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Abstract - This paper aims to provide data and propose viable strategies for effectively harnessing wind energy by introducing 

probabilistic models for wind speed prediction. The objective is to improve the accuracy of wind speed forecasts, thereby 

mitigating risks for stakeholders and building investor confidence in the development of wind energy. This aligns with the 

Vietnamese government's strategy to reduce greenhouse gas emissions, aiming to achieve 23,896 MW of wind power capacity 

by 2030, including 75% onshore and 25% offshore wind power. Wind speed data measured in a locality in Vietnam from 2017 

to 2022 were evaluated using fitting methods and goodness of fit methods to determine the most appropriate probability 

distribution model. Findings indicate that the Gamma model best fits this locality under short-term, medium-term, and long-term 

forecasting scenarios. However, it is suggested that the Normal distribution model should be slightly prioritized in medium-term 

and long-term scenarios, whereas the Generalized Extreme Value model is found to be the least suitable. 
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1. Introduction 
1.1. Literature Review 

The increasing global focus on renewable energy sources 

like wind power is driven by the need to reduce greenhouse gas 

emissions and achieve sustainable development [1]. While 

wind power presents a promising solution, the inherent 

uncertainty in energy production due to fluctuating wind 

speeds poses significant challenges for stakeholders in the 

energy market [2]. This uncertainty can impact technical and 

economic aspects, including potential compensation to 

electricity buyers during energy shortages [3]. Previous studies 

have significantly focused on employing probability 

distribution models to reduce uncertainties in wind speed 

forecasting and optimize wind energy utilization. For instance, 

the Weibull distribution has been widely applied to assess wind 

energy uncertainties in the integration of wind and thermal 

energy systems, as well as to analyze wind speed patterns in 

Bangladesh [4]. Additionally, the Generalized Extreme Value 

(Ev) model has been utilized to calibrate aggregated wind 

speed forecasts in weather prediction [5]. Global wind energy 

development strategies, such as the European Union's clean 

energy transition [6] and South Asia's renewable energy 

development plan [7], have highlighted the critical role of 

selecting appropriate distribution models in managing wind 

energy uncertainties. 

1.2. Motivations and Contributions 

In Vietnam, which has pledged to achieve net-zero 

emissions by 2050 [8], and in neighboring regions, research on 

wind speed probability distribution models tailored to the local 

context remains scarce. While some survey data are available 

from areas with substantial wind potential, a comprehensive 

assessment of the suitability of these distribution models for 

the region’s unique climatic conditions and wind 

characteristics is still lacking. This gap has led to an 

insufficient scientific foundation to guide investors and 

policymakers in advancing sustainable wind energy 

development. 

1.3. Key Contributions of the Study Include 
1.3.1. Identifying Optimal Probability Distribution Models 

This study employs rigorous evaluation techniques such as 

Maximum Likelihood Estimation (ML), R-Square (R²), Root 

Mean Square Error (RMSE), Chi-Square (X²), and 

Kolmogorov–Smirnov (KS) tests [9], to determine the most 

suitable probability distribution models for measured wind 

speed data in Vietnam. 

http://www.internationaljournalssrg.org/
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1.3.2. Supporting Wind Energy Development Strategies 

The study provides detailed data and analyses to support 

policy formulation and the implementation of wind energy 

development strategies in Vietnam up to 2030, with a long-

term vision extending to 2050. Additionally, it contributes to 

promoting investments in wind energy that are aligned with 

global sustainable development goals. 

1.3.3. Enhancing Forecast Accuracy 

The research proposes solutions to improve the accuracy 

of wind speed forecasts, minimize uncertainties in energy 

production, and optimize the economic efficiency of wind 

energy projects in Vietnam. These findings are valuable for 

Vietnam and have broad applicability to similar geographical 

regions in Southeast Asia that face comparable challenges in 

wind power development. The study contributes to reducing 

wind speed forecasting errors in the region by leveraging the 

wind speed data provided in this research. 

2. Methodology of Wind Speed Probability 

Distribution Assessment 
The paper focuses on evaluating and selecting appropriate 

probability distribution models for the surveyed area to improve 

wind speed forecasting accuracy and assess uncertainty levels, 

as discussed in [10]. Based on the forecasting time horizon, 

predictions can be categorized into four types: very short-term, 

short-term, medium-term, and long-term [11]. Regarding 

probability distribution models, the literature in [12] describes 

their wide range of applications across various fields, with 

commonly used models including Gamma (Gm) and Ev. 

Notably, [13] emphasizes that the Weibull (Wb) model is one 

of the most widely used models in the energy sector. Therefore, 

this study proposes to evaluate the Wb, Gm, and Ev distribution 

models in addition to the Normal (Nm) distribution model. 

2.1. Probability Distribution Models 

2.1.1. Weibull Distribution 

The Probability Distribution Function (PDF) of the Wb 

model is described by the following expression [14]: 

𝑓(𝑥) = {
𝑐

𝜎
(
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𝜎
)
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𝑒−(
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Here, the indices  và c describe the scale and shape of the 

distribution. The cumulative probability distribution is 

transformed into [13]: 
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2.1.2. Gamma Distribution 
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The Gm distribution has recently merged in predicting 

wind speeds in various regions, such as India [15], showing a 

close relationship with normal and exponential distributions. 

The probability and cumulative distribution functions are 

described as follows [13]. The coefficients  and c also have the 

same meaning as Wbl. Particularly  is called the gamma 

function and is calculated by (c-1)! [16]. 

2.1.3. Generalized Extreme Value Distribution 

The Ev model is a continuous probability distribution 

comprising three extreme components: Frechet and Weibull. 

The probability distribution and cumulative distribution are 

described as follows [14, 13]: 
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The coefficients c, , µ are sharp, scale and local, 

respectively. 

2.1.4. Normal Distribution 

Nm is commonly used in many different fields for standard 

probability statistics. The PDF is represented as follows [17]:  

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(
(𝑥−𝜇)2

2𝜎2 )
  (7) 

The coefficient µ represents the average value, while  

describes the normal distribution coefficient. 

2.2. Fitting Methods and Goodness of Fit 

Determining the most appropriate parameters of the 

probability distribution model is the initial step. Once the 

parameters are clearly defined, goodness of fit methods are 

applied to evaluate and select the most suitable probability 

distribution model for the dataset [14, 18]. 

2.2.1. Maximum Likelihood Fitting 

ML is one of the widely used methods for fitting and 

estimating the parameters of wind speed distribution models 

[19]. First, the likelihood function or the logarithmic likelihood 

function is constructed, and then the parameter values are 

searched for to maximize this function. Iterative methods such 

as Newton's are employed to estimate the maximum likelihood 

efficiently in an asymptotic sense and to achieve minimal 

variance [20]. Additionally, some studies have applied an 

improved ML method, known as the alternative maximum 

likelihood method, for modeling wind speed distribution. This 

method is based on the idea of linearizing the nonlinear terms 
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using a Taylor series and deriving parameter estimators in a 

non-iterative manner. Ultimately, the results of ML fitting 

establish the best parameters for the evaluated probability 

distribution model. 

2.2.2. R-Square Evaluation 

The R-squared represents the square of the correlation 

between the observed values and the predicted values. It is also 

referred to as the square of the multiple correlation coefficient 

and the multiple coefficient of determination. This metric 

measures the degree of success in explaining the variability of 

the measured data. It is commonly used to assess how well a 

nonlinear function fits a given statistical data set. The higher the 

value, the better the fit. The R-squared value is calculated as 

follows [20]: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

  (8) 

Here, y and x are the corresponding statistical and 

functional values, 𝑦̅ is the average functional value. 

2.2.3. Root Mean Square Error 

The RMSE quantifies the discrepancy between observed 

probabilities and those estimated by the probability function, 

indicating the model's goodness of fit. A lower RMSE value 

signifies a better fit. Due to its sensitivity to outliers, RMSE is 

often used in conjunction with the square index. The calculated 

value is [20], 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ (𝐹𝑖 − 𝐹𝑖̂)

2𝑛
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1

2
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F and 𝐹̂ represent probability functions and observed 

values. 

2.2.4. Chi-Square Evaluation 

The chi-square statistic, based on the frequency of 

occurrences, is commonly used to assess the accuracy of 

probability distribution functions. Therefore, this statistic 

indicates whether the chosen distribution function is valid when 

evaluated against a critical value. The statistic is calculated as 

follows [14]: 

𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑁
𝑖=1   (10) 

In this context, Oi represents the number of observations 

estimated using each distribution's estimated probability density 

function. Ei denotes the expected number of observations, 

calculated through a frequency histogram based on the 

measured data. 

2.2.5. Kolmogorov–Smirnov Evaluation 

The Kolmogorov-Smirnov statistic assesses the maximum 

difference between the cumulative distribution function of a 

model and the empirical distribution function. When the 

measured value increases or decreases too abruptly in 

comparison to the distribution function, it indicates that the 

chosen distribution may be inappropriate. The statistic is 

calculated using the following expression [14]: 

𝐾𝑆 = 𝑚𝑎𝑥(|𝐹1(𝑥) − 𝐹2(𝑥)|)  (11) 

Where F1(x) is the cumulative probability measured 

compared with the theoretical probability, F2(x). 

3. Data 
3.1. Wind Power Development Strategy of Vietnam by 2030 

3.1.1. Review of Wind Power Development Strategy  
Table 1. Wind power planning data by 2030 [21] 

Regions 
Planning by 2030 (MW) 

Total Onshore Offshore 

Northern 8,264 5,764 2,500 

Middle 4,791 4,291 500 

Southern 10,841 7,841 3,000 

Total 23,896 17,896 6,000 

 

 
Fig. 1 Electricity load and wind power by 2030 [8, 22] 

 
Fig. 2 Annual average increase in wind power [21] 
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Table 2. Installed wind power capacity of countries 

Countries Potential (MW) Year Installed Capacity (MW) 

Afghanistan 

[7] 

66.726 2019 0 

Bangladesh 20.000 2019 3 

Bhutan 63.895 2019 1 

India 102.778 2020 32878 

Maldives 288 2019 1 

Nepal 3.000 2019 0 

Pakistan 346.000 2020 792 

Sri Lanka 24.000 2019 146 

Vietnam 821.173 2022 3986 

According to the forecast in [8], electricity demand is 

expected to reach a peak load of over 92,000 MW by 2030, 

while total power capacity expansion is projected to be around 

138,000 MW. Wind power is expanding rapidly, with a planned 

increase of nearly 24,000 MW, as outlined in Table 1, reflecting 

an annual growth rate of approximately 28%. The southern 

region is leading this growth, with an annual increase of 21%, 

while the middle region shows the slowest growth at 9%, as 

indicated in Figure 1. The northern region is growing at about 

16% annually, with average annual capacity increases of 826 

MW in the north, 479 MW in the middle region, and 1,084 MW 

in the south, as shown in Figure 2. By 2030, wind power 

capacity is projected to exceed 10,000 MW, largely based on 

detailed plans for onshore wind projects. Currently, 58% of the 

remaining capacity is in the planning phase and open to 

investors. This capacity is evenly divided between onshore and 

offshore wind power, with approximately 7,800 MW allocated 

to onshore and 6,000 MW to offshore. According to the wind 

power development plan in [21], wind energy is expected to 

make up more than 13% of Vietnam's total energy capacity by 

2030, with an estimated 28,000 MW. However, this only taps 

into about 13% of the country's full wind energy potential. As 

reported in [8], Vietnam has over 200,000 MW of onshore wind 

capacity and around 600,000 MW offshore. 

3.1.2. Comparison of Asian Countries   

According to reference [21], Vietnam is among the 

countries with a robust wind energy investment and 

development strategy, driven by strong initial government 

support policies and a substantial, favorable wind energy 

resource base, as shown in Table 2. 

3.2. Wind Speed Data 

The wind speed data was collected from a midland region 

in the south-central coast of Vietnam, an area with a significant 

future wind energy development strategy [8]. Wind speeds were 

measured at a height of 10 meters above ground level. The data 

was recorded at 10-minute intervals, encompassing maximum 

speed, minimum speed, average speed, and standard deviation. 

The dataset utilized for the research spans six years, from 2017 

to 2022. Three simulations of the dataset were conducted: (i) 

short-term, the data was divided into hourly sample subsets for 

each day; (ii) medium-term, the data was segmented into daily 

sample subsets for each month; and (iii) long-term, the data was 

organized into monthly sample subsets for each year. Figure 3 

illustrates the measured data over a span of six years. While not 

immediately evident, it is observed that the pattern remains 

largely consistent across four seasons within each year: (1) 

Season 1: from December of the preceding year to February. (2) 

Season 2: from March to May. (3) Season 3: from June to 

August. (4) Season 4: from September to November. Seasons 1 

and 3 exhibit higher wind speeds than Seasons 2 and 4. 

4. Experimental Results and Discussion 
4.1. Comparison of Models 

 
Fig. 3 Wind velocity data measured 
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Fig. 4 Dominance ratio of distribution models 

 
Fig. 5 Dominant dates of Nm distribution 

The survey results of four distribution types with three 

illustrated cases are presented in Figure 4. The curves depict a 

relatively stable trend in the selection count over the years. 

However, the case for months exhibits variability, particularly 

between the Nm and Ev distributions. The highest selection rate 

occurs with the Nm distribution in the daily case, averaging 

around 70%. Conversely, the lowest is observed with the Wb 

distribution in both monthly and daily cases. Upon closer 

examination of each case, Gm holds the highest selection 

proportion for short-term hourly predictions, followed by Nm, 

Wb, and Ev, which is the least preferred. For medium and long-

term cases, the Nm distribution predominates, especially in the 

medium-term, followed by Gm. Wb and Ev's distributions are 

scarcely chosen in these scenarios. Hence, for short-term 

predictions, the Gm distribution appears most suitable, although 

other distributions should also be considered, albeit with lesser 

suitability. Conversely, for medium and long-term predictions, 

the Nm distribution seems more appropriate. Wb and Ev 

distributions are discouraged for use in these contexts. 

4.2. Medium-Term Case 

Figure 5 presents the results of the proportion of Nm 

selection distribution across seasons over the years. Cases 

suggest a seemingly equivalent outcome across all four seasons. 

However, some anomalous fluctuations are believed to be 

weather-related. For instance, in the second season of 2017, the 

prevalence of storms compared to other years led to a notably 

higher proportion of Nm selection distribution [23, 24]. 

Conversely, in the first season of 2022, the presence of tropical 

low-pressure systems and weaker cold air mass compared to 

previous years resulted in a significantly lower proportion [25]. 

Thus, a medium-term case based on Nm distribution is 

recommended but remains contingent upon weather conditions. 

4.3. Short-Term Case 

Figures 6 and 7 further confirm the superiority of the Gm 

distribution in the hourly and annual analysis. While alternative 

distributions are viable, Gm and Nm stand out as the more 

dominant, with significantly higher selection probabilities of 

0.55 and 0.31, respectively. In contrast, Wb shows a lower 

probability of 0.10, and Ev has the lowest at just 0.04. Between 

the hours of 12:00 to 15:00, there appears to be a balance 

between these two distribution models. Perhaps the high and 

stable wind velocities mitigate the influence of distribution 

types. The Wb distribution warrants consideration due to its 

stability, whereas Ev exhibits a lower preference ratio. A 

comparison across months in 2022 in Figure 8 illustrates 

relatively stable preference ratios for the models. However, the 
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Nm distribution experienced a sharp decline in February, 

attributed to abrupt decreases in tropical pressure rates and cold 

air in that month of 2022. In the case of seasons, the Gm 

distribution seems less volatile, while the others fluctuate across 

Seasons 2 and 3, as depicted in Figure 9, corresponding to 

seasons characterized by high wind speed fluctuations due to 

weather fluctuations. 

 
Fig. 6 Mean dominant in six years 

 
Fig. 7 Dominant dates in short-term simulation by 2022 

 

Fig. 8 Dominant in months by 2022 

 
Fig. 9 Dominant in seasons by 2022 

4.4. Comparison of Countries 
Table 1. Survey of wind speed probability distribution models of 

countries 
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Turkey [12] 2013 
Extreme 
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Trinidad and 

Tobago 
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Although various studies have applied the Weibull 

probability distribution to assess error deviations in wind speed 

predictions for optimization problems in wind energy, survey 

data from several countries suggest that other distribution 

models may provide greater accuracy, as summarized in Table 

3. For instance, Turkey recommends the Extreme Value model, 

Trinidad and Tobago proposes the Rayleigh model, Iran 

suggests the Gamma model, and, in line with Iran’s findings, 

Vietnam is also recommended to use the Gamma model, as 

supported by the results of this study. 

5. Conclusion  
The findings of this research, based on the analysis and 

evaluation of wind speed data, are designed to enhance the 
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prioritize the selection of the Nm distribution for evaluation 

over others. Conversely, a combination of both Nm and Gm 

distributions is recommended for long-term projections based 

on experimental findings. On the horizon axis, the process of 

selecting distributions appears to be less contingent upon 

seasons or months within the year. However, when examined 

by hourly intervals, the time frame between 12:00 and 15:00 

shows minimal differentiation between the distributions Gm 

and Nm. Beyond this timeframe, the evaluation outcomes favor 

the proposed Gm distribution model. Despite the clear 

achievements highlighted by the research results, certain 

limitations remain, particularly regarding unusual weather 

patterns. The evaluation identified several unexpected storms, 

such as those in the second season of 2017 and the early season 

of 2022, in Figure 5, which could disrupt predictions. 

Correspondingly, for such anomalies, the Nm probability 

distribution is suitable across various localities, aligning with 

findings from previous studies. 
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