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Abstract - Health management in industrial systems is crucial for maintenance management, and it plays an important role in 

productivity, fault diagnosis, safety, efficiency, and economy in manufacturing industries. Early detection of faults in machinery 

may increase the effectiveness of maintenance actions and will avoid unwanted consequences in process operations and 

maintenance. Existing fault diagnosis methods have limitations such as insufficient accuracy, slow detection rate, and handling 

large and complex data sets. In this digital age, Industry 4.0 techniques have been applied across all fields, including the 

condition monitoring of machines. This research addresses the gaps in traditional fault diagnosis by using deep learning, a 

modern AI technique effective for diagnosing faults in various machines. In this research work, vibration signals are collected 
using the National Instruments- Data Acquisition (NI-DAQ) system, accelerometer, and LabVIEW software. These signals are 

processed using a series of steps, including sampling strategy, shuffling, standardization, and reshaping data augmentation. 

Deep learning algorithms Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Recurrent Neural Network 

(RNN) with Long Short-Term Memory (LSTM) are tested for fault diagnosis using vibration datasets collected from Spectra 

Quest Machinery Fault Simulator (SQMFS). The result shows that MLP accuracy in the fault prediction is 0.9, CNN reached 

0.95, and RNN and LSTM with 0.57 and 0.45, respectively. The high performance of CNN is due to its ability to effectively 

capture spatial patterns in vibration data, which is crucial for fault diagnosis in rotating machinery, followed by MLP due to its 

faster convergence during training. When the data is scaled, MLP performs better than CNN, demonstrating its adaptability to 

increased data complexity and volume. RNN and LSTM resulted in lower accuracy due to the need for larger datasets and 

temporal patterns in the vibration data, which they are designed to handle. This study shows that CNN has given better results 

than other deep learning algorithms, such as MLP, RNN, and LSTM, in fault diagnosis of rotating machinery. Future research 
could explore applying these techniques to different types of machinery and fault conditions. 

Keywords - Condition monitoring, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Machine fault 

simulator, Multilayer Perceptron (MLP), Recurrent Neural Network (RNN). 

1. Introduction 
Implementing Artificial Intelligence in manufacturing 

and process industries is becoming mandatory for sustainable 

and reliable failure-free operation on shop floors. Therefore, 
real-time fault diagnosis and precision health assessment 

systems are needed for effective maintenance programs in 

the industrial sector [1]. However, despite AI advancements, 

there is still a gap in developing real-time, robust, and accurate 

fault diagnoses capable of handling unbalanced datasets and 

complex fault conditions in rotating machinery. Rapid 

advancements in digital technologies and AI techniques have 

invited more attention from research and development in 

industrial sectors, particularly in the condition monitoring of 

machines and related industrial processes [2]. Existing 

methods struggle to reach the required precision and 

adaptability for online monitoring in various industrial 

environments, which leads to the need for better AI based 

solutions. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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In this modern world, there are many technological digital 

revolutions with a focus on cyber-physical and biological 

systems such as Artificial Intelligence, Machine learning, 

Deep learning, Robotics, the Internet of Things, Virtual 

Reality, etc., In machining-based industries, identifying a 

reliable condition monitoring system would give a clear 
picture of the health of a machine, which is a mandatory 

requirement for adaptive or corrective actions [3]. A 

significant challenge lies in developing a condition monitoring 

system that can accurately diagnose faults under various 

machine conditions. 

There is always a high demand for an accurate online 

machine condition or fault diagnosis system using modern 

technologies to reduce downtime and improve the effective 

utilization of machinery in the production system [2]. A well-

structured predictive maintenance system will reduce 

economic stresses and give necessary precautions to avoid a 

stoppage in the production line [4]. Maintenance engineers 
typically follow three traditional strategies: breakdown, 

planned, and predictive maintenance [5]. Among the three 

maintenance methods, predictive maintenance is commonly 

used in industries for intelligent diagnosis. The intelligent 

diagnosis procedure can be applied offline or online [6]. 

Unlike offline techniques, online condition monitoring will 

detect continuous faults using sensors and data acquisition. 

The predictive maintenance methods can be broadly 

categorized as model-based predictive maintenance and data-

based predictive maintenance. To indicate a fault, the 

mathematical model is used with empirical data in model-
based maintenance, whereas the data-driven method uses 

intelligent models like fuzzy logic, machine learning, deep 

learning, etc.   

In recent days, data-driven models have been aligned with 

machine learning, deep learning, and digital twins. Machine 

learning and deep learning are the powerful tools of artificial 

intelligence that push the boundaries of innovation. Machine 

learning uses algorithms and learns independently but needs 

human assistance to correct errors. Deep learning uses 

advanced computing, which uses much more data than 

machine learning. There is little or no human intervention in 

deep learning while doing advanced computing. However, 
there remains a gap in understanding the comparative 

strengths of these approaches when applied to rotating 

machinery fault diagnosis. Additionally, the effectiveness of 

condition monitoring systems can vary depending on the 

algorithms used for fault diagnosis, highlighting the 

importance of \electing the appropriate model. 

Machine learning uses thousands of data points in 

condition monitoring, while deep learning-based condition 

monitoring uses millions of data points. Machine learning-

based fault diagnosis methods use explicit programming, but 

deep learning algorithms solve the problems based on the 
layers of neural networks. Deep learning is a machine learning 

algorithm that uses deep (more than one layer) neural 

networks to analyze data and provide output accordingly.  

Koutsoupakin j et al. discussed machine learning-based 

condition monitoring for gear transmission systems using data 

generated by optimal multibody dynamic models. Even 

though the title indicates machine learning, the author’s 
research with CNN will generally come under deep learning 

techniques [7]. Zhang. L et al. discussed an imbalanced fault 

diagnosis method based on TFFO and CNN for rotating 

machinery, and the authors claimed that deep learning-based 

fault diagnosis usually requires a rich supply of data [8]. The 

lack of sufficient data or imbalance in datasets presents a 

significant challenge to existing methods, demanding more 

robust approaches.  

In this study, a comparative analysis of deep learning 

models MLP, CNN, RNN, and LSTM is made for intelligent 

fault diagnosis of rotating machinery, contributing several 

insights to the field. This research investigates how different 

DL models perform across various scaled datasets. This 

approach enables a comprehensive understanding of the 

scalability of the models and robustness in real-world 

applications. 

The paper is organized as follows: Section 2 presents a 
review of relevant literature and a review of deep learning 

techniques, including MLP, CNN, RNN, and LSTM. Sections 

3 and 4 detail the methodology used for fault diagnosis in 

rotating machinery, describing the machine fault simulator 

and experimental setup. Section 5 explains data collection and 

signal pre-processing, with data pre-processing described in 

Section 6. The application of deep learning techniques is 

discussed in Section 7. Section 8 discusses the results of the 

comparative analysis of the deep learning techniques, 

followed by a thorough evaluation of model performance. 

Finally, Section 9 concludes the paper by summarizing key 

findings, discussing limitations, and suggesting future 
research directions. 

2. Literature Review  
Recently, various techniques have been developed for 

intelligent fault diagnosis in rotating machinery. While there 

has been considerable progress, achieving high accuracy in 

real-time monitoring and improving fault diagnosis systems 
remains challenging. This section reviews key developments 

in machine fault diagnosis, focusing on using deep learning 

algorithms such as MLP, CNN, RNN, and LSTM, which are 

essential to address the gaps. 

2.1. Review Related to the AI Model 

Numerous methods of machine condition monitoring are 

investigated by fault diagnosis researchers, which includes 

both direct and indirect methods. Direct methods like visual 

inspection, machine vision, and infra-red methodology are 

used to monitor the machine or machine tools, which will give 
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less accuracy than indirect methods [9]. Indirect methods 

include using signals like force, vibrations, acoustic emission, 

etc., in which the signal features have a relationship with fault 

conditions/parameters [10]. Rui Zhao et al. have surveyed 

deep learning and its application to machine health 

monitoring. He has reviewed 108 technical articles and 
concluded: “It is believed that deep learning will have more 

and more prospective future impacting machine health 

monitoring, especially in the age of big machinery data”. So, 

this survey indicates that deep learning can be used precisely 

to monitor tool wear, and the paper concluded that deep 

learning is a promising technique for assessing tool wear [11].  

Lang Dai developed an improved deep learning model for 

online tool condition monitoring using output power signals. 

The output power from the sensor, which is mounted on the 

cutting tool holder during its operation, is used for analysis. 

This data is analyzed using Wider first-layer kernels 

(WCONV) and Long Short-Term Memory (LSTM) available 
in the deep learning algorithms. The weakness of the paper is 

addressing the output power signal. This paper focuses more 

on the output power signals and its analysis of deep learning 

algorithms, which needs more study on the condition 

monitoring of the tool [12]. Qun wang et al. have done an 

overview of tool wear monitoring methods based on CNN. 

The authors concluded that applying CNN in tool wear and 

condition monitoring is feasible and reliable. They have added 

that CNN can improve prediction accuracy [13].  

CNN, coming under deep learning, are a typical data-

driven fault diagnosis method that extracts features from 
images using convolutional layers and then pools and fully 

connects layers for tasks like image classification [14]. In 

condition monitoring, researchers have applied CNNs to 

diagnose faults in rotating machinery. Janssens et al. proposed 

a feature learning model for condition monitoring based on 

CNN [15]. Yao et al. used sound signals predicted using an 

acoustic emission sensor. They used CNN based on a 

multiscale dialog learning structure and attention mechanisms 

for gear fault prediction [16].  

Zhang, W et al. applied Deep Convolutional Neural 

Networks (DCNN) for bearing fault diagnosis under different 

operating loads [17].  Abdelmaksoud M et al. proposed a CNN 
model to diagnose induction motor faults at the motor’s 

starting time. The model detects faults, such as locked rotor, 

overload, voltage imbalance, overvoltage, and Undervoltage, 

under three loading levels: light, regular, and heavy. The 

authors concluded that DCNN is an effective tool for 

diagnosing multi-signal induction motor faults at its starting 

period with different versions of datasets [18].  

2.2. Review Related to MLP 

Marwala, T. used MLP for condition monitoring in a 

mechanical system. This paper uses MLP to identify false 

information in a population of cylindrical shells [19]. Zanic, 

D. and Zuban, A. discussed the monitoring of transformers 

using the MLP machine learning model. This paper describes 

the multilayer perceptron class of artificial intelligence to 

predict the temperature in a transformer by giving three input 

features in MLP (oil temperature, winding current, and outside 

temperature) [20]. The conventional MLP has been applied in 
machine health condition monitoring for many years [11].  

Nguyen, V.Q et al. applied the MLP mixer model for 

bearing fault diagnosis. The authors concluded that the 

evaluation results show that the proposed MLP mixer model 

obtains high accuracy when the number of training samples is 

reduced. The authors added that the performance of the 

proposed model, when compared with other states of the art, 

proved the advantages of the MLP approach [21]. Tarek K et 

al. proposed an optimized multi-layer perceptron for fault 

diagnosis of induction motors using vibration signals. The 

authors concluded that the obtained results show the capability 

of detecting faults in the induction motor under different 
operating conditions [22]. 

2.3. Review Related to CNN 

Neupane, D et al. discussed convolutionary neural 

network-based fault deduction for intelligent manufacturing. 

The result of this paper shows that one dimensional CNN is 

more efficient in terms of computational complexity for time 

series data [23]. With AI advancements, researchers without 

expertise can solve fault identification problems with bearings 

and gearboxes [24]. Artificial neural networks, support vector 

machines, particle filters [25], and extreme learning machines 

[26] were used to extract the failure features from the signals. 
Deep learning algorithms have recently been applied in 

rotating machine fault diagnosis due to their nonlinear 

regression ability [26].  

Some of these are Convolution Neural Networks [27, 28], 

Recurrent Neural Networks [29], Deep encoders, and 

Generative Adversarial Networks [30]. Nonlinearities are 

common in real-world time series data [31], making applying 

conventional prediction techniques complex [32]. To address 

this issue, advanced techniques such as CNN, LSTM, and 

quantile regression were applied to predict failures. One-

dimensional convolutional neural network is utilized for time 

series prediction [33].  

Zhang et al. stated that higher accuracy is achieved using 

DNN for time sequence prediction [34]. Ruan, D et al. used 

CNN for bearing fault detection by giving fault periods under 

different fault types, and shaft rotation frequency was used to 

determine the size of CNN’s input. In the paper, the authors 

confirmed that Physics-Guided CNN (PGCNN) with 

a rectangular convolution kernel works better than the baseline 

CNN with more accuracy and less certainty [35]. Kothuru A. 

et al. applied a deep visualization technique to gain knowledge 

on the inner workings of the deep learning models in tool wear 

prediction for end milling. The authors concluded that the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/overvoltage
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CNN model focuses more on the signal’s frequency features 

than the features concerning the time period of the signal [36]. 

However, CNN suffers from the weakness of not considering 

the imbalanced distribution of machinery health conditions, 

and what CNNs have learned in predicting fault diagnosis is 

unclear. Jia F et al. suggested a framework called Deep 
Normalized Convolutional Neural Network (DNCNN) for 

imbalanced fault classification of machinery to overcome the 

first weakness. He proposed a Neuron Activation 

Maximization (NAM) algorithm to handle the weakness of 

what CNNs have learned in predicting fault diagnosis [37].  

2.4. Review Related to RNN and LSTM 

Elman’s RNN is used by Serhat Seker et al. for condition 

monitoring in nuclear power plants and rotating machining. 

The first part of this work is a prediction of anomalies in gas-

cooled nuclear reactors. The second part is detecting motor 

bearing damage in induction motors [38]. Halliday C et al. 

applied RNN for condition monitoring and predictive 
maintenance of pressure vessel components. The authors 

found that RNN is well suited to tackle the shortfalls in RNN-

Residual Order Models (ROM) [39]. Swetha R Kumar and 

Jayaprasanth Devakumar used RNN with ten hidden neurons 

to estimate state variables with the inputs and outputs of the 

process. The authors studied the effectiveness of RNN in fault 

detection and isolation for different scenarios of sensor output, 

such as drift, erratic, hard-over, spike, and stuck [40].  

Yahui Zhang et al. proposed a Gated Recurrent Unit 

(GRU) and MLP-based model for fault diagnosis to detect 

fault types.  This work converts one-dimensional time-series 
vibration signals into two-dimensional images in the first 

phase. Then, GRU is introduced to exploit sequential 

information of time-series data and learn representative 

features from constructed images. Then, MLP is used to 

implement fault recognition. The results show that the 

proposed method gives the best result on two public datasets 

compared with existing work and shows robustness against 

the noise [41]. 

Zhuang Ye and Jianbo Yu applied LSTM units to capture 

sequential information from multi-sensor time series data. The 

authors used convolution calculation for noise reduction and 

feature extraction. Ultimately, the Health Index (HI) is 
generated based on reconstruction errors in run-to-fail data 

[42]. Zhao, H, Sun, S and Jin, B applied LSTM neural 

network-based fault diagnosis and indicated that LSTM can 

directly classify the raw process data without specific feature 

extraction and classifier design. This work evaluates LSTM to 

fault identification and analysis in the Tennessee Eastman 

benchmark process. The authors used LSTM to capture 

sequential information from multi-sensor time series data. 

This work uses convolution calculation for noise reduction 

and feature extraction. Multivariate Gaussian distribution 

generates a health index based on reconstruction errors of long 
short-term memory convolutional auto-encoder [43]. Afridi, 

Y.S. et al. have developed a fault prognostic system using 

LSTM for rolling element bearing because of the vital 

component involved and the highest fault diagnosis [44]. So, 

Deep learning architectures include deep belief networks, 

MLP, Autoencoder (AE), CNN, and RNN [45]. With the rapid 

development of DL techniques in recent years, many new 
architectures have been proposed and introduced into 

intelligent industrial fault diagnosis tasks. Similarly, CNN is 

prospering again due to recent progress in computer vision and 

enhanced visualization techniques [46]. 

The literature review demonstrates that while deep 

learning algorithms, particularly MLP, CNN, RNN, and 

LSTM, have shown promising results in intelligent fault 

diagnosis, challenges such as handling data imbalance 
generalization to different machine conditions and real-time 

fault diagnosis persist. This study aims to address these 

challenges by comparing the performance of these algorithms, 

which contribute to developing a more robust fault diagnosis 

system for rotating machinery. 

3. Spectra Quest Machinery Fault Simulator - 

An Overview 
In this research work, the Spectra Quest Machinery Fault 

Simulator (SQMFS) is utilized to simulate both balanced and 
imbalanced conditions of a rotary shaft. The Machine Fault 

Simulator (MFS) is a highly versatile and modular test 

platform designed to facilitate the study and simulation of 

various mechanical faults in rotating machinery. It is 

extensively used in academia, industry training, and research 

to provide a controlled environment for replicating real-world 

fault conditions, enabling comprehensive analysis and 

predictive maintenance. The simulator allows for the 

monitoring and analysis of fault conditions, providing 

valuable insights into vibration analysis and fault diagnostics 

[47]. Figure 1 shows the photograph of SQMFS with the 

critical components involved in it. 

The heart of the MFS is the motor-driven shaft, the 

primary rotating element where faults can be introduced and 

studied. The motor allows for variable speed control, which is 

crucial for observing the mechanical behavior of the system 

under different operating conditions. Precise speed 

adjustments enable examining how faults manifest across 

various frequencies and loads, providing a comprehensive 

understanding of the system’s dynamics. 

The MFS includes multiple adjustable disks, and 

couplings mounted onto the shaft. These components are 

specifically designed with various tapped holes to 
accommodate the attachment of screws, weights, and other 

accessories. This flexibility is vital for simulating fault 

conditions, such as unbalance, misalignment, or looseness. 

For instance, introducing an imbalance involves 

asymmetrically adding weights to the disks, which leads to 

uneven mass distribution and the characteristic vibration 
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patterns of unbalanced systems. Strategically placed tapped 

holes on the disks allow for the precise positioning of weights, 

enabling the controlled introduction of imbalances. By 

varying the size and placement of these weights, researchers 

can replicate a wide range of imbalance severities, from mild 

to extreme, providing insights into the effects of different 
levels of imbalance on machine behavior. These couplings 

connect various rotating components and can be adjusted to 

introduce misalignments and common faults in rotating 

machinery. This feature is essential for simulating both 

angular and parallel misalignments, which can cause 

significant changes in vibration patterns and lead to 

mechanical failure if left undetected. 

 

 

 

 

 

 

 

 

 

Fig. 1 Key components and structure of MFS [40] 

The shaft is supported by high-precision bearings that 

ensure smooth rotation while also allowing for the 

introduction of bearing faults. The MFS’s support structure is 

designed to be sturdy and minimize external vibrations that 

could interfere with the data, ensuring that observed faults are 

due solely to the simulated conditions. The MFS has various 
sensors, such as accelerometers, proximity probes, and load 

cells, to monitor vibrations, forces, and rotational speeds. 

These sensors are strategically placed to capture the data 

required for fault analysis. The placement of these sensors is 

configurable, allowing for targeted measurements aligned 

with the specific fault being studied. 

 Accelerometers: These sensors, typically mounted on or 

near the shaft, measure radial and axial vibrations. They 

are susceptible to changes in vibration patterns, making 

them ideal for detecting imbalances and misalignments 

[48]. 

 Proximity Probes: Non-contact sensors that measure shaft 
displacement are critical for studying shaft misalignment 

and eccentricity. 

The setup incorporates several critical components, 

including a motor-driven shaft, adjustable disks, a Lenze 

controller, and a data acquisition system to facilitate accurate 

data collection and analysis. Before each test, the system is 

configured to simulate the specific fault condition under study. 

For example, weights are attached to the rotor disks at 

predetermined locations to examine imbalance. The motor 

speed, managed by the Lenze Controller, is set to the desired 
level, ranging from low speeds (to observe subtle faults) to 

high speeds (to assess fault severity under real-world 

conditions). 

When the shaft rotates, the faults generate vibrations 

captured by the attached accelerometer. In imbalance studies, 

uneven mass distribution causes centrifugal forces that result 

in periodic vibrations, exhibiting frequency spikes in the 

spectrum analysis. The sensors provide real-time data on these 

vibrations, allowing researchers to identify fault 

characteristics. 

The MFS is integrated with a Lenze Controller, which 

provides precise control over motor speeds and torque during 
the simulation. This controller enables real-time adjustments 

of motor parameters such as speed, acceleration, and torque 

limits,        which are essential for accurately replicating 

various fault conditions. The fine control provided by the 

Lenze Controller enhances the reliability and repeatability of 

fault simulations. 

4. Experimental Setup of Unbalancing in 

Machine Fault Simulator 
Figures 2 and 3 show the complete experimental setup of 

the Machinery Fault Simulator. As seen on the left in Figure 

2, a computer monitor displaying the LabVIEW interface is 

used for data acquisition and analysis. In the center, there is a 

blue Lenze Controller responsible for precise motor speed 
control. The MFS on the right is enclosed in a transparent 

safety case. This setup allows for safe operation while 

providing clear visibility of the rotating components during 

experiments. 

 
Fig. 2 Integration of MFS with LabVIEW software 
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Fig. 3 MFS with weights on the discs create an imbalance 

This close-up image of the MFS rotor provides a detailed 

view of the critical components. The motor-driven shaft, 

adjustable disks with tapped holes for attaching weights, and 

the accelerometer mounted capture vibration data. The golden 

disk on the shaft is one of the adjustable disks for introducing 

imbalance (Figure 3). This configuration allows for precise 

control over the introduction of faults and the measurement of 
resulting vibrations. The data acquisition system, consisting of 

components like the National Instruments (NI) cDAQ-9174 

(Figure 4(a)) chassis and NI modules, captures vibration, 

displacement, and speed data from the sensors. The 

NIcDAQ9174 is a modular chassis that serves as the central 

data acquisition hub, with slots for various C Series I/O 

modules, such as the NI 9234 module (Figure 4(b)) for high-

precision dynamic signal acquisition.  

The accelerometer, strategically mounted on the rotary 

shaft, measures radial and axial vibration data. The collected 

data is transmitted to specialized software like LabVIEW for 
visualization, allowing researchers to interpret and diagnose 

fault conditions accurately. The NI 9234 module, inserted into 

one of the slots of the DAQ-9174 chassis, is designed 

explicitly for high-precision dynamic signal acquisition. It 

features four analog input channels with built-in anti-aliasing 

filters, capable of sampling up to 51.2 kS/s per channel. This 

module is essential for capturing subtle variations in vibration 

patterns and detecting early signs of mechanical faults. It 

supports many sensor types, including accelerometers, 

making it suitable for vibration analysis in rotating machinery.  

  
(a)  

 
(b) 

Fig. 4 (a) Data acquisition components (NI Cdaq9174), and 

(b)NI 9234 – Signal conditioning device 

The accelerometer captures both radial and axial vibration 

data, providing insights into the dynamic behavior of the shaft 

under balanced and imbalanced conditions. The vertical 

placement of the accelerometer is strategic, as it enhances 

sensitivity to vibrations caused by imbalances, thereby 

improving fault detection accuracy, as shown in Figure 5. 

 
Fig. 5 Vertical mounting of the accelerometer on the rotating shaft 

This integrated experimental setup enables in-depth 

analysis and understanding of machine behavior under 

simulated fault conditions, enhancing the reliability of fault 

detection methods and contributing to developing more robust 

machinery monitoring systems. 

5. Data Collection and Signal Pre-processing 
The experimental analysis focused on two primary 

operating conditions of the rotary shaft:  

 Balanced Condition   

 Imbalanced Condition  

These conditions were carefully established to study the 

effects of imbalance on the dynamic behavior of rotating 

machinery, thereby providing critical insights for developing 

diagnostic tools. 

5.1. Balancing Condition in MFS  
Balancing plays a crucial role in operating the MFS, 

particularly when examining the effects of imbalance on 

Weight 
Accelerometer 
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machinery health. Balancing ensures uniform mass 

distribution in rotating components, minimizing vibration, 

reducing bearing wear, and enhancing overall machinery 

performance. The MFS facilitates the study of these effects by 

allowing users to adjust the balance state of the shafts and 

observe the resulting changes in machine behavior. The MFS 
uses an accelerometer to capture frequency and time-domain 

data, providing real-time insights into the impact of imbalance 

conditions. Weights are added or removed to the shaft disks to 

simulate unbalanced scenarios, replicating real-world 

situations like unbalanced rotors. This setup enables the 

detailed study of vibration patterns and highlights the 

significance of balancing in rotating machinery. 

The rotary shaft was operated without additional weights 

or defects in the balanced condition. This state represented a 

perfectly balanced system, where the shaft’s mass was 

uniformly distributed across its entire length. By operating the 

machinery under this condition, baseline vibration data was 
collected. This baseline data served as a critical reference 

point for all subsequent analyses, providing a standard against 

which the effects of various imbalances could be measured. 

Critical aspects of the balanced condition include: 

 No added weights or defects: Ensuring that no external 

weights, screws, or other defects were present on the 

rotary shaft, resulting in minimal vibration levels. 

 Uniform mass distribution: The rotary shaft’s weight was 

evenly distributed along its axis, resulting in smooth 

operation with low amplitude vibrations. 

 Data collection as a baseline: Vibration data collected 

under these conditions provided a control sample, 

essential for differentiating between normal operational 

vibrations and those caused by faults or imbalances. 

Balancing condition monitoring is essential in fault 

diagnosis to compare with the unbalanced condition dataset. 

5.2. Unbalancing Condition in MFS 

To simulate real-world conditions, an imbalanced 

condition was introduced by adding screws and weights of 

varying magnitudes to the rotary shaft disks on both the left 

and right sections. The controlled introduction of these 

weights was designed to replicate common mechanical faults, 

such as unbalance, often encountered in rotating machinery. 

Critical aspects of the imbalanced condition include: 

 Addition of Weights: Controlled weights, ranging from 

light screws to heavier attachments, were mounted on one 
side of the rotary shaft disks to create an intentional 

imbalance. This allowed for the simulation of different 

fault magnitudes, from minor to severe.  

 Variable Weight Magnitudes: Different levels of 

imbalance were achieved by varying the magnitude and 

distribution of the weights, enabling the study of their 

effects on vibration patterns and machine behavior. 

As for the experiment, 18 different weights were taken, as 

shown in Table 1, and were placed randomly in either the right 

or left rotary shaft. The added weights generated distinct 

vibration signatures in the data, particularly at specific 
harmonic frequencies. These signatures were analyzed to 

determine how imbalances influenced the machine’s 

operational dynamics. 

Table 1. Sample weights used for the experiment 

Sample No. Weight Sample No. Weight Sample No. Weight Sample No. Weight 

1 4.34gm 6 5.86gm 11 4.91gm 16 9.29gm 

2 4.93gm 7 4.38gm 12 5.48gm 17 11.03gm 

3 5.56gm 8 4.37gm 13 9.25gm 18 8.74gm 

4 5.55gm 9 4.49gm 14 10.2gm   

5 4.93gm 10 4.36gm 15 10.05gm   

In the signal collection method, National Instruments’ 

LabVIEW was used to visualize the accelerometer data in 
real-time by collecting both time and frequency-domain data 

were collected using the National Instruments devices. 

Laboratory Virtual Instrumentation Engineering Workbench 

(LabVIEW) is an Instrumentation software in which the 

acquired signal/data can be stored and analyzed. The motor 

was operated at 30 HZ and had a gear or shaft frequency of 

216 HZ to collect the data. Once the motor stabilized at 30Hz, 

data acquisition is started. This setup ensured that the data 

collected was representative and consistent, enhancing the 

reliability of further analysis. This visual representation helps 

us understand the complete data flow from acquisition to 

storage, highlighting the parallel processing of time and 
frequency domain data. Baseline data was recorded from a 

balanced system with no added weights, as shown in Figures 

6 and 7. In the imbalance condition, screws of different 

weights were added to the rotary shaft disks to simulate 

various levels of imbalance, and the signals were collected, 

which are shown in Figures 8 and 9. Both frequency-domain 

and time-domain acceleration data were captured during each 

test run. This approach provided a comprehensive dataset for 

analysis, focusing on capturing the effects of imbalances 

through systematic simulations. In this experiment, the focus 
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was exclusively on frequency-domain data to detect shaft 

imbalances in rotating machinery. This decision was driven by 

the superior ability of frequency-specific responses to indicate 

shaft imbalances compared to time-domain analysis. 

Imbalances in rotating machinery manifest as distinct peaks 

and harmonics within specific frequency ranges, making 
frequency-domain analysis particularly effective at capturing 

these characteristics. Analyzing the frequency domain, critical 

features such as resonant frequencies and harmonic distortions 

directly linked to mechanical imbalances are isolated. This 

offers a more precise diagnosis than time-domain analysis 

alone, as noted by Nossier et al. [49]. Frequency-domain 

analysis is a well-established mechanical fault detection 

method supported by theoretical research and practical 

applications. Yi et al. highlighted its effectiveness in isolating 

vibration signals corresponding to specific fault frequencies, 

often indicative of the condition of rotating components. The 

inherently periodic nature of shaft vibrations makes 
frequency-domain analysis particularly suited for identifying 

imbalances in such systems [50]. As Mali et al. points out, this 

approach allows for a more targeted examination of the 

periodic behaviors that are hallmarks of shaft imbalances [51]. 

Furthermore, Hertel et al. demonstrated that this method 

emphasizes crucial frequency components related to 

imbalance, making the detection process more reliable and 
accurate under simulated conditions [52]. Acceleration data 

for frequencies ranging from 1 to 100 Hz for this experiment 

are collected. This dataset forms the basis for training the 

algorithms to distinguish between balanced and imbalanced 

conditions. While frequency-domain analysis offers 

significant advantages for detecting shaft imbalances, it is 

important to note its limitations. Focusing solely on 

frequency-domain data may miss transient or dynamic 

features of imbalances that time-domain or wavelet analysis 

could capture. In practical applications where conditions 

change rapidly, additional analysis techniques might be 

required for a comprehensive diagnosis, as suggested by Yan 
[53].  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Fig. 6 Frequency domain chart for balanced data 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 7 Time domain chart for balanced data 
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Fig. 8 Frequency domain chart for imbalanced data 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
Fig. 9 Time domain chart for imbalanced data 

This comprehensive setup and data collection process 
provides a solid foundation for applying deep learning 

techniques to condition monitoring. By leveraging the 

strengths of frequency-domain analysis, the aim was to 

develop more accurate and reliable diagnostic models for 

rotating machinery. The nature of shaft vibrations is inherently 

periodic, and frequency-domain analysis directly targets this 

periodicity, making it the preferred choice for identifying 

imbalances in such systems. This dataset, designed for a 

condition monitoring task, contains 110 entries across 102 

columns. It includes 101 numerical features (F1 to F101), 

likely indicative of various measurements relevant to the 

monitoring process.  

The numerical features exhibit low mean values, 

suggesting that the data has likely been standardized or 

normalized. Although most features show low variability, 

some have higher standard deviations, indicating varying 

fluctuation levels in the monitored parameters. Kurtosis 

measures peakedness; hence, it is a fine indicator of signal 
impulsiveness in fault detection for rotating components, 

especially for drill bits. Kurtosis is expressed as, 

kurtosis (x) = (E {(x-µ)/ σ 4) – 3     (1) 

Where µ = mean of time series x 

σ = standard deviation of time series x 

E{.} is the expectation operation 

The minus 3 is to make kurtosis of the normal distribution 

of the normal distribution equal to zero. 

So, kurtosis analysis reveals diverse distribution 

characteristics among the features. For example, features like 
F1 to F4 have extremely high kurtosis values, potentially 

indicating the presence of outliers or rare events. In contrast, 

F97, F98, F100, and F101 exhibit negative kurtosis, implying 

a more consistent and flat distribution. 
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The collected data underwent several pre-processing 

steps to prepare it for input into the deep learning models. 

These steps ensured that the models received data in a format 

conducive to effective learning. Many research papers use 

signal pre-processing techniques, such as discrete wavelet 

transform, wavelet packet transform, etc., before 
implementing ML and DL algorithms. In this work, it is not 

mandatory due to the following reasons. 

 Direct Feature Extraction: The raw data’s inherent 

characteristics are sufficient for the deep learning models 

to learn and detect anomalies without additional pre-

processing. 

 Model Robustness: Modern deep learning models are 

robust enough to handle raw data, reducing the need for 

extensive pre-processing. 

 Computational Efficiency: Avoiding complex pre-

processing steps can save computational resources and 
time, making the monitoring system more efficient. 

6. Data Pre-Processing 
The collected data underwent several pre-processing 

steps to prepare it for input into the deep learning models, 

ensuring that the models received data in a format conducive 

to effective learning, as shown in Table 2. While many 

research papers use signal pre-processing techniques such as 
discrete wavelet transform and wavelet packet transform 

before implementing machine learning and deep learning 

algorithms [41], this work found it unnecessary for several 

reasons.  

Firstly, the raw data’s inherent characteristics were 

sufficient for the deep learning models to learn and detect 

anomalies without additional pre-processing. Secondly, 

modern deep-learning models are robust enough to handle raw 

data, reducing the need for extensive pre-processing [54]. 

Lastly, avoiding complex pre-processing steps can save 

computational resources and time, making the monitoring 

system more efficient. 

6.1. Sampling Strategy to Balance Classes 

Given the potential imbalance in the data, a sampling 

strategy was implemented to balance the dataset. This 

involved oversampling the minority class to ensure the deep 

learning models received a balanced dataset. This approach is 

crucial in preventing the models from becoming biased toward 

the majority class, leading to more accurate and generalizable 

predictions. 

6.2. Shuffling 

The dataset was shuffled to randomize the order of the 

data points. This step prevents the models from learning any 

order-based biases, which could lead to overfitting and poor 
generalization of new data. 

6.3. Standardization 

Features were standardized using Standard Scaler, a pre-

processing technique that transforms the data such that each 

feature has a mean of 0 and a standard deviation of 1. This 

process is vital for deep learning models, as it ensures that all 

features contribute equally to the learning process, avoiding 
biases toward features with more extensive numerical ranges. 

6.4. Reshaping 

The data was reshaped to match the input requirements of 

different deep-learning models. For instance: 

 MLP: The data was formatted into 2D arrays where each 

row represents a sample, and each column represents a 

feature. 

 CNN and LSTM: The data was reshaped into 3D arrays, 

with dimensions corresponding to the number of samples, 

timesteps, and features. This reshaping is crucial for 

CNNs and LSTMs to process spatial and temporal 

patterns effectively. 

Table 2. Final dataset after balancing the classes or types 

 F1 F2 F3 F4 F5 … F98 F99 F100 F101 Type 

0 0.004744 0.003381 0.000049 0.000010 0.000021 … 0.000048 0.000007 0.000019 0.000050 Balanced 

1 0.007321 0.005198 0.000182 0.000145 0.000149 … 0.000141 0.000171 0.000690 0.001385 Balanced 

2 0.005246 0.003740 0.000084 0.000055 0.000030 … 0.000017 0.000017 0.000037 0.000055 Balanced 

3 0.007143 0.005072 0.000056 0.000129 0.000120 … 0.000175 0.000081 0.000673 0.001540 Balanced 

4 0.005172 0.003660 0.000065 0.000044 0.000034 … 0.000033 0.000027 0.000025 0.000048 Balanced 

… … … … … … … … … … … … 

195 0.005098 0.003610 0.000041 0.000030 0.000025 … 0.000040 0.000017 0.000032 0.000053 Balanced 

196 0.007185 0.005023 0.000079 0.000042 0.000086 … 0.000071 0.000142 0.000527 0.001304 Balanced 

197 0.007388 0.005169 0.000173 0.000168 0.000096 … 0.000171 0.000173 0.000702 0.001523 Balanced 

198 0.008096 0.005748 0.000186 0.000234 0.000286 … 0.000326 0.000223 0.001016 0.001922 Imbalanced 

199 0.007111 0.005128 0.000217 0.000289 0.000254 … 0.000300 0.000158 0.000691 0.001426 Imbalanced 
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6.5. Data Augmentation via Duplication 

To increase the dataset’s size and improve model 

robustness, the data was duplicated two times and four times 

in separate experiments. This duplication aimed to give the 

models more examples, helping them generalize better to 

unseen data. However, care was taken to ensure this 
augmentation did not introduce redundancy that could lead to 

overfitting, especially in models like LSTM. 

7. Application of Deep Learning in Condition 

Monitoring 
Deep learning is a machine learning branch involving 

neural networks with multiple layers. It enables the automatic 

extraction of complex patterns and features from large 

datasets. These models learn representations directly from raw 

data through layers of interconnected neurons, making them 

robust for tasks that involve classification, prediction, and 

pattern recognition [55]. 

This project used deep learning to analyze frequency-

domain data from a rotary shaft for condition monitoring. 

Deep learning models allowed for automatically detecting 
imbalances and other faults in the machinery without manual 

feature engineering. By leveraging deep learning’s ability to 

handle complex, nonlinear data, the models effectively 

differentiated between balanced and imbalanced states, 

demonstrating the practical application of these techniques in 

monitoring conditions based on frequency-domain signals. 

Rationale for Algorithm Selection 

The multilayer perceptron, convolution neural network, 

recurrent neural network, and long short-term memory models 

were selected based on their unique strengths in rotating 

machinery fault diagnosis. MLP is known for its robustness in 
structured data scenarios; CNN excels in spatial feature 

extraction, making it suitable for vibration analysis. RNN and 

LSTM are particularly effective for temporal sequences, 

which are essential for understanding dynamic operational 

states. 

7.1. Multilayer Perceptron 

MLP is a feedforward artificial neural network consisting 

of at least three layers of nodes: an input layer, one or more 

hidden layers, and an output layer. Each node, or artificial 

neuron, in one layer is connected to every node in the next 

layer with an associated weight. These weights are adjusted 
during training using backpropagation, a supervised learning 

technique that minimizes the error between the predicted and 

actual outputs [56]. 

A connection between two nodes is assigned a weight 

value representing their relationship, as shown in Figure 10. A 

hierarchical connection has a weight property, and the node 

function can perform summation and activation operations. 

The summation function is:  

𝑆𝑗 = ∑ 𝑤𝑖,𝑗
𝑛
𝑖=1 𝐼𝑖 + 𝛽𝑗                          (2) 

Where, 𝑛 is the amount of input data, 𝐼𝑖 is the input data, 

𝛽𝑗Is the deviation and 𝑤𝑖,𝑗 is the connection weight. 

The output is obtained in the hidden layer using the 

activation function as, 

𝑓𝑗(𝑥) =
1

1+𝑒
−𝑠𝑗

                   (3) 

The output of the output layer cell in the MLP can be 
obtained by combining Equations (2) and (3), 

𝑦𝑖 = 𝑓𝑗(∑  𝑛
𝑖=1  𝑤𝑖,𝑗𝐼𝑖 + 𝛽𝑗)             (4) 

MLPs are particularly effective for tasks where the 

relationship between input features and output labels is 

complex but does not involve spatial or temporal 
dependencies. They are widely used in pattern recognition, 

classification, and regression [57]. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 10 Multilayer perceptron [56] 

7.2. Convolutional Neural Network 

CNN is a deep neural network designed to process data 
with a grid-like structure, such as images. CNNs utilize 

convolutional layers that filter the input data, identifying local 

patterns like edges and textures. These features are then 

aggregated and classified by fully connected layers. CNNs are 

highly effective in image recognition tasks because they can 

capture spatial hierarchies in data [58]. These networks have 

revolutionized computer vision tasks, achieving 

unprecedented performance in image classification, object 

detection, and various signal processing applications [59]. 

At the heart of CNNs lies the convolution operation, from 

which they derive their name, as shown in Figure 11. This 

mathematical operation enables the network to capture local 
patterns and spatial hierarchies within input data. In the 

context of image processing, the discrete convolution 

operation can be expressed as: 

Input Layer Hidden Layer Output Layer 
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𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) (4) 

Where: 

S (i, j) is the output of the convolution operation at 

position (i, j). 

I is the input matrix. 
K is the kernel (filter) matrix. 

(i, j) are the coordinates of the output matrix. 

(m, n) are the coordinates of the input matrix. 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 11 Simple CNN architecture [54] 

Equation (4) represents the convolution operation, where 

the kernel (K) is applied to the input (I) to produce the output 

(S). For each position (i, j) in the output matrix, the value is 

computed by summing the products of the overlapping 

elements of the input matrix and the kernel [60]. 

The architecture of a CNN typically comprises several 

specialized layers: Convolutional layers apply filters to the 

input data, detecting local patterns. Activation layers 

introduce nonlinearity. A common activation function is the 
Rectified Linear Unit (ReLU): The mathematical equation of 

CNN pooling, classification, and weight update rule is given 

in Equations (5), (6), (7), and (8). 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)(2)    (5) 

Pooling layers reduce spatial dimensions. Max pooling, a 

common operation, can be expressed as: 

𝑦𝑖𝑗 = 𝑚𝑎𝑥((𝑝, 𝑞) ∈ 𝑅𝑖𝑗)𝑥𝑝𝑞           (6) 

R_i,j represents a local neighborhood around position (i,j) 

[61]. 

Fully connected layers perform final classification based 

on extracted features: 

𝑦 = 𝜎(∑  𝑖 𝑤𝑖𝑃𝑖 + 𝑏)         (7) 

Here,𝜎 is an activation function, 𝑤𝑖  are weights, 𝑥𝑖  Re 

inputs, and b is a biased term. 

The learning process in CNNs is facilitated by 

backpropagation, adjusting network parameters to minimize 

error. The weight update rule can be expressed as: 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
                (8) 

Where, 𝜂 is the learning rate, and E is the error function 

[59]. 

CNNs offer several advantages over traditional neural 

networks in image processing tasks. They employ parameter 

sharing and local connectivity, significantly reducing the 

number of learnable parameters. Combined with translation 

invariance, these properties make CNNs exceptionally 

effective in capturing spatial hierarchies in visual data [55]. 

The power of CNNs lies in their ability to learn hierarchical 
representations automatically. As data progresses through the 

network, it transforms from raw pixel values to increasingly 

abstract features. This hierarchical learning enables CNNs to 

capture intricate patterns within images, often surpassing 

human-level accuracy in specific visual recognition tasks [61]. 

CNNs represent a significant advancement in machine 

learning and artificial intelligence, particularly in computer 

vision. Their unique architecture, built upon convolution and 

nonlinear activations, enables effective processing of grid-like 

data structures. As research progresses, CNNs continue to 

shape the future of AI and its applications across various 

domains. 

7.3. Recurrent Neural Network 

Recurrent Neural Networks (RNNs) are a class of neural 

networks where connections between nodes form a directed 

graph along a sequence, allowing them to maintain a memory 

of previous inputs. This means that RNN is a special artificial 

neural network adapted to work with time series or data 

involving sequences. RNN can be used for Language 

translation, Speech recognition, Time series forecasting, Text 

generation, Sentiment analysis, etc. 

 

 

 

 

 

 

 

Fig. 12 RNN graphical model 
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In Figure 12, the values of θi, θh, and θo represent the 

parameters associated with the inputs, previous hidden layer 

states, and outputs. Equations (9) and (10) define how an RNN 

evolves over time. 

 Ot = f ( ht;θ) (9) 

 ht =g (ht-1,xt;θ) (10) 

Where Ot is the output of the RNN at time t, xt is the input 

to the RNN at time t, and ℎt is the state of the hidden layer(s) 

at time t. The image in Figure 12 shows a simple graphical 

model to illustrate the relation between these three variables 

in an RNN’s computation graph. 

Equation (9) says that for the given parameter 𝜃, the 

output at the time 𝑡, depends on the hidden layer at the time 𝑡, 
in the feed forward neural network. Equation (10) says that, 

for the given parameters, 𝜃, the hidden layer at time 𝑡 depends 

on the hidden layer at time 𝑡 − 1 and the input at time 𝑡. 
Equation (10) demonstrates that the RNN can remember its 

past by allowing set computations ℎ𝑡−1 to influence the 

present computations ℎ𝑡.  

The aim of training the RNN is to get the sequence 𝑜𝑡+𝜏  

to match the sequence 𝑦𝑡, where 𝜏 represents the time lag (that 

y= 0 ) between the first meaningful RNN output 𝑜𝜏+1 and the 

first target output 𝑦𝑡. A time lag is sometimes introduced to 

allow the reach of an informal hidden state ℎ  𝜏+1 before it 

starts producing elements of the output sequence [62]. 

7.4. Long Short-Term Memory 

Long Short-Term Memory (LSTM) units are a special 

RNN designed to capture long-term dependencies in 

sequential data by incorporating memory cells that store 

information across time steps. LSTMs overcome the 

vanishing gradient problem that affects standard RNNs, 

making them more effective in learning long-term 

dependencies [63]. LSTM has three gates: (i) Input Gate, (ii) 

Forget Gate, and (iii) Output Gate.  

Gates in LSTM are the sigmoid activation functions, 

which means the output value is between 0 and 1, in which 0 
means gates are blocked and 1 means gates are allowed. The 

gate comprises a sigmoid (𝜎) neural network layer. Equations 

(11), (12), and (13) are for the gates. 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)             (11) 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (12) 

𝑜𝑡=𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)          (13) 

𝑖𝑡 → represents the input gate. 

𝑓𝑡 → represents the forget gate. 

𝑜𝑡 → Represents the output gate. 

𝜎 → Represents a sigmoid function. 

𝑤𝑥 → Weight for the respective gate (𝑥) neurons. 

ℎ𝑡−1 → the the the the the the the Output of the 

previous lstm block (at timestamp −1 ). 

𝑥𝑡 → Input at current timestamp. 

𝑏𝑥 → Biases for the respective gates (𝑥). 
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Fig. 13 (a) LSTM Memory cell, and (b) Block of LSTM at any 

timestamp {t} [64]. 

Equation (11) tells what new information will be stored 

in the cell state. Equation (12) is for the forget gate, which 

throws the information away from the cell state. Equation (13) 

is the output gate, which activates the final output of the 

LSTM block at timestamp ‘t’, as shown in Figure 13. 

Equations (14), (15), and (16) are for the cell state, candidate 

cell state, and the final output, respectively. 

𝑐�̃� = tanh (𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)         (14) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃�     (15) 

ℎ𝑡=𝑜𝑡 ∗ tanh (𝑐𝑡)        (16) 

𝑐𝑡 → cell state(memory) at timestamp (𝑡). 
𝑐�̃� → represents a candidate for cell state at timestamp 

(𝑡). 
Note* others are the same as above. 
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The candidate is calculated to get the memory vector for 

the current timestamp (c_{t}). Now, the cell state knows what 

it needs to forget from the previous state (i.e. f_{t} * c_{t-1}) 

and what it needs to consider from the current timestamp (i.e. 

I_{t} * c`_{t}). Filtering in the cell state and then passing 

through the activation function predicts what portion should 
appear as the output of the current LSTM unit at timestamp t. 

Let us look at a block of LSTM at any timestamp {t}. h_{t} 

the output from the current LSTM block is passed through the 

softmax layer to get the predicted output(y_{t}) from the 

current block, as shown in Figure 13. 

LSTMs are particularly useful for tasks involving 

sequential data, such as time series forecasting, natural 

language processing, and speech recognition. Their ability to 

retain information over long periods makes them ideal for 

modeling sequences with essential order and duration of 

events [65]. 

7.5. Experimental Design for Deep Learning  
The following parameter settings were configured for 

each deep learning model applied in this study to optimize the 

performance. 

7.5.1. Multilayer Perceptron 

The MLP model is structured as follows: 

Input Layer: Accepts input with dimension X 

First Hidden Layer: 64 neurons with ReLU activation 

Second Hidden Layer: 32 neurons with ReLU activation 

Output Layer: 1 neuron with sigmoid activation 

MLP is a feedforward neural network with two hidden 

layers. It can be described mathematically as: 

Layer 1: h1=𝑅𝑒𝐿𝑈(𝑊1𝑥 + 𝑏1) 

Layer 2: h2=𝑅𝑒𝐿𝑈(𝑊2ℎ1 + 𝑏2) 

Output: y=𝜎(𝑊3ℎ2 + 𝑏3) 

Where, ReLU Activation: Rectified Linear Unit 𝑓(𝑥) =
max(0, 𝑥)is used in the hidden layers. ReLU helps mitigate 

the vanishing gradient problem and allows for faster training. 

Sigmoid Activation: The output layer uses the sigmoid 

function 𝜎(𝑥) = 1 + 𝑒 − 𝑥1, which maps the output to a 

probability between 0 and 1, suitable for binary classification 

tasks. 

Learning Rate: This is not explicitly specified in the code, 

but typically, the Adam optimizer with a default learning rate 

of 0.001 is used. 

7.5.2. Convolutional Neural Network 

The CNN architecture is structured as follows: 

Conv1D Layer: 64 filters, kernel size of 3, ReLU 

activation. 

MaxPooling1D Layer: Pool size of 2. 

Flatten Layer: Converts 2D feature maps to a 1D feature 

vector. 

Dense Layer: 64 neurons with ReLU activation. 

Output Layer: 1 neuron with sigmoid activation. 

The CNN applies convolution operations followed by 

pooling: 

Conv Layer: 𝑎 = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑥 + 𝑏), where * denotes 

convolution. 

Pooling: 𝑝 = max𝑝𝑜𝑜𝑙(𝑎) reduces spatial dimensions 

and provides translation invariance. 

Flatten: Converts the pooled features into a 1D vector 

f=flatten(p). 

Dense Layer: 𝑑 = 𝑅𝑒𝐿𝑈(𝑊1𝑓 + 𝑏1) 

Output: 𝑦 = 𝜎(𝑊2𝑑 + 𝑏2) 
Convolutional Layer: Applies 64 filters of size 3 to extract 

local features from the input sequence. 

Pooling Strategy: Max pooling with a size of 2 reduces 

the spatial dimensions and helps achieve translation 

invariance. 

Filter Sizes: The kernel size of 3 captures local patterns in 

the input data, which can be essential in sequence analysis. 

7.5.3. Recurrent Neural Network 

The RNN model consists of: 
SimpleRNN Layer: 64 units with tanh activation. 

Output Layer: 1 neuron with sigmoid activation. 

The SimpleRNN can be described as: 

ℎ𝑡 = tanℎ (𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ  

𝑦 = 𝜎(𝑊ℎ𝑦
ℎ𝑡 + 𝑏𝑦)  

Where: ℎ𝑡   is the hidden state at time t, and 𝑥𝑡  is the 

input at time t. 

RNN Type: Simple RNN. This architecture is known for 

its limitations in capturing long-term dependencies due to 

vanishing/exploding gradient problems. 

Hidden Units: 64 recurrent units in the RNN layer. 

Activation: tanh is used, which is standard for RNNs 

because it maintains better stability across long sequences 

compared to ReLU. 

7.5.4. Long Short-Term Memory 

The LSTM architecture is structured as follows: 

LSTM Layer: 64 units with tanh activation. 

Output Layer: 1 neuron with sigmoid activation. 

 LSTMs are designed to address the vanishing gradient 

problem by using memory cells and gating mechanisms. 

 64 LSTM units are stored and updated in the hidden state 
based on the input and past hidden state. 
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 tanh is used, which is the standard activation for LSTM 

units. It’s responsible for squashing values into the range 

[−1,1][-1, 1][−1,1] inside the LSTM cell and helps in 

handling long-term dependencies better. 

The performance of each model was evaluated using the 

following metrics: 

 Accuracy: Indicates the overall correctness of the model’s 

predictions. 

 Precision: Reflects the model’s ability to identify true 

positives among predicted positives. 

 Recall: Measures the model’s ability to detect all actual 

positives. 

 F1 score: Provides a balance between precision and recall, 

especially important in imbalanced datasets. 

Before delving into the detailed comparison of results, it 

is essential first to explain the rationale behind the 

experimental setup, which involves evaluating the models 
across three sections-one with the original data, one with 

doubled data, and one with quadrupled data.  

This structure is designed to assess how well different 

deep learning models MLP, CNN, RNN, and LSTM perform 

with varying data volumes, with the primary goals being to: 

 Evaluate Model Scalability: Testing with increased data 

allows us to observe how effectively each model scales as 

the dataset grows. Some models may perform better with 

small datasets but struggle as the data volume increases, 

while others might improve in performance with more 

data. 

 Analyse Generalization and Overfitting: By comparing 

the training and validation accuracy and loss across 

different dataset sizes, it can be identified whether a 

model is overfitting (performing well on training data but 
poorly on validation data) or generalizing well to new, 

unseen data. 

 Test Model Stability: Larger datasets can reduce the 

effect of noise and randomness, leading to smoother 

learning curves. This comparison helps determine which 

models remain stable and consistent under varying 

conditions. 

To assess the impact of data scaling on model 
performance, the dataset was processed in three distinct 

variations: original, doubled, and quadrupled. This approach 

allows us to evaluate how each model adapts as the complexity 

and volume of data increase: 

 Normal Data: This baseline comparison focuses on the 

model’s performance with the original dataset given in 

Table 5. The results provide insight into how well the 
model can learn patterns from the initial data 

configuration. 

 Doubled Data: The dataset is artificially increased by 

duplicating the data to simulate a scenario with more data 

available, as shown in Table 6. This approach simulates a 

scenario with more data, helping assess how model 

performance changes with larger datasets. 

 Quadrupled Data: Quadrupling the dataset given in Table 
7 tests the model’s behaviour under even more extensive 

data volumes. The results highlight whether the model 

continues to improve, stabilizes, or begins to exhibit 

issues such as overfitting. 

 

7.6. Observations on Model Performance across Scaled 

Datasets 

The following subsections break down the performance 

of each model based on different dataset scales: 

7.6.1. Model Performance for the Normal Dataset 

This subsection evaluates each model’s performance 
using the original dataset, focusing on critical metrics like 

accuracy, precision, recall, and F1-score, as shown in Table 3. 

Table 3. Model performance for normal dataset 

Model Accuracy Precision Recall F1-Score 

MLP 0.9 0.917391 0.9 0.899499 

CNN 0.95 0.954762 0.95 0.95 

RNN 0.575 0.646094 0.575 0.533908 

LSTM 0.45 0.453419 0.45 0.43312 

7.6.2. Model Performance for the Doubled Dataset 

In this section, the dataset is doubled to analyze whether 

the increased volume affected each model’s learning 

capability and generalization. The performance metrics are 

compared with the normal dataset to identify changes, as 

shown in Table 4. 

Table 4. Model performance for doubled dataset 

Model Accuracy Precision Recall F1-Score 

MLP_2 1.0 1.0 1.0 1.0 

CNN_2 0.9125 0.928618 0.9125 0.913573 

RNN_2 0.65 0.816102 0.65 0.634444 

LSTM_2 0.6375 0.812708 0.6375 0.619083 

7.6.3. Model Performance for the Quadrupled Dataset 

The dataset size was quadrupled to assess how each 

model handles a significant increase in data volume and 
complexity. The metrics given in Table 5 are reviewed to 

determine whether models can effectively scale and maintain 

robust performance. The comparative analysis highlights that 

models like MLP and CNN adapted well to data scaling, 

consistently maintaining high accuracy and stable learning, 

while RNN and LSTM struggled with larger datasets. The 
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ranking of the models based on their scalability and stability 

underscores the adaptability of specific models over others 

when faced with increasing data complexity. 

Table 5. Model performance for quadrupled dataset 

Model Accuracy Precision Recall F1-Score 

MLP_4 1.0 1.0 1.0 1.0 

CNN_4 0.98125 0.981944 0.98125 0.981252 

RNN_4 0.90625 0.921371 0.90625 0.905643 

LSTM_4 0.55 0.550312 0.55 0.55007 

 

7.7. Ranking the Performance of All AI Models  

This section ranks the models based on their overall 

performance across all datasets, considering the consistency 

of accuracy, precision, recall, and F1-score, as provided in 

Table 6.  

Table 6. DL algorithms ranked on performance 

Model Accuracy Precision Recall F1-Score 

MLP 0.9 0.917391 0.9 0.899499 

CNN 0.95 0.954762 0.95 0.95 

RNN 0.575 0.646094 0.575 0.533908 

LSTM 0.45 0.453419 0.45 0.43312 

MLP_2 1.0 1.0 1.0 1.0 

CNN_2 0.9125 0.928618 0.9125 0.913573 

RNN_2 0.65 0.816102 0.65 0.634444 

LSTM_2 0.6375 0.812708 0.6375 0.619083 

MLP_4 1.0 1.0 1.0 1.0 

CNN_4 0.98125 0.981944 0.98125 0.981252 

RNN_4 0.90625 0.921371 0.90625 0.905643 

LSTM_4 0.55 0.550312 0.55 0.55007 

8. Comparison between MLP, CNN, and RNN 

and its Analysis  
8.1. Multilayer Perceptron 

The MLP model consistently delivered near-perfect 

performance across all scaled datasets: normal, doubled, and 

quadrupled, as shown in Figures 14, 15 and 16. This 

consistency is reflected in the model’s high accuracy, 

precision, recall, and F1 score across all scales, making it the 
most reliable and stable model for this application. The 

accuracy curves demonstrate close alignment between 

training and validation sets, indicating strong learning 

capability with minimal overfitting. The loss curves decrease 

smoothly and converge closely in all three dataset variations, 

highlighting effective learning and robustness. Among the 

datasets, the quadrupled set performed best, achieving near-

perfect accuracy with smoothly converging loss curves, 

reinforcing the model’s scalable, stable performance capacity. 

8.2. Convolutional Neural Network 

The Convolutional Neural Network model performed 

exceptionally well across all scaled datasets, showing only 
slight variations in performance while maintaining vital 

accuracy and convergence, as shown in Figures 14, 15, and 

16.  

The CNN models demonstrated robust adaptability as 

data was scaled, with closely aligned training and validation 

accuracy curves that stabilized early across all datasets. This 

indicates strong generalization and effective learning. The loss 
curves consistently decreased and converged smoothly, 

reflecting minimal overfitting. The doubled dataset stood out 

as the best, with smooth accuracy and well-converged loss 

curves, striking an ideal balance between learning speed and 

stability. Notably, the CNN_4 model in the quadrupled dataset 

performed very closely to the MLP, showcasing CNN’s ability 

to maintain high performance under larger data volumes. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
Fig. 14 Training and validation metrics for normal dataset 
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Fig. 15 Training and validation metrics for doubled dataset 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 16 Training and validation metrics for the quadrupled dataset 

8.3. Recurrent Neural Network 

The Recurrent Neural Network model displayed 

fluctuating performance as data was scaled, with accuracy and 

generalization stability less consistent than the MLP and CNN 

models. While the RNN models performed reasonably well, 

they showed more variation between training and validation 

accuracy curves, mainly as dataset size increased. This 

fluctuation suggests that RNNs struggle to learn across 

different data volumes consistently.  

The loss curves for RNNs revealed greater volatility, 
indicating less stable learning, especially with larger datasets. 

Despite these challenges, the RNN models achieved decent 

alignment between training and validation curves, particularly 

in the quadrupled dataset, the best-performing set among the 

RNN models. Although capable, RNNs were less reliable in 

scaling effectively than simpler architectures like MLP and 

CNN. 

8.4. Long Short-Term Memory 

The Long Short-Term Memory models encountered the 

most difficulty when dealing with data scaling, with 

significant drops in accuracy, precision, recall, and F1-score 

as the dataset size increased. The models showed notable 

fluctuations in accuracy across all datasets, struggling to 

maintain stable learning and generalization. This issue was 

particularly pronounced in larger datasets, where the models 

had trouble capturing patterns effectively.  

The loss curves were highly erratic, featuring sharp 
spikes, especially in validation loss, signaling overfitting and 

poor generalization. The most problematic performance was 

observed in the quadrupled dataset, where the model exhibited 

highly unstable behavior with substantial variation in accuracy 

and loss, making it the weakest performer overall. This 

inconsistency indicates that LSTM models were the least 

reliable when scaling data in this experiment. 
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8.5. Factors Influencing Performance 

Understanding the reasons behind the performance 

variations among the models provides the following insights: 

 Data characteristics: MLP and CNN models are well 

suited for structured data with clear patterns that 

contribute to their high performance. RNN and LSTMs 

designed for sequential data struggled due to the nature of 

the dataset, which lacks temporal dependencies. 

 Model Complexity: The simplicity of MLP led to 

practical learning with minimal overfitting. Feature 

extraction from vibration data was better due to CNN’s 

convolutional layers. On the other hand, RNN and LSTM 

introduced challenges when scaling due to input size and 

structure. 

 Task complexity: Diagnosing faults in rotating machinery 

involves recognizing distinct patterns and features in the 

data. MLPs and CNN excelled at this due to their 

architectures, while RNN and LSTMs faced difficulties 

capturing these patterns in larger datasets. 

The performance analysis across scaled datasets reveals 

that the Multilayer Perceptron consistently outperformed 

other models, demonstrating near-perfect accuracy, stability, 

and generalization across all dataset sizes. The Convolutional 

Neural Network also performed strongly, showing robust 

accuracy and effective learning with minimal overfitting even 
as data was scaled. While the Recurrent Neural Network 

achieved decent results, it exhibited more fluctuations in 

accuracy and stability, especially in larger datasets.  

However, the Long Short-Term Memory model struggled 

the most, with significant drops in performance, erratic loss 

curves, and pronounced overfitting issues as the dataset size 

increased. Overall, the analysis highlights that simpler models 

like MLP and CNN were better suited for this specific 

problem, while LSTM struggled to handle the complexity 

introduced by larger datasets. 

9. Conclusion and Future Recommendation  
By systematically varying fault conditions, the 

experimental setup in this work aimed to replicate realistic 

operational scenarios that machinery might experience in the 

manufacturing machine.  

The results derived from both balanced and imbalanced 

conditions offer a robust foundation for condition monitoring 

and analysis. The controlled introduction of weights provides 
a comprehensive dataset for training and validating diagnostic 

models,    which is essential for detecting and predicting faults. 

According to the analysis and discussions in the previous 

section, the methods of DL, Which include MLP, CNN, and 

RNN, adaptively extract the fault information and overcome 

the disadvantages of many traditional methods. The findings 

from this study contribute to the development of more 

accurate and reliable condition monitoring techniques, 

enhancing predictive maintenance strategies. This, in turn, can 

lead to extended operational life, reduced downtime, and 

improved overall efficiency of industrial machinery. 
Compared to the algorithms between MLP, CNN, RNN, and 

LSTM, CNN has given 95% accuracy compared to the MLP 

of 90%.  

The RNN and LSTM are not providing promising results 

on the dataset taken for analysis. This does not mean RNN and 

LSTM will not give accurate results in all cases. The lower 

performance of RNN and LSTM may be attributed to their 

sensitivity to noise or the specific temporal dynamics of the 

data not aligning well with these models’ strengths. CNN’s 

superior performance is primarily due to its ability to capture 

spatial patterns and localized features in the data, making it 

well-suited for tasks involving structured or spatially 
dependent information [47].  

However, MLP’s robust performance, despite its simpler 

architecture, demonstrates its adaptability and consistent 

learning across scaled datasets, giving an accuracy of 100%. 

MLP’s fully connected structure allows it to utilize all input 

features equally without prioritizing spatial hierarchies, which 

can be advantageous when the task does not rely heavily on 

spatial dependencies. So, it is concluded that the DL is the 

future of maintenance engineering, and fault diagnosis will be 

more accurate in this modern industrial revolution.   

Although the proposed methods in this research have 
achieved some promising results in rotary machinery, there 

are still many challenges in the current research in selecting 

the right DL technique and future research directions. There 

are some limitations in this study. 

1. Hyperparameter Tuning: The algorithms were not fine-

tuned through hyperparameter optimization, which may 

have limited their potential to achieve the highest possible 

accuracy. 

2. Limited Data Volume: The dataset was relatively small, 

which constrained the model’s ability to generalize, 

particularly in predicting fault weights accurately. 

3. Minimal Pre-processing: Data pre-processing was 
intentionally kept minimal, which, while simplifying the 

model pipeline, may have restricted the model’s ability to 

leverage the data’s informative features fully. 

4. Limited Generalizability: The findings are based on the 

Spectra Quest Machinery Fault Simulator data. 

Performance may vary when these models are applied to 

real-world scenarios with different machinery, operating 

conditions, or fault types. 

The following research directions are proposed to address 

these limitations. 
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 Hybrid Models: Investigating the potential of hybrid 

models that combine the strengths of various deep 

learning techniques to enhance performance. 

 Incorporating additional data types: Exploring the 

integration of various data types, such as thermal data and 

historical maintenance records, to provide a more 
comprehensive view of machinery health. 

 Application to different machinery and fault conditions: 

Applying the methods proposed to diverse machinery and 

varying fault conditions to assess the generalizability in 

real-world settings.  

 Hyperparameter optimization: Implementing 

hyperparameter optimization techniques to get the full 

potential of the chosen algorithms for improved accuracy 

and robustness. 
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