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Abstract - Wearable sensors are essential for recognizing human activity in sports, healthcare, and smart surroundings 

applications. Robust classification models and effective feature selection directly affect recognition accuracy. This paper 

proposes a novel approach called Chaotic Logistic Map-based Grey Wolf Optimization with Decision Tree (CLM-GWO-DT) 

to predict human activity recognition. The proposed technique improves the GWO algorithm by using chaotic logistic maps to 

enhance its exploration and exploitation abilities. CLM-GWO is used to find the most informative features in raw sensor data, 

thereby reducing dimensionality and enhancing relevant patterns.  A Decision Tree (DT) classifier is then applied to the 

retrieved data to ensure accurate and interpretable identification of human activity. The experiments employed two popular 

datasets: UCI Human Activity Recognition (HAR) and Wireless Sensor Data Mining (WISDM). The results indicate that the 

proposed model exceeds the performance of existing methods in the literature concerning accuracy, precision, recall, F-Score, 

and Matthews Correlation Coefficient (MCC). 

Keywords - Chaotic logistic map, Feature selection, Grey wolf optimization, Human activity recognition. 

1. Introduction 
The quickly developing field of HAR uses information 

gathered from wearable sensors like accelerometers and 

gyroscopes to identify and categorize human actions, such as 

walking, jogging, and sitting. With the increasing integration 

of smart devices in daily life, HAR has gained significant 

consideration for its possible benefits in enabling intelligent 

systems in numerous domains. Applications of HAR include 

healthcare for monitoring patient recovery and detecting falls, 

fitness tracking to provide personalized activity insights [1], 

elder care for ensuring safety [2], and smart environments for 

adaptive automation. The ability to accurately recognize 

activities is essential for enhancing quality of life, improving 

safety, and enabling real-time decision-making in diverse 

scenarios. Feature selection is a critical step in HAR systems, 

aimed at identifying the most relevant features from high-

dimensional sensor data while eliminating irrelevant or 

redundant ones. This procedure improves Machine Learning 

(ML) model performance and lowers computing complexity 

[3, 4]. Optimization techniques are essential to feature 

selection because they efficiently traverse the vast search area 

to find the best subsets of features [5]. Among the various 

optimization algorithms like Particle swarm optimization [6], 

Whale Optimization [7], and Grey Wolf Optimization 

(GWO) [8], GWO has demonstrated superior performance 

due to its effective balance between exploration and 

exploitation, influenced by grey wolf hunting tactics and 

leadership structures. In this work, we provide an improved 

CLM-GWO method for HAR feature selection. By using a 

chaotic logistic map, we avoid premature convergence and 

increase the diversity of options, making the optimization 

process more accurate and efficient overall. We use a DT 

classifier, which is renowned for its ease of use, 

interpretability, and excellent performance in activity 

identification tests, to categorize the chosen characteristics 

[9]. Based on a particular criterion, the technique determines 

the feature and threshold that result in the optimal split [10]. 

Due to its effectiveness in [11], tree-based ensemble 

techniques have been selected.The performance of the 

proposed CLM-GWO with DT is evaluated using benchmark 

datasets, including WISDM and UCI HAR. 

 These datasets provide extensive sensor data, making 

them ideal for validating the effectiveness of feature selection 

and classification approaches in HAR [12]. The suggested 

approach is a reliable solution for HAR applications since it 

reduces computing overhead and achieves improved 

classification accuracy, as shown by the experimental 

findings. By leveraging the strengths of chaotic systems, grey 

wolf optimization, and decision tree classification, this study 
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contributes to advancing HAR systems’ efficiency and 

reliability with potential applications in healthcare, fitness, 

and smart environments. 

2. Literature Review 
In the study by Garcia et al. [13], they introduced a 

dataset for HAR that works regardless of where the sensors 

are placed, how they are oriented, or who is using them. They 

tested the dataset using the Support Vector Machine (SVM) 

methodology, which produced an accuracy of 74.39%. Their 

model helped to make the recognition of human activities 

more practical and closer to real-life applications. Gyroscope 

and accelerometer data from smartphones are used in the 

study by Hayat, A., Dias, M. Bhuyan, B.P. Tomar, R. [14] to 

track the activities of senior citizens in different settings. For 

activity recognition, ML and DL methodologies that include 

k-NN, Random Forest, SVM, ANN, and LSTM were used. 

With 10-fold cross-validation, SVM offered 89.07% accuracy 

at a low computation time of 0.42 minutes, while LSTM 

reached the maximum accuracy of 95.04%. ButchiRaju et al. 

[15] investigated a medical sensor dataset that included a 

number of factors in a different investigation. With a 

remarkable accuracy of 94%, they demonstrated a smart heart 

disease prediction system using the LSTM-CNN architecture. 

 This study highlights how important it is to include a 

variety of medical characteristics when using sophisticated 

architectural models to forecast health issues.Kun Xia et al. 

[16] used the WISDM dataset to apply a 3-CNN approach for 

human activity recognition, which produced a 92.30% 

accuracy rate. The significance of DL methods for precise 

and subtle activity identification from wearable sensor data is 

highlighted by their emphasis on Convolutional Neural 

Networks (CNNs). Federico Cruciani et al. [17] study on 

UCI-HAR utilized Convolutional Neural Networks (3-CNN) 

to learn features with a classification accuracy of 95.85%, 

demonstrating CNN’s potential for HAR. Syed K. Bash et al. 

[18] introduced Smartphone-Based Neighborhood 

Component Analysis (NCA) with Feature selection, SVM 

and Dense Neural Network, reaching an excellent accuracy of 

95.79%. This study stands out from other works due to the 

innovative combination of feature selection, SVM, and dense 

neural networks. It shows that the completeness of models 

can improve HAR accuracy. Laith Abualigah’s [4] work 

investigates diverse feature selection techniques, focusing on 

Filter, Wrapper, and Embedded methods to identify optimal 

feature subsets for enhanced predictive accuracy. The study 

also reviews optimization algorithms and assesses various 

feature selection approaches on standard datasets. 

 

3. Proposed Methodology 
 A HAR framework, including pre-processing, feature 

selection, and classification methods, is shown in Figure 1. 

The UCI HAR and WISDM datasets are used in this work. 

The datasets are pre-processed using data normalization 

techniques to standardize the input for consistent and efficient 

processing; noises and special characters are eliminated. 

Next, the feature selection process uses the Chaotic Logistic 

Map-Grey Wolf Algorithm (CLM-GWO). This step identifies 

the most relevant features from the high-dimensional sensor 

data, reducing redundancy and dimensionality while retaining 

critical information. The optimized features are then passed to 

a Decision Tree Classifier, which performs the classification 

of human activities such as walking, sitting, or standing. The 

GWO method is a metaheuristic optimization method 

originally developed based on the social organization and 

hunting techniques used by grey wolves in the wild. In it, the 

population is divided into alpha, beta, delta and omega mobs- 

mimicking the leadership systems and pack hunting 

technique.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 1 Framework of proposed system 
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Fig. 2 Steps involved in GWO 

 GWO excels at balancing exploration (global search) 

and exploitation (local refinement), which makes it 

particularly effective in high-dimensional optimization 

problems like feature selection [19]. Particularly in 

nonlinearand complicated datasets, GWO is more resilient 

against local optima, has fewer parameters, and is 

computationally easier than techniques like “Whale 

Optimization Algorithm (WOA) or Particle Swarm 

Optimization (PSO)” [20, 21]. These advantages make it an 

excellent choice for reducing redundancy, improving model 

accuracy, and increasing computational efficiency. Figure 2 

depicts the steps involved in GWO. When combined with 

chaotic systems, such as the logistic map, GWO’s 

performance is further enhanced. Chaos introduces dynamic 

randomness that enriches diversity in the population, 

preventing premature convergence and improving global 

search capability [22, 23].  

The CGWO method is especially effective for feature 

selection, as it efficiently identifies the most relevant features 

while eliminating noise and irrelevant data by integrating 

CGWO with a DT classifier; the most optimized feature 

subset is utilized for classification. DT offer interpretable, 

rule-based models, and their collaboration with CGWO leads 

to high accuracy and reduced computational complexity, 

making them ideal for applications like HAR and other 

domains requiring precise, scalable, and interpretable 

solutions.In order to make the framework deliver high 

accuracy and resilience in HAR tasks, the methodology 

efficacy is finally evaluated through the use of performance 

metrics. This systematic approach enhances the scalability 

and applicability of HAR systems in real-world scenarios like 

healthcare and fitness monitoring. 

4. Experimental Results and Discussions  
The performance of the CLM-GWO-DT technique on 

WISDM and HAR was analyzed in this section.  

4.1. WISDM Dataset Description 

There are 1098209 samples in the WISDM database. 

Walking (38.6%) and standing (4.4%) are the most and least 

common activities, respectively. Furthermore, the study 

design of WISDM involved an experimental goal of 36 

participants who were required to do specific routine tasks 

with the Android phone placed in the pocket of their pants.  

When a motion sensor was integrated into cellphones, the 

sensor that was put into cellphones was an accelerometer that 

provided a 20-Hz sampling rate. Standing (Std), sitting (Sit), 

walking (Walk), going upstairs (Up), coming down (Down), 

and jogging (Jog) were the activities that were observed. For 

purposes of verifying the data collected, one person was 

assigned the role of overseeing this process to guarantee the 

most incredible quality of data collection. Table 1 describes 

the WISDM dataset. 

Table 1. Description of the WISDM dataset 

WISDM Dataset 

Activity Samples 
Percentage 

(%) 

For 

Experimental 

Walk 424400 38.6 5000 

Jog 342177 31.2 5000 

Up 122869 11.2 5000 

Down 100427 9.1 5000 

Sit 59939 5.5 5000 

Std 48397 4.4 5000 

Total Number of Instances 30000 

4.1.1 Analysis of the WISDM Dataset Results 

The CLM-GWO-DT technique has selected five features 

as discriminatory features from the available six features. The 

CLM-GWO-DT technique’s performance on the WISDM 

dataset is displayed in Table 2.  

All six classes were correctly classified, as shown by the 

confusion matrix for 70% of the dataset used for training and 

30% for testing in Figures 3(a) and 3(b). The classification 

performance bar charts for each class are displayed in Figures 

3(c) and 3(d). Figure 4 shows a brief recognition result of the 

CLM-GWO-DT technique on the WISDM dataset.                                                                                                                   

Figure 5 displays a thorough PR analysis of the CLM-

GWO-DT methodology on the WISDM dataset. Table 3 

represents the Precision-Recall (PR) curve values for the 

CLM-GWO-DT technique when evaluated on the WISDM 

dataset. 

Start 

Set the Population of Grey Wolf 

opulation 

Compute every search of fitness 

Evaluate the fitness function 
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Table 2. Prediction outcome of CLM-GWO-DT technique on the WISDM dataset  

Class Accuracy Precision Recall Fscore MCC 

Training Phase (70%) 

Walk 92.69 79.41 75.78 77.55 73.21 

Jogging 94.55 86.43 79.78 82.97 79.82 

Upstairs 94.35 83.39 82.65 83.02 79.63 

Downstairs 94.25 80.43 86.86 83.52 80.13 

Sitting 93.89 83.12 79.20 81.11 77.50 

Standing 95.10 82.11 90.16 85.94 83.12 

Average 94.14 82.48 82.41 82.35 78.90 

Testing Phase (30%) 

Walking 92.79 79.55 76.32 77.90 73.62 

Jogging 94.53 86.08 80.24 83.06 79.87 

Upstairs 94.66 84.81 82.47 83.62 80.44 

Downstairs 94.33 80.30 86.72 83.39 80.06 

Sitting 93.97 84.17 79.13 81.57 78.02 

Standing 94.94 81.31 90.82 85.80 82.93 

Average 94.20 82.71 82.62 82.56 79.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 
Fig. 3(a) and 3(b) Confusion matrices, (c) and (d) Classifier performance on training and testing. 
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Fig. 4 Average of CLM-GWO-DT technique on WISDM dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 PR curve of CLM-GWO-DT technique on WISDM dataset 

Table 3. PR curve values of CLM-GWO-DT WISDM  dataset 

 

Activity 

WISDM 

Precision         Recall 

Walking 0.9467 0.9386 

Jogging 0.9666 0.9304 

Upstairs 0.8499 0.9058 

Downstairs 0.8799 0.8598 

Sitting 1 1 

Standing 1 1 

4.2. UCI HAR Dataset Description 
The UCI HAR dataset is a well-structured resource 

commonly utilized for worldwide machine learning and 

human activity recognition. It was created by gathering data 

from 30 volunteers who engaged in six physical activities: 

walking, walking upstairs, walking downstairs, sitting, 

standing, and lying down. Each participant carried a 

smartphone at their right waist, equipped with inertial 

sensors, an accelerometer, and a gyroscope. This setup 

continuously recorded sensor data at a fixed rate of 50 Hz for 

15 seconds, resulting in a series of 3-axial linear acceleration 

and 3-axial angular velocity measurements. Following data 

collection, pre-processing took place to extract time-domain 

and frequency-domain features, including mean, standard 

deviation, Signal Magnitude Area (SMA), and Fast Fourier 

Transform (FFT) coefficients. The final dataset comprises 

561 features associated with activities; therefore, it is 

appropriate for applying supervised learning algorithms. It 

has a training data set and a test data set in order to provide 

the tools for model assessment and check its effectiveness. 

The scientific community recognizes the UCI HAR dataset as 

a benchmark for evaluating different classification algorithms 

in activity recognition and wearable body sensor networks, as 

shown in Table 4. 

 
Table 4. Description of the UCI-HAR dataset

 

4.2.1 Analysis of the UCI-HAR Dataset Results 

Of the 561 features that are available, 403 have been 

selected by the CLM-GWO system. All six classes were 

correctly classified, as shown by the confusion matrix for 

70% of the dataset used for training and 30% for testing in 

Figures 6(a) and 6(b). The classification performance bar 

charts for each class are displayed in Figures 6(c) and 6(d). 

Table 5 shows the proposed method’s classification 

performance on the UCI-HAR dataset.  

Figure 7 shows a detailed recognition result of the CLM-

GWO-DT method on the UCI-HAR dataset. A PR 

examination of the CLM-GWO-DT algorithm is depicted on 

the UCI HAR dataset in Figure 8. The outcome is defined as 

the CLM-GWO-DT algorithm leading to greater PR 

outcomes. Further, the CLM-GWO-DT system can achieve 

greater PR values on 6 class labels. When tested on the UCI 

HAR dataset, the PR curve values for the CLM-GWO-DT 

technique are displayed in Table 6. 

UCI-HAR Dataset 

Activity Samples Percentage (%) For Experimental 

Walking 122091 16.30 5000 

Upstairs 116707 15.60 5000 

Downstairs 107961 14.40 5000 

Sitting 126677 16.90 5000 

Standing 138105 18.50 5000 

Lying Down 136865 18.30 5000 

Total Number of Instances 30000 

Accuracy         Precision            Recall             F-Score            MCC 
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Fig. 6(a) and (b) Confusion matrices, (c) and (d) Classifier performance on training and testing dataset. 

Table 5. Classification performance of CLM-GWO-DT technique on the UCI-HAR dataset 

Class Accuracy Precision Recall FScore MCC 

Training Phase (70%) 

Walking 94.35 83.71 81.30 82.48 79.13 

Upstairs 94.45 83.40 83.80 83.60 80.26 

Downstairs 95.20 84.00 87.79 85.85 82.99 

Sitting 95.26 85.19 86.74 85.96 83.11 

Standing 93.04 82.06 74.58 78.14 74.13 

Laying Down 95.50 84.82 89.16 86.94 84.26 

Average 94.63 83.86 83.89 83.83 80.65 

Testing Phase (30%) 

Walking 94.18 85.60 79.90 82.65 79.22 

Upstairs 94.42 81.73 84.42 83.05 79.73 

Downstairs 94.83 83.75 86.12 84.92 81.81 

Sitting 95.33 84.60 87.68 86.11 83.33 

Standing 92.88 81.22 74.45 77.69 73.56 

Laying Down 95.31 83.79 88.56 86.11 83.34 

Average 94.49 83.45 83.52 83.42 80.16 
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Fig. 7 Average of CLM-GWO-DT technique on UCI-HAR dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 8 PR curve of CLM-GWO-DT technique on UCI-HAR dataset

Table 6. PR curve values of CLM-GWO-DT technique on UCI HAR 

dataset 

Activity 
UCI HAR 

Precision        Recall 

Walking 0.9426 0.9147 

Upstairs 0.8712 0.941 

Downstairs 0.9353 0.8952 

Sitting 0.908 0.9112 

Standing 0.9083 0.9049 

Laying Down 1 1 

 

5. Comparison with Other Existing Methods in 

the Literature 
Table 7 compares the deployed method with the 

Attention-Mechanism-Based DL Feature Combination 

method in the literature [24]. CLM-GWO-DT technique 

performs better than other approaches, with a maximal of 

94.63% for UCI HAR and 94.20% for the WISDM dataset. 

Table 7. Comparison of CLM-GWO-DT technique with attention 

mechanism-based DL feature combination 

Model Data Accuracy(%) 

Attention mechanism-

based DL 

WISDM 

UCI-HAR 

93.89 

93.48 

CLM-GWO-DT 
WISDM 

UCI-HAR 

94.20 

94.63 

 

6. Conclusion 
Therefore, this study proposes the Chaotic Logistic 

Map-based Grey Wolf Optimization with a Decision Tree 

(CLM-GWO-DT) framework for HAR using wearable 

sensor data. By incorporating chaotic logistic maps in the 

GWO methodology in the proposed method, the effort to 

find the right balance among the exploration and exploitation 
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stages simplifies the task of selecting the right features from 

larger dimensions of sensor data. Upon operating with the 

DT classifier, these improved characteristics provide 

accurate, human-interpretable and efficient identification of 

human activities.  UCI HAR & WISDM benchmark datasets 

used for the experimental evaluation demonstrate that the 

deployed CLM-GWO-DT surpasses the existing MCC, F-

Score, recall, accuracy, and precision methodologies. In 

conclusion, these results corroborate the effectiveness and 

reliability of the presented approach for HAR applications. 

Besides improving the recognition accuracy, the values of 

the proposed CLM-GWO-DT framework decrease the 

computational cost; this is necessary to apply to use in 

reality, for instance, health care, sports science, and smart 

environments. In order to expand the scope and usefulness of 

the health of knowledge and intelligent systems, future 

research might build on this framework by integrating real-

time systems, multimodal data sources, and more 

sophisticated classifiers. 
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