed in [12] to diagnose motor bearing faults 

since after comparing it to transfer learning models such as 

ResNet-50, LeNet-5, VGG-16, and so on, it gave the highest 

classification accuracy. The ResNet-18’s learning rate, 

momentum, and L2 regularization hyperparameters were 

optimized to achieve a training accuracy of 89.50%. Its 

diagnostic accuracy was 99.31% for faults without the 

addition of simulated industrial noise from the hydrogen 

station and 92% with the addition of noise. Jaber et al. 

proposed a ResNet-based deep learning multilayer fault 

detection model achieving an accuracy of 83.5% for the data 

transmission ratio, [13] while a fault diagnosis method based 

on the Markov transition field and residual networks was able 

to achieve an accuracy of greater than 98.52% in the 

identification of rolling bearings faults with various degrees of 

severity and locations [14]. However, compared to shallow 

neural network-based techniques, it needed a longer training 

time since it was trained from scratch. 

From previous research, it is evident that deep learning 

has shown great potential in bearing fault diagnosis, but 

several challenges remain. It is also clear that the performance 

of the ResNet-18 can be improved either by fine-tuning the 

hyperparameters [15, 16] or by adjusting the layers [17]. The 

main aim of this research will, therefore, be to improve the 

accuracy of detecting induction motor bearing faults and 

reduce the computational cost of the ResNet-18 model through 

a combination of hyperparameter tuning and layer 

modification. 

3. Methodology 
3.1. Bearing Dataset 

In this work, the Paderborn University (PU) bearing 

dataset is used since it is a well-known benchmark dataset 

widely used for research in fault diagnosis and prognostics. It 

consists of synchronously measured motor currents and 

vibration signals obtained from a test rig with high resolution 

and sampling rate. The dataset consists of 6 healthy states for 

reference and 26 damaged states of ball bearings of type 6203, 

of which 12 are artificially damaged bearings, and 14 are 

bearings with real damages caused by accelerated lifetime 

tests [18]. To ensure the robustness of condition monitoring 

methods at different operating conditions, the PU data was 

collected using accelerometers placed on the test rig, capturing 

the vibrations generated by the rotating bearings under 

different combinations of operating conditions, i.e. at different 

rotational speeds of the drive system, radial force onto the test 

bearing and load torque, while temperature was kept at 45-50 

°C during all experiments [18]. The dataset diversity was 

essential for training the model to recognize and classify 

various fault patterns accurately. For each of the settings, 20 

measurements of 4 seconds each were recorded and saved as 

MATLAB files [19]. 

Subsequently, the frequency and time values of the PU 

pre-processed data are arranged into a 2D matrix format to 

come up with images to be fed into the deep learning 

algorithm since CNNs are known to be great image classifiers. 

The images function in MATLAB, which scales image data to 

the full range of the current colormap and displays the image, 

is employed to generate a color-coded image, where the 

intensity of vibration is depicted across different frequencies 

and time intervals [20]. The original image obtained was of 

656 rows, 875 columns, and 3 Red Green Blue channels, i.e. 

size [656x875x3]. The images were scaled and cropped to 

224x224x3 RGB images to enhance the recognition of the 

target objects by the model and also avoid overfitting the 

network. The improved ResNet-18 can then interpret these 

images to identify patterns or anomalies indicative of faults in 

induction motor bearings, thereby contributing to real-time 

classification. 

The faults from the PU dataset included healthy, outer 

race, inner race, and a combination of inner and outer race 

faults, each introduced at different levels of severity to 

simulate realistic degradation scenarios. Each fault type 

manifests distinct vibration patterns, as shown in Figure 1. A 

total of 2632 images were created for the 4 different classes, 

i.e. one class for the healthy state and three classes for the 

faulty states. Subsets for training, validating, and testing were 

created from the bearing images dataset to facilitate model 

evaluation, training, and validation. 15% of the images from 

the 4 classes were left aside for testing, while the remaining 
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2464 images were randomly divided to end up with 70% for 

training and 15% for validation. These images are then 

uploaded to MATLAB’s Deep Network Designer App and are 

used to train and test the various models.  

         

 

 

 

 

Fig. 1 Bearing data images for (a) Combination fault 

(N09_M07_F10_KB27_3), (b) Healthy (N15_M01_F10_K001_19),  

(c) Inner race fault (N09_M07_F10_KI01_7), and (d) Outer race fault 

(N15_M07_F04_KA05_10). 

3.2. ResNet-18 Network Architecture 

ResNet-18 is a CNN architecture that was introduced by 

Kaiming He et al. [9] after researchers discovered that merely 

adding more layers could lead to performance degradation.  

ResNet-18 introduces residual connections, also known 

as skip connections, which allow the network to learn residual 

functions in order to address the challenge of vanishing 

gradients that arises when training very deep neural networks. 

It is well known for achieving good accuracy on image 

classification tasks while maintaining a relatively low 

computational cost compared to other deep networks. 

The architecture of ResNet-18 consists of a convolutional 

layer followed by a max pooling layer and residual blocks, 

each containing a series of two or three convolutional layers 

with batch normalization and activation functions. The final 

layers include global average pooling and a fully connected 

layer for classification, as shown in Figure 2. 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 
 

 
 Fig. 2 The ResNet-18 architecture
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3.2.1. Image Input Layer 

This layer accepts Two-Dimensional (2-D) images of 

fixed size [224x224x3], i.e. RGB image with 224x224 pixels 

and 3 color channels as the neural network’s input, ensuring 

that the input images are compatible with the subsequent 

layers of the network. Z-score data normalization is applied to 

transform the mean of all values to become zero and the 

standard deviation to become one.  

The purpose of z-score normalization is to make different 

features more directly comparable and to ensure that they 

contribute equally to the learning process [21, 22]. It helps 

improve the convergence and stability of the training process, 

especially when features have different scales or distributions. 

The z-score normalization transformation for feature x is 

expressed as: 

Z=(x-μ)/σ  (1) 

Where z is the standardized value (z-score) of the feature, 

x is the original feature value, 𝜇 is the mean of the feature 

across the training dataset, and 𝜎 is the standard deviation of 

where z is the standardized value (z-score) of the feature, x is 

the original feature value, 𝜇 is the mean of the feature across 

the training dataset, and 𝜎 is the standard deviation of the 

feature across the training dataset. By subtracting the mean, 

the data distribution is shifted to have a mean of zero, thus 

helping to prevent bias while dividing the data by the standard 

deviation scales, ensuring that features with different scales 

contribute equally during training. 

3.2.2. Convolution Layer 

The 2-D convolutional (conv) layer performs feature 

extraction by applying sliding convolutional filters (kernels) 

to the 2-D input to produce feature maps that highlight specific 

patterns or features present in the input data [23]. This layer 

convolves the input by calculating the dot product of the 

weights and the input, moving the filters along the input both 

vertically and horizontally, and then adding a bias term. 

The weights of the filters in the convolutional layer are 

learnable parameters, which are optimized during the training 

process using Stochastic Gradient Descent with Momentum 

(SGDM) to minimize the loss function, enabling the network 

to learn meaningful representations of the input image. The 

convolutional layers incorporate padding and stride 

parameters to control the spatial dimensions of the output 

feature maps.  

The padding adds extra border pixels around the input 

image, preserving spatial information and mitigating the 

reduction in spatial dimensions caused by the convolution 

operation. Stride influences the output feature maps' spatial 

resolution by determining the step size of the filter that slides 

over the input image. The first convolutional layer of the 

ResNet-18 has 64 filters with a kernel size of 7x7, stride of 2, 

and padding of 3. The data format is a string of spatial (S), 

Channel (C), and batch (B) characters, where each character 

describes the type of the corresponding data dimension. This 

convolution layer feeds [112(S) x 112(S) x 64(C) x 1(B)] to 

the batch normalization and Rectified Linear Unit (ReLU) 

activation layers that come after it. If nxn is the image size, fxf 

is the kernel size, p is the padding, s is the stride, C represents 

the number of channels, and N is the batch size, the output of 

the convolution is calculated as follows: [23] 

Output = [
n+2p−f

s
+ 1] × [

n+2p−f

s
+ 1] × C × N  (2) 

3.2.3. Batch Normalization (BN) Layer 

This layer is used between the convolutional layers and 

ReLU layers to minimize internal covariate shift, accelerate 

training of the convolutional neural network, and reduce 

network initialization sensitivity [24]. The batch 

normalization layer normalizes a mini-batch of data by 

calculating the mean (µ) and standard deviation (σ) of the 

activations across all observations for each channel separately. 

Each activation value (xi) in the mini-batch is normalized 

using the formula: 

𝑥𝑖̂ =
𝑥𝑖−𝜇

√𝜎2−𝜀
  (3) 

Where ε is a relatively small constant added to the 

denominator to avoid division by zero and improve numerical 

stability, after normalization, the input is scaled using a 

learnable scale factor γ and shifted by a learnable offset β. 

𝑦𝑖 = 𝛾. 𝑥𝑖̂ + 𝛽  (4) 

These learnable parameters allow the network to recover 

the original scale and shift the data after normalization, thus 

restoring the data to the desired range. They allow the network 

to maintain flexibility and avoid excessive normalization 

effects. 

3.2.4. Rectified Linear Unit (ReLU) Layer 

A BN layer and a ReLU activation function follow each 

convolutional layer. The key role of the ReLU activation 

function is to introduce non-linearity into the model, enabling 

the network to recognize intricate patterns and correlations. It 

does this by performing a threshold operation on each element 

of the input, where any value less than zero is set to zero [25], 

i.e. 

𝑓(𝑥) = max(0, 𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

  (5) 

The ReLU is a popular choice in neural networks due to 

its computational efficiency [26] and ability to mitigate the 

vanishing gradient issue. 
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3.2.5. Pooling Layer 

Pooling is a technique used to reduce the spatial 

dimensions of feature maps and assists in extracting important 

features [27] while lowering computational complexity. The 

input is divided into small pooling regions, and the maximum 

of each region is then calculated by a 2-D max pooling layer, 

which conducts down-sampling. The max pooling layer of 

ResNet-18 features a 3 x 3 pool size, a stride of 2, and padding 

of 1. It reduces the influence of noise and is effective for image 

recognition, where identifying the most prominent edges or 

corners is crucial [28]. 

The ResNet-18 architecture also has a 2-D global average 

pooling layer, which is carried out down-sampling by 

calculating the mean of the input's height and width 

dimensions. It calculates the average of all activation values 

within the entire feature map and reduces the feature map to a 

single value for each channel. This layer preserves spatial 

information by considering all activations within the feature 

map. It works well with fully connected layers, effectively 

reducing feature maps before the final classification layer. It 

minimizes the number of parameters and helps avoid 

overfitting [29]. 

3.2.6. Residual Block 

The residual block is a structure within the ResNet-18 

architecture that includes a shortcut or skip connection that 

connects the output of an earlier layer to a later layer, 

bypassing intermediate convolutional operations. These 

blocks allow information to flow more smoothly through the 

deep network.  

There are two types of skip connections: identity shortcut 

connection and convolutional shortcut connection, [30] as 

shown in Figure 3. The identity shortcut connection performs 

an identity mapping (no transformation), ensuring that the 

information passing through the shortcut remains consistent 

with the overall network's structure. 

Convolutional shortcut connections are similar to identity 

blocks but include a convolutional layer in the shortcut path. 

The purpose of this convolutional layer is to adjust the 

dimensions so that the input and output match. The output of 

the identity shortcut connection is defined by the following 

equation: [23]  

𝑦 = 𝐹(𝑥) + 𝑥  (6) 

While the output of the convolutional shortcut connection 

is given by [23], 

𝑦 = 𝐹(𝑥) + 𝑊. 𝑥  (7) 

Where x is the input of the residual block, F(x) is a non-

linear mapping function of the stacked operation layers in a 

residual unit, and W represents a linear projection. The 

residual block is followed by an addition layer, which adds 

inputs from multiple neural network layers element-wise, 

allowing for both the original input and the transformed output 

to be combined before feeding the output to the ReLU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Types of shortcut connections: (a) Identity shortcut connection, 

and (b) Convolutional shortcut connection. 

3.2.7. Fully Connected Layer 

A Fully Connected (FC) layer multiplies the input from 

the residual block by a weight matrix. Then, it adds a bias 

vector, performing a linear transformation to produce the four 

output classes for classification. A softmax layer then outputs 

probabilities for the various classes. Equation (8) illustrates 

how the softmax function uses the exponential function on 

each input and then normalizes the outputs to make sure they 

add up to 100% [31]. 

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑛

𝑗=1

  (8) 

Where 𝜎(𝑧𝑖) is the output of and 𝑧𝑖  is the input to the 

softmax function for the i-th element, n represents the total 

number of elements in the input vector, and j denotes the 

output class. 

The classification layer is the final step in the network, 

where the output from the softmax layer is used to make a 

prediction. The final classification is determined by selecting 

the class with the highest probability. Metrics used to evaluate 

the performance of the model, such as accuracy, precision, 

recall, and F1-score, are then computed by comparing the 

output of the classification layer with the ground truth. 

3.3. Layer Modification of ResNet-18 

This study investigates the impact of specific structural 

modifications on the performance of the ResNet-18 

architecture. The goal is to examine how the following 

changes affect the model's accuracy, computational 

efficiency, and generalization capability. 
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3.3.1. Removal of Residual Blocks 

Residual blocks were removed one block at a time from 

the ResNet-18 architecture, attempting to gain insight into the 

network's behavior and performance under varying levels of 

depth and complexity by measuring the impact on model 

accuracy and convergence.  

Firstly, residual block 5b was removed, followed by the 

removal of residual block 5a. Though the training time was 

reduced, it was evident that the test accuracy was becoming 

less precise. All the ‘b’ blocks were then removed, and since 

the results only got worse, the modification strategy had to be 

changed. The addition of several convolutional layers was the 

next option to experiment with. 

3.3.2. Addition of Convolutional Layers 

Two convolutional layers of filter size 16 and 32, each 

followed by BN and ReLU layers, were added before the first 

residual block, allowing the network to learn more low-level 

features from the input data. This was an attempt to help the 

network extract more relevant information, leading to better 

performance and potentially faster convergence during 

training.  

The additional convolutional layers were given a stride of 

2 in order to reduce the spatial dimensions of the feature maps 

earlier in the network, aiming to decrease the computational 

cost of the subsequent layers as they had to process feature 

maps with smaller spatial sizes.  

3.3.3. Removal of Shortcut Connections 

This alteration led to a standard feedforward architecture 

with sequential layers, similar to the traditional deep neural 

network, allowing the authors to observe how much the 

residual structure contributes to learning efficiency and 

accuracy.  

The shortcut connections are the defining characteristics 

of ResNet-18 that allow gradients to flow more easily during 

backpropagation. When removed, the model may suffer from 

vanishing gradients, leading to difficulty in learning deeper 

features, thus slowing the training time and reducing the 

accuracy. 

3.3.4. Addition of Fully Connected Layers 

Fully connected layers of various output sizes were added 

to the network after the global average pooling layer. It is 

known that adding a fully connected layer can increase the 

model's capacity to learn high-level features before the final 

classification.  

However, the risk of overfitting and higher computational 

time was to be mitigated by adding a BN layer to regularize 

the output, and a ReLU could also be introduced to capture 

non-linearity and allow the network to learn more complex 

patterns. 

3.3.5. Addition of Squeeze and Excitation Block 

Five Squeeze and Excitation (SE) blocks were added to 

the most promising network after the experiments above in an 

attempt to improve the results found [32]. Figure 4 shows the 

proposed model that gave the best results. 

The squeeze operation involved using global average 

pooling [33] to reduce each channel in the feature map to a 

single value, creating a compact representation of the entire 

feature map. The squeeze operation 𝑧𝑐  can be represented as: 

[33]. 

𝑍𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1

  (9) 

Where 𝑢𝑐 represents the feature map for the c-th channel, 

H and W are the height and width of the feature map, and 𝐹𝑠𝑞 

denotes the squeeze function. 

The FC layer followed the squeeze operation to reduce 

the dimensionality by a factor of 𝑟, a ReLU to introduce non-

linearity, another FC to restore the initial dimensionality, and 

a sigmoid function to produce a scaling factor between 0 and 

1 for each channel [34].  

The excitation operation applies a gating mechanism to 

the squeezed feature descriptor, followed by a sigmoid 

activation to obtain channel-wise scaling factors. The 

excitation operation 𝑠𝑐  can be formulated as: 

𝑆𝑐 = 𝐹𝑒𝑥(𝑧, 𝑊) = 𝜎(𝑔(𝑧, 𝑊)) = 𝜎(𝑊2𝛿(𝑊1𝑧))   (10) 

Where 𝐹𝑒𝑥 denotes the excitation function, g is a gating 

mechanism (FC with ReLU activation), W represents the 

learnable parameters of the gating mechanism, σ is the 

sigmoid activation function, 𝛿  refers to the ReLU function, 

𝑊1  𝜖 ℝ
𝐶

𝑟
×𝐶  𝑎𝑛𝑑  𝑊2 𝜖 ℝ𝐶×

𝐶

𝑟
 [33]. 

The SE block shown in Figure 5 then recalibrates the 

output of the residual block before adding it to the shortcut 

connection. Its final output is obtained by: 

𝑥𝑐̃ = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐 , 𝑠𝑐) = 𝑠𝑐 . 𝑢𝑐  (11) 

Where 𝑥𝑐̃  represents the output feature map for the c-th 

channel, 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐 , 𝑠𝑐)  refers to channel-wise multiplication 

between the scalar 𝑠𝑐  and the feature map 𝑢𝑐  𝜖 ℝ𝐻×𝑊
 [33]. 

This Squeeze and Excitation Residual Network (SE-

ResNet) architecture, having shown exemplary performance, 

was chosen for further experimentation with different 

hyperparameters, i.e. learning rate, batch size, number of 

epochs, and different solvers, to find the optimal configuration 

for the model. 
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Fig. 4 The proposed squeeze and excitation ResNet

3.4. Hyperparameter Tuning 

This section describes the approach used for 

hyperparameter tuning to identify the optimal configuration 

for the proposed architecture. The process aimed to enhance 

the model's performance by adjusting key parameters such as 

batch size, the learning rate, the number of epochs, and the 

choice of optimization algorithms (solvers). Other 

hyperparameters like L2 regularization, momentum, and 

number of hidden units were also tuned to ensure the best 

performance for the model. 

The learning rate, which determines the step size at each 

iteration during optimization, was a critical hyperparameter in 

this work. A well-chosen learning rate significantly influences 

the training speed. A high learning rate might lead you past 

the optimal solution and into areas of higher loss, , while a 

small learning rate, will slow convergence or even get stuck 
in suboptimal solutions [35]. Using a logarithmic scale, 

different learning rates were experimented on. 

Batch size represents the number of samples processed in 

one iteration before updating the model weights. The optimal 

batch size is also identified through experimentation varying 

from 32 to 256. On the other hand, the number of epochs refers 

to the number of times the entire dataset is used for training. 

This is selected carefully to ensure balance and avoid 

overfitting or underfitting. Optimization algorithms like 

Stochastic Gradient Descent with Momentum (SGDM), 

Adaptive Moment Estimation (Adam), and Root Mean Square 

Propagation (RMSProp) are responsible for updating the 

internal parameters (weights and biases) of the model based 

on the calculated loss function. Each solver was explored to 

choose the best-performing optimizer while keeping all 

parameters, such as learning rate, batch size, and number of 

epochs, to mention a few, constant. 

  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 5 The squeeze and excitation block 
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3.5. Bayesian Optimization of SE-ResNet 

Bayesian Optimization (BO) is a statistical method for 

optimizing objective functions. It improves the search speed 

by using past performances of hyperparameters to determine 

future decisions [36]. The Bayesian Optimized SE-ResNet 

(BOSE-ResNet) was used to find optimal hyperparameters 

efficiently using fewer evaluations than the exhaustive sweep 

performed on the SE-ResNet.  

Firstly, a range of possible values for the initial learning 

rate (0.007 – 0.012), the momentum (0.8 – 0.98), and L2-

regularization (1 x10-5 – 1 x 10-2) were chosen based on the 

results from the hyperparameter tuning of the SE-ResNet. 

SGDM optimization algorithm was chosen, and the minibatch 

size was held constant at 128. The BO strategy was then used 

to train the model, which is done by selecting a random set of 

parameters and evaluating the performance. It then 

incorporates the new data point and updates the belief about 

the objective function. The next set of hyperparameters to be 

evaluated was repeatedly determined based on the updated 

belief until the stopping criterion of 30 trials was met. The 

maximum run time was set to infinity to ensure all 30 trials 

with different hyperparameter combinations were sampled. 

3.6. Performance Metrics  

To ensure unbiased performance evaluation and help 

avoid overfitting, the dataset was divided into a 70% train set, 

a 15% validation set, and a 15% test set. This ensured that the 

model was able to be tested on unseen data, thus providing 

insight into its ability to generalize. The performance of the 

proposed fault diagnosis model was evaluated using primary 

metrics such as accuracy, precision, F1 score, and recall. 

These were evaluated as follows: [37]. 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (12) 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (13) 

Recall (Sensitivity)=
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (14) 

F1-Score=2x
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (15) 

True Positive (TP) refers to the number of cases where the 

model correctly predicted a positive outcome, True Negative 

(TN) indicates the number of cases where the model correctly 

predicted a negative outcome, False Positive (FP) is the 

number of cases where the model incorrectly predicted a 

positive outcome, and False Negative (FN) represents the 

number of cases where the model incorrectly predicted a 

negative outcome [37]. 

Using the same graph to plot the training and validation 

accuracy and loss curves, it was possible to assess whether the 

model was overfitting or underfitting. High training 

performance accompanied by low validation performance 

meant the model was overfitting while underfitting was when 

both training and validation performance was low. The 

original ResNet-18 model, without any modifications, served 

as the baseline; therefore, the performance of each modified 

ResNet-18 architecture was compared against it. The 

computational cost was also assessed by comparing the 

training time of the different models. 

3.7. Software and Hardware Environment 

The experiments were performed on MATLAB R2023a 

Deep Network Designer App using a device with the 

following specifications: Windows 11 Home, 11th Generation 

Intel (R) Core (TM) i7-1165G7 @ 2.80GHz processor, 

Random Access Memory (RAM) of 16 GB, and a storage of 

512 GB SSD. Even though this device does not have a 

Graphics Processing Unit (GPU), its specifications allowed 

for the assessment of computational speed and training 

efficiency, providing insights into the model's performance in 

a typical environment.  

Since CPUs are generally slower for deep learning 

training compared to GPUs due to their limited parallel 

processing capabilities, [4] a computationally efficient model 

on CPU will perform exceptionally well on GPU. However, 

since most industries have access to devices similar to the one 

used in this paper, this study shows that there will be no need 

to invest in a device specifically for condition monitoring of 

induction motors. 

4. Results and Discussion 
ResNet-18’s concept of residual connections was 

introduced to enable much deeper architectures while 

maintaining efficient training. Its relatively shallow depth 

makes it computationally more efficient than deeper versions 

of ResNets while still providing the benefits of residual 

learning. With its simplicity in mind, it was chosen as the 

starting point for layer modification and hyperparameter 

tuning. 

4.1. Performance of ResNet-18 Architecture 

The validation dataset was used to verify the ResNet-18 

model after it had been trained on the training dataset. 

Different learning rates varied on a logarithmic scale, i.e. 

0.001, 0.01, 0.1, and 1, were experimented on, while other 

parameters such as a mini-batch-size of 128, validation 

frequency of 14 iterations, a total of 20 epochs, and the SGDM 

solver were held constant. A learning rate of 0.01 was selected 

since this experiment had the highest validation accuracy. The 

model was then tested on completely unseen images, and the 

test accuracy was 78.91%.  

Figure 6 shows the results of the training and validation 

graphs obtained from training the ResNet-18 model using the 
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selected parameters above. In contrast, Table 1 shows the 

results of the training accuracy, validation accuracy, testing 

accuracy, and the time it took to perform the experiments 

when the learning rate was varied. The confusion matrices for 

the training data, the validation data, and the testing data when 

the learning rate is 0.01 are shown in Figure 7.

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Training (blue) and validation (black) graphs of ResNet-18 

Table 1. Performance of ResNet-18 with various learning rates 

Sl. No. Elapsed Time Learning Rate Training Accuracy Validation Accuracy Test Accuracy 

1 
93 min  

18 sec 
0.001 100% 80.47% 35.16% 

2 
92 min 

40 sec 
0.01 100% 95.57% 78.91% 

3 
94 min  

9 sec 
0.1 84.35% 82.81% 72.40% 

4 
91 min 

33 sec 
1 37.75% 36.98% 38.28% 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Confusion matrix for (a) Training data, (b) Validation data, and (c) Testing data when using ResNet-18 architecture. 
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4.2. Model Performance after Modifications to ResNet-18 

Architecture 

From the experiments performed on the ResNet-18 

architecture, it was evident that this network was not able to 

perform well on unseen data. This led to its modification in an 

attempt to increase its efficiency. Firstly, layer 5b was 

removed. This led to a decrease in computational time, as 

expected, but the test accuracy was negatively affected. 

Removing layer 5a further decreased the computational time, 

but the test accuracy did not improve. This is because layers 

5a and 5b have the largest filter size of 512 for the ResNet-18 

network; thus, removing these layers reduces the overall 

capacity of the model to learn complex representations from 

the input data.  

Without the final residual blocks, the model overfits the 

training data, as it cannot learn more complex patterns that 

generalize well to unseen test data [38]. Having noted the 

importance of the 512-filter size, the original ResNet-18 was 

modified to exclude layers 2b, 3b, 4b and 5b. The test accuracy 

further decreased, prompting the return of layer 2b to the 

network. With only 3b, 4b and 5b removed from the network, 

the test accuracy was slightly better than when all the ‘b’ 

layers were removed.  

Though removing one residual block at a time led to 

reduced training time, it also reduced the model's capacity to 

learn complex features, leading to lower test accuracy. Two 

convolutional layers of filter sizes 16 and 32, each followed 

by BN and ReLU, were added to the modified network 

immediately after the input layer. These layers captured more 

fine-grained and informative features from the input, leading 

to faster convergence during training and better generalization 

of the test set.  

An FC layer of output size 256, followed by a BN layer, 

was inserted after the global average pooling layer, which 

improved the network's performance. However, adding more 

FC layers to the network reduced the model’s 

performance. All the skip connections were then removed 

from the original ResNet-18 architecture, giving a test 

accuracy of 97.92%, but the computational time was very 

high. Adding two convolutional layers of filter sizes 16 and 32 

reduced the computational cost and slightly increased the test 

accuracy.  

Squeeze and excitation blocks were then added to the 

modified ResNet-18 network, which had two convolutional 

layers added to it and layers 3b, 4b, and 5b removed. This 

network increased the test accuracy to 98.698%. This Squeeze 

and Excitation Residual Network (SE-ResNet) model is 

selected for further experimentation, and hyperparameters 

such as learning rate, batch size, number of epochs, and the 

type of solver are fine-tuned to achieve higher performance. 

Table 2 shows some of the modifications done to the ResNet-

18 architecture to improve its performance.

Table 2. Model performance for different modifications to ResNet-18 

Sl. 

No. 
Network 

Learning 

Rate 

No. of 

Iterations 

Batch 

Size 

Validation 

Frequency 

Validation 

Accuracy 

Test 

Accuracy 
Time 

Elapsed 

1 Original ResNet-18 0.01 20 128 14 95.57% 78.906% 
92 min 40 

sec 

2 Original ResNet-18 – Layer 5b 0.01 20 128 14 98.18% 73.177% 
83 mins 19 

sec 

3 
Original ResNet-18 – Layers 5b 

and 5a 
0.01 20 128 14 96.35% 75.521% 

79 mins 27 

sec 

4 
Original ResNet-18 – Layers 5b, 

4b and 3b 
0.01 20 128 14 96.61% 75.781% 

70 mins 37 

sec 

5 
Original ResNet-18 - All ‘b’ 

Layers 
0.01 20 128 14 93.49% 63.802% 

63 mins 51 

sec 

6 

Original ResNet-18 + 2 conv. 
layers of filter sizes 16 and 32, 

each followed by BN and ReLU 
0.01 20 128 14 96.61% 96.875% 

28 mins 23 

sec 

7 

Original ResNet-18 + 2 conv. 

layers of filter sizes 16 and 32, 

each followed by BN and ReLU – 

all ‘b’ layers 

0.01 20 128 14 96.09% 95.050% 
24mins 

13sec 

8 

Original ResNet-18 – Layers 5b, 

4b & 3b + 2 conv. layers (16,32) + 

FC256 (followed by BN) 
0.01 20 128 14 97.92% 97.656% 

24 mins 

35 sec 
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4.3. Hyperparameter Tuning of the Proposed Model 

The proposed SE-ResNet was subjected to further 

experimentation to improve its test accuracy. In order to 

identify the optimal conditions, several experiments with 

different combinations of parameters were performed, and the 

results are summarized in Figure 8. The learning rates 

experimented on were 0.008, 0.009, 0.01, 0.011 and 0.012. A 

learning rate of 0.011 gave the best results. This parameter was 

then held constant while batch sizes 32, 64, 128, and 256 were 

experimented on. The best performance was seen with a batch 

size of 128. 

From the graphs, it was evident that from around the 10th 

epoch, the training curve remained constant. Different epochs 

of 10, 15, 20, and 50 were therefore tested to find out the 

impact of the number of epochs on accuracy. It was noted that 

increasing the number of epochs did not improve the accuracy. 

The number of epochs selected to ensure that the highest 

accuracy was obtained in the least time was 20 epochs. 

Finally, keeping all other parameters constant, different 

solvers were tried, i.e. SGDM, Adam and RMSProp. Table 3 

shows the results from hyperparameter tuning. The SGDM is 

computationally cheap and relatively easy to implement. 

However, it can be slow to converge and requires careful 

tuning of the learning rate so as not to oscillate or lead to 

suboptimal solutions. Adam and RMSProp try to address these 

challenges. Adam incorporates adaptive learning rates for 

each parameter, estimating both the first and second moments 

of the gradients, leading to faster convergence and potentially 

smoother optimization compared to SGDM.   
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4b & 3b + 2 conv. layers (16,32) + 

FC256 + FC128 + FC64 (each + 

BN) 

0.01 20 128 14 94.27% 96.354% 
24 mins 

39 sec 

10 
Original ResNet-18 – Layers 5b, 

4b & 3b + 2 conv. layers (16,32) 
0.01 20 128 14 96.88% 98.177% 

24 mins 

21 sec 

11 
Original ResNet-18 – all skip 

connections 
0.01 20 128 14 97.14% 97.917% 

76 mins 

46 sec 

12 

Original ResNet-18 – all skip 

connections + 2 conv. layers 

(16,32) 
0.01 20 128 14 97.66% 98.177% 

28 mins 

14 sec 

13 

Original ResNet-18 – all skip 

connections + 5 SE Blocks + 

2conv. layers (16,32) 
0.01 20 128 14 96.35% 98.438% 

29 mins 

12 sec 

14 

Original ResNet-18 – Layers 5b, 

4b & 3b + 2 conv. layers (16,32) + 

5 SE Blocks + FC256 
0.01 20 128 14 97.66% 98.698% 

22 mins 

52 sec 
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(c) 

 

(d) 

Fig. 8 Graphs of testing accuracy against (a) Learning rate, (b) Batch-size, (c) Number of epochs, and (d) Solver.  

Table 3. Hyperparameter tuning of SE-ResNET 

Sl. 

No. 

Learning 

Rate 

Number 

of Epochs 
Batch-Size 

Weight 

Decay 

Validation 

Accuracy 

Training 

Accuracy 
Time Elapsed Solver 

1  0.008 20 128 0.0001 98.96% 98.177% 31 min 48 sec SGDM 

2  0.009 20 128 0.0001 98.96% 97.660% 32 min 35 sec SGDM 

3  0.011 20 128 0.0001 99.22% 98.958% 32 min 53 sec SGDM 

4  0.012 20 128 0.0001 95.83% 94.790% 33 min 22 sec SGDM 

5  0.01 20 128 0.0001 98.44% 97.396% 36 min 43 sec SGDM 

6  0.011 20 32 0.0001 96.35% 97.135% 52 mins 18 sec SGDM 

7  0.011 20 64 0.0001 98.70% 98.698% 35 mins 35 sec SGDM 

8  0.011 20 256 0.0001 98.70% 97.917% 29 mins 38 sec SGDM 

9  0.011 10 128 0.0001 97.40% 96.875% 17 mins 28 sec SGDM 

10  0.011 15 128 0.0001 98.18% 98.438% 33 mins 17 sec SGDM 

11  0.011 50 128 0.0001 98.18% 96.615% 100 mins 23 sec SGDM 

12  0.011 20 128 0.0001 96.35% 96.097% 42 mins 38 sec SGDM 

13  0.011 20 128 0.0001 98.96% 98.177% 31 min 48 sec SGDM 

14  0.011 20 128 0.0001 98.96% 97.660% 32 min 35 sec Adam 

15  0.011 20 128 0.0001 90.89% 90.365% 24 mins 30 sec RMSProp 

16  0.011 20 128 0.0005 96.88% 97.135% 24 mins 42 sec SGDM 

17  0.011 20 128 0.00005 97.14% 97.396% 26 mins 55 sec SGDM 

18  0.011 20 128 0.00001 96.09% 97.396% 41 mins 46 sec SGDM 

19  0.011 20 128 0.001 94.79% 97.917% 25 mins 51 sec SGDM 

20  0.011 20 128 0.01 97.40% 98.177% 23 mins 10 sec SGDM 

RMSProp focuses on the recent history of gradients using 

a decaying average of squared gradients, thus helping to adjust 

learning rates dynamically based on the parameter's update 

history. The SGDM, which adjusts the model parameters 

iteratively in the direction opposite the loss function's 

gradient, ensuring the model gradually moves towards 

minimizing the loss, was the best-performing solver and was 

therefore selected for the proposed model. With a batch size 

of 128 examples, weight decay of 0.0001, momentum of 0.9, 

and stochastic gradient descent with momentum, the SE-

ResNet model was trained to produce the best results. The 

model needed to learn from this tiny bit of weight decay in 

order to decrease its training error. The weight decay term is 

added to the loss function, and during training, it encourages 

the model to learn simpler patterns by penalizing large weight 

values. The equation for velocity is [31], 

𝑣𝑖+1 = 0.9. 𝑣𝑖 − 0.0001. 𝜆. 𝑤𝑖 − 𝜆. ⟨
𝜕𝐿

𝜕𝑤
|𝑤𝑖⟩ 𝐷𝑖 

  (16) 

Where, 𝑣𝑖+1  is the updated velocity, 𝑣𝑖  is the current 

velocity, 𝜆  is the learning rate, 𝑤𝑖  is the current weight, 
𝜕𝐿 𝜕𝑤⁄ |𝑤𝑖is the gradient of the loss function 𝐿 with respect to 

the weight 𝑤 at the current iteration 𝑖, and ⟨
𝜕𝐿

𝜕𝑤
|𝑤𝑖⟩

denotes the 

average over the mini-batch 𝐷𝑖. The momentum and weight 
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decay are 0.9 and 0.0001, respectively [26]. The equation of 

the updated weight can be calculated as [31]: 

𝑤𝑖+1 = 𝑤𝑖 + 𝑣𝑖+1  (17) 

Figure 9 shows the testing confusion matrix, while Figure 
10 shows the training and validation confusion matrices. The 

training and validation graphs were plotted on the same axis, 

providing a clear and direct comparison between training and 

validation metrics such as accuracy and loss. It was also 

helpful in monitoring overfitting and underfitting. Figure 11 

and Figure 12 show the accuracy and loss graphs, respectively. 

Other performance metrics of the SE-ResNet are presented in 

Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9 Confusion matrix of testing dataset for the SE-ResNet
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Fig. 10 Confusion matrix of (a) Training, and (b) Validation datasets for the SE-ResNet. 

 

 

 

 
 

 

 

 

 
 

 
 

Fig. 11 Training (blue) and validation (black) accuracy graph for the SE-ResNet 
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Fig. 12 Training (red) and validation (black) loss graph for the SE-ResNet 

Table 4. Performance metrics for SE-ResNet 

Class Precision Recall F1-score 

Combination 1.0000 0.9722 0.9859 

Healthy 1.0000 0.9861 0.9930 

Inner Race 0.9776 0.9924 0.9850 

Outer Race 0.9931 0.9931 0.9931 

Average 0.9927 0.9860 0.9893 

4.4. Model Performance of the BOSE-ResNet Architecture 

After 30 trials, the Bayesian Optimized Squeeze and 

Excitation Residual Network (BOSE-ResNet) achieved the 

highest validation accuracy when the hyperparameters were as 

follows: a learning rate of 0.0119, Momentum of 0.9122, and 

L2 regularization of 3.52 ⨯ 10-5. The training accuracy of the 

model was 98.4375%, and its validation accuracy was 

99.4792%.  

The model achieved a test accuracy of 99.479%, which 

was higher than the SE-ResNet’s test accuracy. This small 

discrepancy between the training and test accuracy shows that 

the model generalized well to unseen data. These results 

suggest that Bayesian Optimization effectively tuned the 

hyperparameters, leading to a highly accurate and robust 

BOSE-ResNet model. Figure 13 and Figure 14 show the 

training and validation accuracy and loss graphs, respectively, 

while Figure 15 shows the training and validation dataset 

confusion matrices of the BOSE-ResNet model. Figure 16 

shows the test dataset confusion matrix.

 

 

 

 
 

 

 

 

 

 
 
 

Fig. 13 Training (blue) and validation (black) accuracy graph for the BOSE-ResNet 

 

 

 

 

 
 

 

 

 

 
Fig. 14 Training (red) and validation (black) loss graph for the BOSE-ResNet 
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Fig. 15 Confusion matrix for (a) Training, and (b) Validation datasets of the BOSE-ResNet. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 16 Confusion matrix of testing dataset for the BOSE-ResNet 

A detailed analysis of performance metrics indicated high 

levels of both precision and recall, as shown in Table 5. This 

indicates that the model can correctly identify most of the 

bearing faults (high recall) while minimizing false alarms 

(high precision). Notably, after only 25 minutes and 39 

seconds of training, only two healthy samples were incorrectly 

classified as inner race bearing faults, highlighting the model's 

robustness in distinguishing between different fault 

conditions. 

Table 5. Performance metrics for BOSE-ResNet  

Class Precision Recall F1-score 

Combination 1.0000 1.0000 1.0000 

Healthy 1.0000 0.9722 0.9859 

Inner Race 0.9851 1.0000 0.9925 

Outer Race 1.0000 1.0000 1.0000 

Average 0.9963 0.9931 0.9946 

5. Conclusion  
This study provides insight into the impact of 

architectural modifications and hyperparameter tuning on the 

ResNet-18 model's performance, guiding further research on 

enhancing induction motor bearing fault detection. The 

BOSE-ResNet model, which incorporates squeeze and 

excitation blocks and additional convolutional layers to its 

architecture, demonstrated superior performance in terms of 

accuracy and computational efficiency compared to the 

original ResNet-18 model. By employing Bayesian 

Optimization, the hyperparameter space was efficiently 

explored, and optimal configurations for the SE-ResNet were 

identified. The BOSE-ResNet architecture showcased 

exceptional performance with an impressive test accuracy of 

99.48%, and a comprehensive evaluation of the model’s 
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performance metrics, such as F1 score, recall, and precision, 

proved high effectiveness and its ability to classify bearing 

faults accurately. The accuracy of the BOSE-ResNet in the test 

phase of the experiment was found to be 20.574% higher than 

the classical ResNet-18 (78.906%).  

The reduction of computational time through structural 

modifications by 72.32% (from 92 mins 40 sec by the ResNet-

18 model to 25 mins 39 sec by the BOSE-ResNet model) 

further enhanced the practicality and efficiency of the 

proposed approach. The insights gained from the confusion 

matrix analysis provided a deeper understanding of the 

model's classification capabilities, enabling targeted 

improvements for future iterations.  

The high accuracy, improved computational efficiency, 

and robust performance presented in this study validate the 

efficacy of the proposed BOSE-ResNet model and pave the 

way for further advancements in condition monitoring and 

bearing fault diagnosis using deep learning techniques. With 

its impressive results, this approach stands as a promising 

solution for accurate and reliable bearing fault diagnosis, with 

the potential to enhance the performance and reliability of 

induction motors in real-world industrial settings.  

Future research could explore the application of the 

BOSE-ResNet model to a wider range of bearing fault types 

and different bearing datasets. Additionally, investigating the 

transferability of the optimized hyperparameters to other tasks 

and hardware platforms would be valuable. 
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