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Abstract - Condition monitoring and fault identification are essential for preventing damage in industrial machinery, particularly 

in three-phase squirrel cage Induction Motors (IMs), which are widely used due to their reliability and robust design. This paper 

compares three advanced techniques for diagnosing Motor faults, including issues like inter-turn faults in the stator, bearing 

malfunctions and faults from the rotor by analyzing motor current and speed: 1-D Convolutional Neural Networks (1-D CNN), 

Grey Wolf Optimized Probabilistic Neural Networks (GWOPNN), and Whale Optimized Pattern Recognition Neural Networks 

(WOAPRNN). The study evaluates each method’s ability to detect and classify faults. Results show that the whale-optimized 

pattern classification neural network achieves the highest accuracy of 99.15%, making it the most effective method for fault 

detection. Each technique -offers unique strengths in fault classification and detection, with the goal of enhancing motor 

reliability and efficiency in industrial environments. By improving fault diagnosis, these methods contribute to reducing 

downtime, lowering maintenance costs, and increasing the operational lifespan of induction motors. 

Keywords - 1-D CNN, Bearing faults, Fault diagnosis, GWOPNN, Induction motors, Machine learning, Rotor faults, Stator 

Interturn faults, WOAPRNN.

1. Introduction  
In recent years, electrical machineries has been widely 

utilized in the manufacturing industry due to its versatility, 

efficiency, and ability to handle a variety of industrial tasks. 

Induction motors, like other machines, are important for 

powering the equipment, driving the machineries and boosting 

overall productivity. With the rapid development and 

improvement of technology and science, electrical machines 

function on a regular basis practically for all applications. 

These machines often work in tough conditions like humidity, 

dust, and heavy loads. Without regular maintenance, they can 

cause money loss, lower production, and safety problems. In 

industries, electrical machines play a vital role in powering 

processes, running various equipment, and enabling 

automation. These rotating machines are made up of static 

components like the stator and rotating components like the 

rotor, shaft, and bearings [1–5]. For commercial and industrial 

applications, the IM is normally employed due to their low 

cost and ruggedness [6]. However, in certain operating 

conditions, an induction motor can suddenly malfunction due 

to lack of attention and inadequate Sustenance. Faults cause 

motors to fail [7], with examples including rotor faults, 

bearing faults [8, 9], and stator interturn faults [10]. These 

faults can significantly affect motor performance, leading to 

inefficiencies, overheating, and eventual failure if not 

addressed promptly. Early detection and diagnosis are 

essential for maintaining motor reliability and preventing 

operational disruptions in industrial environments. In [11], 

Genetic Algorithm (GA) for feature extraction along with 

classification algorithms, including random forest and 

decision tree, were evaluated to analyze bearing faults. 

According to their experimental results, the proposed scheme 

achieved high accuracy in distinguishing and recognizing the 

faults in different induction motor conditions. However, it was 

found to be ineffective for real-time predictions, limiting its 

practical application in dynamic industrial environments. 

Vibration analysis and MCSA are two Particularly notable 

generally utilized fault detection methods in induction motors 

[12, 13]. Another method for fault diagnosis relies on 

spectrum analysis using the Fourier Transform (FT) to 

identify various faults by examining the frequency spectrum, 

which displays different harmonics, including fundamental 

and adjacent fault frequencies. These harmonics vary between 

healthy and faulty motors, creating distinctive signatures for 

mechanical and electrical faults. However, the 

implementation of these analyses can be relatively expensive. 

Alternatively, some methods utilize acoustic signal processing 

to analyze rotor noise as a means of detecting faults [14]. The 

objective is to recognize and derive signal factors related to 

faults. The Fourier Transform (FT) has been deployed to 

analyze noise for this purpose [15]. By examining the 

frequency components of the noise signals, the FT helps 
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identify characteristics that are indicative of specific faults, 

facilitating more accurate fault diagnosis and maintenance 

strategies. From the literature survey, it was evident that 

machine learning algorithms, when combined with proper 

optimization techniques, provide better results compared to 

other methods. In this research, three neural networks were 

trained: 1-D CNN, Whale Optimized Neural Network, and 

Grey Wolf Optimized Probabilistic Neural Network. These 

networks were trained to detect faults in the stator, rotor, and 

bearings, as well as identify healthy conditions. Their 

performance in accurately detecting faults was tested and 

evaluated. Also, many researchers have primarily considered 

only stator current for analysis in their fault diagnosis studies. 

However, in this work, both stator current and speed were 

considered, which is a novelty. This approach leads to more 

accurate fault predictions, making the method better at 

identifying the type of fault. By incorporating both stator 

current and speed, the model captures a wider range of motor 

characteristics, improving the reliability and accuracy in fault 

diagnosis. 

2. Proposed System Description  
Figure 1 illustrates a block diagram of the method 

proposed. The analog speed and current signals from the 

induction motor are first collected and converted into digital 

form during preprocessing. This makes it easier to process the 

signals. Digital filters like the Wiener filter, Hilbert 

Transform, and Modified Gabor filter are then used to process 

the data. After applying these filters, three separate sets of 

features are extracted. These features include the minimum, 

maximum, standard deviation, mean, and median, which are 

important for training neural networks. Features from the 

Wiener filter are used to train a 1D-Convolutional Neural 

Network (1D-CNN). The Hilbert Transform was utilized to 

extract relevant features for training the WOPRNN, and the 

Modified Gabor filter was used for training the GWOPNN. 

These three neural network classifiers are trained 

independently to identify different fault types: bearing faults, 

broken rotor faults, and inter-turn faults. Each classifier is 

tested, and the results are discussed in detail in the results and 

discussion section. 

 
Fig. 1 Proposed system block diagram 

2.1. GWO Algorithm 

The Grey Wolf Optimizer (GWO) algorithm draws its 

inspiration from the cooperative hunting and social hierarchy 

techniques exhibited by grey wolves. The population of grey 

wolves was optimized mathematically by resampling the 

surrounding, attacking, tracking and hunting processes. The 

hunt for grey wolves consists of 3 steps: prey encircling, social 

hierarchy stratification and attacking hunter [16-17].             

2.1.1. Fitness Evaluation in GWO 

Grey Wolf Optimization (GWO) works by updating the 

positions of wolves (candidate solutions) based on their best 

fitness values. Fitness functions depend on the specific 

problem, but in general, for a classification problem, it could 

be accuracy, error rate, or other objective measures like Mean 

Squared Error (MSE). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
TP+TN

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁
  (1) 

Where: FP False positives, TN True negatives, TP True 

positives, FN False negatives 

2.1.2. Updating Grey Wolves Position                                   

The position of the wolves in the GWO algorithm was 

updated by alpha, beta, and delta.  

𝑋⃗(𝑡 + 1)=
𝑋⃗⃗𝛼(𝑡)+𝑋⃗⃗𝛽(𝑡)+𝑋⃗⃗𝛿(𝑡)

3
  (2) 

Where 𝑋⃗(𝑡) is the grey wolf’s position at time t, and α, β, 

and δ are the three best wolf’s positions. 

2.1.3. Component Update Rules  

𝐴 = 2. 𝑎.⃗⃗⃗ ⃗ 𝑟 − 𝑎⃗ (3)    

𝐶 = 2. 𝑟 (4) 

Where, 𝑎⃗ is a coefficient vector that decreases linearly 

from 0 to 2 over iterations. 𝑟 is a random vector in [0, 1]. The 

new position of the grey wolf is calculated by: 

𝑋⃗(𝑡 + 1)= 𝑋𝑎
⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴. |𝐶. 𝑋𝑎

⃗⃗ ⃗⃗ ⃗(𝑡) − 𝑋⃗(𝑡)| (5) 

Similar expressions are used for 𝑋𝛽
⃗⃗ ⃗⃗ ⃗ and 𝑋𝛿

⃗⃗ ⃗⃗ ⃗. The network 

chooses the class with the greatest likelihood based on 

posterior probability. The current optimization mechanism is 

iteratively applied across all agents, ensuring the solution 

converges towards the optimal position in the search space. 

2.2. Implementation of GWO with PNN        

In a PNN, there are typically two hidden layers and one 

input layer. The pattern units are located in the first hidden 

layer. Contrary to the Back propagation neural network 

approach, the PNN approach has a significant advantage in 
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that it requires only one learning step. Backpropagation NN 

learning can be akin to learning through trial and error, 

whereas the PNN gains knowledge from experience rather 

than relying solely on trial and error. The PNN boasts a robust 

framework and highly effective operations. It can perform 

effectively even with a limited amount of training instances. 

The weights w(ij), which are determined using the PNN 

approach as illustrated in Figure 2, are multiplied by the output 

of the input dataset and then transferred to the pattern layer. A 

transfer function is applied to transform these weights into the 

summation and output layers, as previously demonstrated. The 

output layer typically consists of only one class because a 

single output is usually required. During the training process, 

the primary goal is to identify the most accurate weights 

assigned to connector lines. To achieve this, the GWO 

technique was selected to obtain optimized PNN training 

parameter settings, ultimately leading to a higher level of 

accuracy.  

This combination of PNN and GWO offers a powerful 

tool for pattern recognition and classification tasks. Figure 3 

illustrates the flowchart of the GWOPNN process. Input 

features derived from current and speed data are provided as 

inputs to the PNN. In this research, for training, 80% of the 

dataset was designated, and the remaining 20% was set aside 

for testing. Control parameters were configured for the 

GWOPNN. During the training of the PNN with the GWO 

algorithm, its fitness function was calculated. Then, the 

position of the GWOPNN was updated iteratively using the 

GWO algorithm. This technique helps select and find the best 

control parameters to optimize the PNN. After that, the dataset 

is used to train the PNN with the chosen control parameters to 

build the best model for the task. Throughout the optimization 

procedure, the wolves’ positions were adjusted based on 

Equations (2), (3), (4), and (5), while their fitness values were 

computed using Equation (1). This optimization process 

continues until the best possible solution is found, ensuring 

optimal performance of the PNN. This repeated procedure 

enables the model to adjust based on the fitness values, 

resulting in enhanced fault detection accuracy. As this 

algorithm converges, the PNN becomes more efficient in 

predicting faults. 

2.2.1. Modified Gabor Filter (MGF)                                            

Figure 4 illustrates the working of the MGF, where a 

sinusoidal carrier wave and Gaussian envelope are combined 

to analyze and extract information from the signals [18]. This 

is a tunable filter capable of highlighting features of a specific 

input signal. By applying this filter to the input signal, the 

similarity between the input signal and the Gabor filter at each 

point of the signal can be assessed. The features and patterns 

of the input signal are evaluated based on the characteristics 

defined by the Gabor filter at each point of the signal. Equation 

(6) expresses a modified Gabor filter. 

𝑀𝐺𝐹 =  𝑒
(

−(𝑡−µ)2

2∗𝜎2 )
∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ 𝑡) (6)     

Where ‘t’ is the time domain variable, ‘µ’ determines the 

centre position of the MGF in the time domain. It represents 

the mean or central position of the filter. It controls the spread 

or width of the Gaussian envelope. ‘f’ is the frequency 

parameter that controls the spatial frequency of the sinusoidal 

part of the filter. 

𝐺(𝑡) = ∫ 𝑠(𝜏) ∗ 𝑀𝐺𝐹(𝑡 − 𝜏)𝑑𝜏
∞

−∞
  (7) 

In Equation (7), G (t) is the Gabor filtered signal; s (τ) is 

the signal that we want to filter using the modified Gabor 

filter;’*’ This function is used to perform convolution between 

the ‘s(τ)’ and the ‘modified gabor filter’. Convolution is a 

mathematical operation that combines the filter with the input 

signal to produce an output signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Mechanism of GWO algorithm with PNN 

2.3. Whale Optimized Algorithm (WOA)  

WOA, like other metaheuristic optimization algorithms, 

begins by producing a population of random candidate 

remedies from which the global optimum solution to the 

problem is discovered. Based on its structure, this algorithm 

continuously enhances and modifies the solution till the 

optimal value is obtained. The WOA rules’ ability to adapt and 

develop the outcome is the main way it differs from other 

metaheuristic algorithms. The instinct of a whale to follow 

prey, which is accomplished by circling around the prey, 

constructing a trap, and then attacking it, has an impact on the 

WOA. This is known as bubble-net feeding behavior. Before 

attacking its prey, the humpback whale creates bubbles by 

spiralling around it. This feeding behavior inspires the WOA’s 

main structure.  

2.3.1. Prey Encircling 

𝑋⃗(𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗ ⃗ (𝑡) − 𝐴. 𝐷 ⃗⃗ ⃗⃗  𝑖𝑓 𝑝 < 0.5

𝐷,⃗⃗ ⃗⃗ . 𝑒𝑏𝑙 cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡)𝑖𝑓 ≥ 0.5
  (8) 

Old  w(ij) New  w(ij) 
GWO Algorithm 

xij - ∑ x+w(ij) 

Input Layer 

Pattern Layer 

Summation 

Layer 

Output Layer 

Output = 

Class of Max 

(g1, g2) 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

xn 

x11 

x12 

x21 

x22 



N. Sivaraj & B. Rajagopal / IJEEE, 12(1), 129-141, 2025 

132 

𝐷⃗⃗⃗ = |𝐶.⃗⃗⃗⃗ 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − 𝑋⃗(𝑡)| (9) 

𝐴 = 2𝑎⃗. 𝑟 − 𝑎⃗ (10) 

𝐶 = 2. 𝑟 (11) 

Where t denotes the current iteration and r denotes 

random constants in the range [1, 1]. The logarithmic spiral 

shape denoted by b and a decreases linearly from 2 to 0 over 

the iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Flowchart of GWOPNN 

2.3.2. Spiral Updating Position 

     This behavior of whales is mathematically modeled as, 

𝑋⃗(𝑡 + 1) = 𝐷,⃗⃗ ⃗⃗ . 𝑒𝑏𝑙 cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) (12) 

Where,  𝐷,⃗⃗ ⃗⃗   indicates the distance separating the prey from 

the whale, b is used to set the shape of the logarithmic spiral, 

and l is a random value drawn from the interval [-1, 1]]. 

 

 

 

 

 

 

 

 
 

Fig. 4 Modified gabor filter 

2.3.3. Implementation of WOA with PRNN 

In a PRNN, the output of the hidden layers and the 

connections between different layers are determined by the 

weights and biases. The objective of training this NN is to 

adapt these weights and biases in order to reduce the disparity 

between the networks, the actual target values and the 

predicted output.  

In Equation (13), Mean Squared Error (MSE) is 

calculated as follows: 

 MSE =
− ∑ (𝑂𝑖−𝑂𝑖̂)2𝑛

𝑖=1

𝑛
 (13)                      

Where oi represents the actual output of a given input 

sample i.,oî represents the expected output (target) of a given 

input sample i. 

𝑈′ =
𝑈−𝑈𝑚𝑖𝑛

𝑈𝑚𝑎𝑥−𝑈𝑚𝑖𝑛
  (14) 

 

To validate the model’s accuracy, the optimal biases and 

weights obtained during the training phase parameters are 

applied during the testing phase. The WOAPRNN’s 

exceptional capability to overcome the local optima problem 

and determine the optimal weights and biases for the neural 

network enhances the accuracy and effectiveness of the 

proposed model. Figure 6 presents a flowchart detailing the 

application of the Whale Optimization Algorithm (WOA) for 

optimizing a neural network designed for pattern recognition. 

It starts by randomly initializing a population of whale 

positions, which represent candidate neural network solutions. 

The fitness of each whale is evaluated using the Mean Squared 

Error (MSE). Based on the probability p, each whale’s 

position is updated either through prey encircling Equations 

(8) and (9) or spiral updating Equation (12). The coefficient A 

for controlling the position update is calculated using 

Equation (10). If a superior solution is found in an iteration, 

the optimal solution X∗(t) is adjusted. If the iteration reaches 

its maximum, this process ends, and the whale with the lowest 

MSE is returned as the best neural network configuration. 

2.3.4. Hilbert Transform (HT)   

HT helps analyze a signal’s instantaneous amplitude, 

frequency, and phase by converting a real-valued signal into 

its analytic form. This makes it a valuable tool for tasks such 
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as modulation, demodulation, and fault diagnosis. The HT is 

mathematically expressed by: 

𝑋(𝑡) = 𝑥(𝑡) + 𝑗ℎ{𝑥(𝑡)} (15) 

Here, X (t) is the complex analytical signal, x (t) is the 

real-valued input signal, and j represents the imaginary unit. 

This indicates that the positive frequency components are 

preserved, whereas the negative frequency components are 

removed in the frequency domain representation of the 

analytic signal. 

2.4. 1D-CNN 

1D-CNNs are a specific type of Convolutional Neural 

Network (CNNs) designed for processing one-dimensional 

data. While traditional CNNs are predominantly used for 

image data, 1D-CNNs are tailored for tasks involving 

sequences, time series, audio, and other one-dimensional data. 

They excel in capturing local patterns and dependencies 

within such data. 

 
Fig. 5 Whale-optimized PRNN 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Fig. 6 WOA implementation algorithm 

2.4.1. 1D Convolution Operation 

At the core of 1D-CNNs is the 1D convolution operation. 

Given an input sequence or signal’ x’ of length ‘N’ and a filter 

(also called a kernel) ‘ω’ of length ‘L,’ the convolution 

operation of the feature map is generated by moving the filter 

over the input. The output at each position’ j’ is computed as 

follows: 

𝑐(𝑗) = 𝑓(∑ 𝜔(𝑖)𝑥(𝑗 − 𝑖) + 𝑏), 𝑗 = 0, , 𝑁 − 1𝐿−1
𝑖=0  (16) 

 

Here, ’c (j)’ is the output at position ‘j’; ‘f (·)’ is the 

activation function, often ReLU or another non-linear 

function; ‘ω (i)’ represents the filter weights; ‘x (j - i)’ denotes 

the input value at the corresponding position; ‘b’ is the bias 

term. The convolution operation produces a feature map ‘c’ 

that captures local patterns in the input sequence. 

2.4.2. Pooling Layers(PL) 

In PL feature maps, spatial dimensions were reduced. 

Max pooling, for example, chooses the maximum value within 

a m X 1 local window, moving with a stride ‘s.’ This helps 

retain essential information while reducing computational 

complexity. 

d=max (u (m×1, s) c) (17)  

 Here, ’d’ is PL output; ‘u’ is the max-pooling operation; 

’m × 1’ specifies the size of the pooling window; ’s’ is the 

stride. 

2.4.3. Fully Connected Layer and Output 

The feature map generated after pooling and convolution 

is flattened and sent through one or more Fully Connected 

(FC) layers. These layers establish connections among all 

neurons in the preceding layer, enabling intricate 

combinations of features. The output from the FC layer is 

typically passed through an activation function (such as 

Softmax for classification) to yield the final predictions. 

2.4.4. Loss Function 

A loss function is utilized to train the network, measuring 

the disparity between the predicted output and the actual 

values.  

𝑙 = ∑ 𝑡(𝑘)log (𝑝(𝑘))𝑐
𝑘=1  (18) 

 

Here: ‘l’ denotes loss; ‘C’ denotes the total number of 

classes; ‘t(k)’ refers to the actual label. The predicted 

probability of the input belonging to class’ k’ is denoted as 

‘p(k)’. 

2.4.5. Training 

Training is typically carried out using backpropagation 

and optimization algorithms like Adam. The gradients 

calculated during the backpropagation process are employed 
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to adjust the network’s biases and weights, thereby reducing 

the loss function. Figure 7 illustrates the architecture of 1D-

CNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Architecture of 1D CNN 

2.5. Wiener Filter  

The Wiener filter is a filtering technique based on linear 

principles intended to reduce the MSE between the target 

signal and its approximation, effectively reducing noise. It is 

commonly utilized in signal processing for various purposes, 

including noise reduction, image restoration, and system 

identification. 

2.5.1. Noisy Signal Model  

The observed signal z(t) (whether current or speed) 

consists of the true signal x(t) combined with some noise y(t): 

𝑧(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) (19) 

Where z(t) is the noisy signal (current or speed), x(t) is 

the true signal we want to recover, and y(t) is the unwanted 

noise. 

2.5.2. Wiener Filter Formula                                                                  

The Wiener filter works in the frequency domain to 

reduce noise. The filter H(f) at any frequency f is calculated 

as: 

H(f) =
Sxx(f)

Sxx(f)+Snn(f)
 (20) 

Equation (20) adjusts the filter to allow frequencies with 

more signal power and suppress those dominated by noise. 

2.5.3. Filtered Signal 

To get a clean signal, we apply the Wiener filter to the 

noisy signal’s frequency components: 

𝑥̂(𝑓) = 𝑦(𝑓). 𝐻(𝑓) (21) 

Where, 𝑥̂(𝑓)  the filtered signal,  𝑦(𝑓) the noisy signal. 

2.5.4. Convert Back to Time Domain 

After filtering, the filtered signal is converted back to the 

time domain: 

𝑥̂(𝑡) = 𝐹−1|𝑥̂(𝑓)| (22) 

Where, 𝐹−1 is the inverse Fourier transform, which gives 

us the clean signal in time form 𝑥̂(𝑡). 

2.5.5. Minimizing Error 

The filter is designed to minimize the overall error by 

reducing the difference between the true signal x(t) and the 

estimated signal. 𝑥̂(𝑡). By iteratively adjusting the filter 

parameters, the algorithm ensures obtaining a closer original 

signal.  

3. Generating Synthetic Fault Data  
In addition to the healthy conditions, the neural network 

training also includes data from faulted scenarios (broken 

rotor faults, bearing faults, and interturn faults) under different 

loading conditions. This ensures that the model learns how 

faults impact the motor’s performance across various load 

conditions. By including both healthy and faulted data across 

different loads, the neural network can better detect and 

classify faults based on rotor speed and current. Figure 8 

shows synthetic fault data generated by deliberately damaging 

a 6205-2Z bearing, introducing faults in the outer ring, inner 

race, and ball bearings. The bearing dimensions are twenty-

five mm bore diameter, outer diameter, fifty-two mm and 

fifteen mm width. Faulty bearings were successively installed 

in a 3-phase induction motor, and speed and current 

waveforms were recorded under various loads. These patterns 

were combined with modeling motor behavior during bearing 

faults, and these data helped in training the neural network.  

The trained network was then tested on both synthetic and 

real-world fault data to evaluate its performance in accurately 

classifying different types of bearing faults. To generate 

synthetic faults in the rotor bars, holes were drilled into a rotor 

with 32 bars. Each hole was 10 mm deep and 8 mm in 

diameter, breaking the electrical continuity.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Simulated faults on healthy, outer ring, inner ring and ball in 

bearing 
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Fig. 9 Rotor shaft: (a) Healthy bar, and (b) Single bar and double bars 

broken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10 Shorted stator windings 

Figure 9 (a) and (b) show images of both healthy and 

damaged rotor bars. Figure 8 simulated faults on the healthy, 

outer ring, inner ring and ball in the bearing. Initially, a healthy 

rotor bar was installed in a 3-phase induction motor, and the 

current and speed characteristics were recorded. Then, rotors 

with one and two broken bars were tested similarly. Data for 

stator current and speed characteristics were collected under 

all three load conditions. Each motor setup was run 100 times, 

with the corresponding speed and current characteristics 

recorded, replicating the motor’s behaviour under rotor bar 

faults. Figure 10 shows short stator windings. An induction 

motor with 36 stator slots and coils consisting of 300 turns 

each was used. To create interturn faults, insulation was 

removed from the windings, and tapings were removed at 

intervals of 10, 20, and 30 turns in phase A. These modified 

windings were then shorted individually. The motor was run 

100 times under no load, full load, and half load conditions to 

collect speed and current data. This data, mimicking motor 

behavior during inter-turn faults, was utilized for training the 

neural network model for fault diagnosis. 

4. Experimental Setup of Proposed System 
The experimental setup, shown in Figure 11, was 

designed to study the performance of a 1.5 kW three-phase 

induction motor under both healthy and faulted conditions. 

The process of synthetic fault generation, as detailed in the 

previous section, was implemented to simulate various fault 

conditions.  

This included introducing a damaged bearing for bearing 

faults, breaking a rotor bar for rotor faults, and short-circuiting 

the stator winding to simulate stator faults. Figure 11 

demonstrates the experimental layout of the proposed system, 

which comprises the NI MyDAQ for data acquisition from the 

3-phase induction motor. The NI MyDAQ is compatible with 

LabVIEW. Various states of healthy and fault characteristics 

of the current and speed of the induction motor were obtained 

using the LA55P current transducer and the Hall Effect sensor, 

respectively. To capture the speed characteristics, neodymium 

magnets were strategically placed on the shaft of the 3-phase 

induction motor. The Hall Effect sensor output is interfaced 

with the digital pins of the NI MyDAQ, and a Virtual 

Instrument (VI) in LabVIEW is used to calculate pulse signals 

generated by the magnetic effect on the sensor.  

 
Fig. 11 Experimental setup of the proposed system 

One Broken Bar 

Two Broken Bar 

Shorted 

Stator 

Windings 
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Figure 12 shows how pulse signals were obtained. When 

the magnets were facing north, the output voltage was high, 

and when the magnets were facing south, the output voltage 

was low. After calculating the pulse length, the speed of the 

induction motor was determined. Similarly, another VI was 

set up to trace the current characteristics using the LA55P 

transducer, with its outputs connected to the analog inputs of 

the MyDAQ. This helps in extracting the current 

characteristics of the induction motor under specific fault and 

loading conditions.  

This waveform is then used in the subsequent section for 

feature extraction. Additionally, a Mixed-Signal Oscilloscope 

(MSO) is employed to verify the 3-phase current waveforms 

from the stator. Table 1 provides the specifications of the 1.5 

kW 3-phase induction motor used in this experimental setup. 

The laptop used for this experiment is equipped with an Intel 

i7 processor, a RAM capacity sixteen GB, and runs on the 

Windows 10 OS. The data collected from these instruments is 

pre-processed using noise reduction techniques before feature 

extraction. 

 
Fig. 12 Placement of hall effect sensor 

Table 1. Specifications of induction motor 

S.NO Parameters Values 

1. Voltage 415 V 

2. Current 3 to 5A 

3. Switching Frequency 50 Hz 

4. No of Poles 4 

5. Power 1.5 kW 

6. Speed 1440 

 

5. Results and Discussion  
5.1. Hilbert Transform-Based Feature Extraction for 

WOPRNN  

The WOAPRNN predicts motor fault conditions by 

extracting  features  from  the  characteristics  of  speed  and 

current waveforms by using the Hilbert transform. The 

induction motor was analyzed under seven different fault 

conditions and one healthy condition (A) under all loading 

conditions. The seven fault conditions were: Inner Race 

Bearing Fault (G), Outer Race Bearing Fault (H), 1-Ball 

Bearing Fault (I), 2-Ball Bearing Fault (J), 1-Broken Rotor 

Fault (K), 2-Broken Rotor Fault (L), 10% Stator Turn Fault 

(M), and 25% Stator Turn Fault (N). 
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(b) 

Fig. 13 Feature extractions of healthy induction motor at full load using 

Hilbert transform: (a) Current waveform, and (b) Speed waveform. 

Figure 13(a) illustrates the feature extraction process from 

the three-phase current waveform using the Hilbert transform 

for a healthy induction motor under full load conditions. The 

characteristics of the induction motor were first captured from 

the experimental setup and pre-processed. A time window of 

0 to 15 seconds was selected for analyzing the current 

characteristics of the motor, with the waveform plotted in the 

first row of Figure 13(a). To observe in-depth current 

characteristics, a zoomed-in plot of the waveform between 1 

second and 1.05 seconds can be seen in the second row of 

Figure 13(a)The Hilbert transform was then applied to the pre-
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processed current waveform, as depicted in the third section 

of Figure 13(a)The fourth line of Figure 13(a) displays 100 

random peaks identified after applying the Hilbert transform. 

The next row shows a bar chart of extracted features, including 

minimum, maximum, standard deviation, median, and mean, 

for the healthy motor under full load conditions. This 

represents one sample. The same procedure was repeated for 

all seven fault conditions under various loading scenarios, and 

their corresponding features were extracted. Similarly, the 

same method was applied to extract features from the speed 

characteristics of the induction motor under all faulted and 

healthy conditions across all loading scenarios, as shown in 

Figure 13(b). Finally, the features extracted from the current 

and speed waveforms after applying the Hilbert transform 

were combined to form Dataset 1, which was then used to train 

the WOAPRNN. 

5.2. Modified Gabor Filter-Based Feature Extraction for 

GWOPNN 

The GWOPRNN predicts motor fault conditions by 

extracting features from the characteristics of speed and 

current waveforms using the Modified Gabor Filter (MGF). 

The induction motor was analyzed under seven different fault 

conditions and one healthy condition, as mentioned earlier. 

Figure 14(a) illustrates the feature extraction process from the 

three-phase current waveform using the Modified Gabor Filter 

for a bearing fault with one ball broken under full load 

conditions. The characteristics of the induction motor were 

first captured from the experimental setup and pre-processed. 

A time window of 0 to 15 seconds was selected for analyzing 

the current characteristics of the motor, with the waveform 

plotted in the first row of Figure 14(a). To observe detailed 

current characteristics, a zoomed-in plot of the waveform 

between 1 second and 1.1 seconds is shown in the second line 

of Figure 14(a). The third line of Figure 14(a) displays the 

characteristics of the three-phase current waveform after 

applying the Modified Gabor Filter, highlighting the 100 

random peaks identified. The fourth line of Figure 14(a) 

presents a bar chart of the extracted features, including 

minimum, maximum, standard deviation, median, and mean, 

for one sample of a bearing fault with one ball broken under 

full load conditions. The same procedure was repeated for all 

samples, as well as for the healthy condition and all seven fault 

conditions under various loading scenarios, to extract their 

corresponding features.  

Figure 14(b) shows the speed characteristics of an 

induction motor with one ball broken fault under full load 

conditions. Similarly, the same procedure as stated earlier for 

feature extraction from current characteristics was carried out 

to extract features from the speed characteristics. The same 

process was repeated for all healthy and faulted conditions 

under various loading scenarios. Finally, the features extracted 

from the current and speed waveforms after applying the 

Modified Gabor Filter were combined to form Dataset 2, 

which was then used to train and test the GWOPRNN. 
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(b) 

Fig. 14 Feature extraction of bearing fault with one ball broken at full 

load using gabor filter: (a) Current waveform, and (b) Speed waveform. 

5.3. Feature Extraction by Wiener Filter for 1-D CNN 

Figure 15(a) illustrates the process of extracting features 

from the current characteristics of an induction motor during 

a one-bar broken fault under full load conditions. The same 

procedure described in Figure 15(a) was followed to extract 

features from the current characteristics of the induction 

motor, but instead of using the Hilbert transform, the Wiener 

filter was applied. The corresponding features were extracted 

and stored for all seven faulted conditions as well as the 

healthy condition (A, G, H, I, J, K, L, M, N). 
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(b) 

Fig. 15 Feature extraction of one bar broken in the rotor at full load:   

(a) Current waveform, and (b) Speed waveform. 

Similarly, the procedure outlined in Figure 15(b) was 

followed to extract features from the speed characteristics of 

the induction motor. Instead of using the Hilbert transform, the 

Wiener filter was applied to the speed waveform. The 

extracted features were analyzed and stored for both healthy 

and faulted conditions across various loading scenarios. 

5.4. Advantages of WOPCNN Over 1D-CNN and GWOPNN 

The WOPRNN offers several notable advantages. Firstly, 

it provides enhanced noise filtering, as the Hilbert filter 

effectively reduces operational noise and vibrations, 

particularly under full-load conditions. Secondly, it delivers 

improved feature extraction capabilities, outperforming both 

1D-CNN and GWOPNN in identifying intricate patterns from 

stator currents and rotor speeds, resulting in higher fault 

detection accuracy. Additionally, WOPRNN excels in 

detecting complex faults, consistently identifying challenging 

fault types such as rotor faults (K, L) and stator turn faults (M, 

N) with superior accuracy. Lastly, the model demonstrates 

consistent detection performance across various load 

conditions, maintaining high classification accuracy for both 

simple and complex fault types, which highlights its reliability 

and robustness. 

5.5. Confusion Matrix Analysis of WOPRNN 

The confusion matrices were employed to analyze the 

performance of the WOAPRNN by comparing its predicted 

outputs with the actual values. Tables 2, 3, and 4 demonstrate 

the classification performance of WOAPRNN for three load 

conditions: no load, full load, and half load, presenting the 

predicted outputs along with the actual outputs. Table 5 

summarizes the overall classification accuracy of the 

WOAPRNN under all load conditions. Figures 16 to 18 depict 

bar charts comparing the classification performance of 

WOAPRNN with other neural networks, namely 1-D CNN 

and GWO-PNN, under all load conditions (no load, half load, 

and full load). Additionally, Figure 19 presents a bar chart 

showcasing the overall accuracy of all three neural networks. 

From Table 2, it was observed that WOAPRNN performed 

exceptionally well under fault conditions A, G, H, and I, with 

a slight reduction in accuracy for conditions J, K, L, and M. 

Similarly, Table 3 shows that WOAPRNN excelled in fault 

condition A but struggled in other fault conditions. Table 4 

indicates strong performance in conditions A and G, with a 

gradual decline as other fault conditions were considered. 

Table 5 reveals that under no-load conditions, WOAPRNN 

achieved its highest accuracy of 99.28%. As the load 

increased, its accuracy decreased slightly to 99.06%. Despite 

this minor reduction, WOAPRNN achieved an impressive 

overall classification accuracy of 99.15%. The analysis of 

Figures 16 - 19 and Tables 2 - 5 demonstrates that 

WOAPRNN outperformed other fault classification neural 

networks, such as 1-D CNN and GWO-PNN, achieving the 

highest accuracy of 99.15%. 

Table 2. WOPRNN - no load confusion matrix 

Actual A G H I J K L M N Accuracy (%) 
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G 0 200 0 0 0 0 0 0 0 100.0 
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H 0 0 200 0 0 0 0 0 0 100.0 

I 0 0 0 200 0 0 0 0 0 100.0 

J 0 0 0 1 199 0 0 0 0 99.5 

K 0 0 0 0 0 199 1 0 0 99.5 

L 0 0 0 0 0 1 199 0 0 99.5 

M 0 0 0 0 0 1 1 195 3 97.5 

N 0 0 0 0 0 0 0 5 195 97.5 

Table 3. WOPRNN - half load confusion matrix 

Actual A G H I J K L M N Accuracy (%) 

A 200 0 0 0 0 0 0 0 0 100 

G 0 199 1 0 0 0 0 0 0 99.5 

H 0 1 199 0 0 0 0 0 0 99.5 

I 0 0 0 199 1 0 0 0 0 99.5 

J 0 0 0 1 199 0 0 0 0 99.5 

K 0 0 0 1 0 198 0 0 1 99.0 

L 0 1 0 0 0 1 198 0 0 99.0 

M 0 0 0 0 0 0 1 197 2 98.5 

N 0 0 0 0 0 0 0 5 195 97.5 

Table 4. WOPRNN - full Load Confusion Matrix 

Actual A G H I J K L M N Accuracy (%) 

A 200 0 0 0 0 0 0 0 0 100 

G 0 200 0 0 0 0 0 0 0 100 

H 0 1 199 0 0 0 0 0 0 99.5 

I 0 0 0 199 1 0 0 0 0 99.5 

J 0 0 0 1 199 0 0 0 0 99.5 

K 0 0 0 1 0 197 1 0 1 98.5 

L 0 1 0 1 0 0 198 0 0 99.0 

M 0 0 0 0 0 1 1 196 2 98.0 

N 0 0 0 0 0 0 0 5 195 97.5 

Table 5. WOPRNN accuracy by fault type and load condition 

Fault Type No Load (%) Half Load (%) Full Load (%) Overall Accuracy  (%) 

A 100.00 100.00 100.00 

99.15 

G 100.00 99.50 100.00 

H 100.00 99.50 99.50 

I 100.00 99.50 99.50 

J 99.50 99.50 99.50 

K 99.50 99.00 98.50 

L 99.50 99.00 99.00 

M 97.50 98.50 98.00 

N 97.50 97.50 97.50 

Average 99.28 99.11 99.06 
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Fig. 16 No load comparison bar chart  

 
Fig. 17 Half-load comparison bar chart  

 

Fig. 18 Full load data bar chart 

 

Fig. 19 Overall comparison 

6. Conclusion  
From experimental studies, tabulations, and bar charts, it 

was evident that WOAPRNN was far superior to other fault 

classification methods, such as 1-D CNN and GWOPRNN, 

for identifying faults in a 3-phase induction motor, achieving 

an overall accuracy of 99.15%. By considering both current 

and speed characteristics, this method became more accurate 

than most other fault classification neural networks. The work 

highlights the potential for enhancing predictive maintenance, 

reducing downtime, and improving operational efficiency, 

with future research opportunities in broader fault scenarios 

and other motor types. 
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