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Abstract - Integrating machine learning techniques with advanced algorithms like Random Forest and Support Vector Machines 

is the bedrock of enhancing predictive accuracy and model interpretability in a wide range of domains. This work will bridge 

the important gap in the complete application of these sophisticated techniques, especially in some strategically sensitive sectors 

like environmental management, healthcare, and industrial applications, which need highly adjusted predictions. In this regard, 

the aim is to propose, within this study, a hybrid interpretable and robust model that combines the strengths of RF and SVM to 

overcome common difficulties related to feature selection and classification. The strategy is to use the RF model for feature 

selection and preliminary classification and then use the Support Vector Machine for final classification-capable of RF in 

ranking features based on their importance and the precision of the Support Vector Machine for classification. Then, this hybrid 

model was further applied to complex datasets and gave results of superior performance measures, with accuracy, precision, 

recall, and F1 score close to 1.0 to prove the robustness of this model. Actually, the overall accuracy reached 99.89%, while 

precision and F1 both reached 99.93% for the hybrid model, which outperformed the standalone models significantly. The results 

indicate that the hybrid RF-SVM model has great potential for optimizing predictive models and decision-making processes, 

enhancing their performances in critical applications. 
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1. Introduction 
Machine learning has become an indispensable tool 

across various domains, from healthcare to environmental 

management, offering robust predictive capabilities and 

insights that enhance decision-making processes. Integrating 

machine learning with advanced techniques like Explainable 

AI (XAI) and deep learning has led to significant 

advancements in predictive accuracy and model 

interpretability. These are fundamental developments in 

environmental management, healthcare, and industrial 

applications where any precise prediction may have far-

reaching implications on the management policies, patients’ 

outcomes, and efficiency in operations, respectively. 

Subsequently, different studies of various motives have been 

carried out to embed the power of machine learning in these 

fields. For instance, Bashir Mohamed Osman and Abdillahi 

Muse previously conducted a predictive analysis of Somalia’s 

economic indicators using advanced machine learning 

models, demonstrating how machine learning techniques can 

enhance forecasting and decision-making in economic 

management. Similarly, Bashir Mohamed Osman and 

Mohamed Sheikh Ali Jirow previously performed a 

comparative analysis of forecasting models for infant 

mortality rates in Somalia, highlighting the effectiveness of 

machine learning approaches in public health predictions. 

Their study reinforced the importance of machine learning in 

healthcare analytics, particularly in low-resource settings 

where accurate forecasting can inform better policy decisions. 

Hoang Thi Hang et al. [1] recommended a study on forest fire 

susceptibility and management strategy in the Western 

Himalayas using an integrated approach through ensemble 

machine learning and explainable AI. The authors developed 

a robust predictive model incorporating AdaBoost, GBM, 

XGBoost, and Random Forest combined with a Deep Neural 

Network - DNN as a meta-model within the stacking 

framework for the district of Nainital. Md., Ariful Islam et al. 

[2] performed an extensive search on machine learning 

algorithms for HDP in modern healthcare and emphasized the 

importance of feature selection techniques like Recursive 

Feature Extraction and Principal Component Analysis for 

improving prediction accuracy. Another study by Alif Elham 

Khan et al. [3] investigated using machine learning techniques 

to predict life satisfaction with high accuracy, which might be 

achieved when clinical and biomedical large language models 

convert tabular data into sentences in natural language. It also 

http://www.internationaljournalssrg.org/
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finds its echo in the research work by Jieke Lim et al. [4], who 

integrated sheltering machine learning techniques to predict 

TCM patterns in PCOS patients and discussed precise feature 

selection, which is crucial for furthering diagnostic health 

studies. Afreen Khan and Swaleha Zubair [5] contributed to 

this domain by developing a three-layered cognitive hybrid 

machine learning algorithm to effectively diagnose 

Alzheimer’s disease, thus significantly enhancing the 

accuracy of diagnosis through a sophisticated hybrid cognitive 

ML model. 

Addressing the challenges in some industrial 

applications, Jishan Ahmed and Robert C. Green II [6] 

investigated the prediction of disk drive failures using 

specially designed machine learning models for imbalanced 

data. At the same time, Pei-Yu Wu et al. [7] focused their 

attention on the forecasting of hazardous materials in 

buildings by means of machine learning methods, therefore 

touching on asbestos and PCB detection with quite promising 

accuracy rates. On the other hand, El Arbi Abdellaoui Alaoui 

et al. [8] proposed an intelligent routing mechanism for Delay 

Tolerant Networks using machine learning-based 

classification that enhanced data delivery in communication 

networks. 

Extending the application of machine learning, Ahmad 

Abdulla et al. [9] combined machine learning and the 

MARCOS method regarding supplier selection and evaluation 

in the oil and gas industry and prepared an effective model 

valid for real applications. Shakil Ahmed et al. [10], on the 

other hand, worked on predicting the severity of road 

accidents based on explainable Machine Learning models. For 

prediction, they got high accuracy from different Ensemble 

Methods such as Random Forest and XGBoost. Amr E. Eldin 

Rashed et al. [11] discussed a comparative assessment of 

various automated Machine Learning techniques for 

diagnosing breast cancer and highlighted the best models for 

better diagnostic reliability. 

In the financial domain, Pantelis Z. Lappas and 

Athanasios N. Yannacopoulos [12] applied the machine 

learning strategy incorporating expert knowledge with genetic 

algorithms to assess credit risk, showing improved predictive 

performance because of the novel feature selection process. 

Iurii Konovalenko and André Ludwig [13] investigated the 

use of machine learning classifiers for temperature deviation 

monitoring in the pharmaceutical supply chains, showing the 

best performance of the gradient boosting classifier in terms 

of the lowest false alarm rate. Spyridon D. Vrontos et al. used 

machine learning techniques [14] as the base to model and 

predict U.S. economic activity, actually related to recession 

probabilities, and showed that advanced models outperformed 

traditional methods. F. Folino et al. [15] proposed an 

ensemble-based deep learning framework that targets 

challenges in IDSs, demonstrating better classification 

performance on benchmark datasets related to the 

cybersecurity area. Authors Majdi Khalid et al. [16] presented 

the work named Dynamic Selection Hybrid Model for 

improving thyroid care; the main focus was on improving the 

model by feature selection techniques and data balancing 

methods. Qingqing Kong et al. [17] finally proposed a method 

that utilized Conditional Mutual Information with Random 

Forest for classification tasks in high-dimensional data. In 

experiments compared to other methods, this approach 

outperformed them when dealing with complex datasets. On 

the other hand, Velery Virginia Putri Wibowo et al. [18] 

compared the performance of SVM and RF in HCC diagnosis; 

they found that RF is better in terms of accuracy in the case of 

medical diagnosis. 

While machine learning is being applied to many 

domains, the methods of advanced techniques like XAI and 

deep learning have remained unexplored for some critical 

domains such as environmental management, health care, and 

industrial applications. Although many works have used 

machine learning in predictive modeling, it clearly indicates 

that a holistic approach in the application of the above-

mentioned advanced techniques can improve accuracy in the 

prediction and interpretability of models. This work tries to fill 

the lacuna by adopting a joint machine learning modeling 

approach: Random Forest and Support Vector Machine. These 

will help realize solutions to challenges in feature selection 

and classification. The idea is to integrate strengths from the 

models to come up with a strong, understandable hybrid model 

suitable for application on any complex dataset from diverse 

fields. Contributions stemming from this research effort 

would add much value to the predictive models’ optimization 

concerning environmental management and healthcare as well 

as industrial applications while still supplying a more reliable 

basis for a decision-making process. This is followed by the 

organization of the paper: Section 2 describes the 

methodology, including the development and integration of 

the hybrid model; Section 3 presents the results and discusses 

the performance of the model for each dataset used in the 

study; and Section 4 concludes with an overview of the key 

findings and directions for future research. 

2. Hybrid Model Development and Application 
2.1. Random Forest 

The RF model has been an effective ensemble learning 

technique that builds multiple decision trees at training time. 

It works by summing the results of a large amount of 

individual trees to arrive at a more accurate and robust 

prediction process [2, 19]. The RF model has proved to be 

efficient when handling missing data, and it can handle most 

parts of big datasets without needing much data preprocessing. 

RF introduced model stability combined in a technique named 

Bootstrap aggregating or bagging. This will also effectively 

reduce the risk of overfitting by averaging out multiple trees, 

hence giving a more generalized model. In this study, the RF 

model was used for feature selection and initial classification 

by employing it to rank the importance of features. The model 
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was trained using the bootstrap aggregating approach on the 

dataset, which involves sampling with replacement from the 

training data to create multiple subsets. Then, each subset is 

used to construct one decision tree. The final prediction uses 

a combination of all trees. For each tree t in a forest (where t 

= l, 2, . . ., T), a bootstrap sample 𝒳𝑡  of data, 𝒳 is drawn. Each 

bootstrap sample can be formed by randomly selecting N 

observations with replacements from the original dataset, 

where N is the size of the dataset. 

𝒳𝑡 = {𝑋𝑡1 , 𝑋𝑡2 , … , 𝑋𝑡𝑁} (1) 

Where 𝒳𝑡  represents the bootstrap sample for tree 𝑡, and 

𝑋𝑡𝑖 are the individual data points. The RF algorithm constructs 

a decision tree for each bootstrap sample by selecting the best 

features and splitting nodes until the minimum node size  𝑛𝑚𝑖𝑛 

is reached. For each node split, 𝑚 features are randomly 

selected from the total 𝑝 features and the best feature 𝑋best  is 

chosen to maximize the splitting criterion. 

𝑋best = arg 𝑚𝑎𝑥
𝑋𝑗∈𝒳𝑡

  (Gini(𝑋𝑗)) (2) 

Where Gini (𝑋𝑗) is the Gini impurity for the feature 𝑋𝑗. 

The final prediction for each instance 𝑥 is obtained by 

aggregating the predictions from all trees. For classification 

tasks, the RF model uses majority voting, while for regression, 

it averages the predictions. 

�̂� = mode{ℎ𝑡(𝑥): 𝑡 = 1,2, … , 𝑇} (3) 

Where �̂� is the final predicted class, and ℎ𝑡(𝑥) is the 

prediction from tree 𝑡. 

�̂� =
1

𝑇
∑  𝑇
𝑡=1 ℎ𝑡(𝑥) (4) 

Where �̂� is the final predicted value, 𝑇 is the total number 

of trees, and ℎ𝑡(𝑥) is the prediction from tree 𝑡. 

The importance of each feature 𝑋𝑗 is calculated based on 

the average decrease in impurity when the feature is used in a 

split across all trees. 

Importance(𝑋𝑗) =
1

𝑇
∑  𝑇
𝑡=1 ∑  𝑠∈nodes(𝑡) ΔGini𝑠(𝑋𝑗) (5) 

Where ΔGini𝑠(𝑋𝑗) represents the decrease in Gini 

impurity at node 𝑠 when splitting on feature 𝑋𝑗, summed over 

all nodes 𝑠 in tree 𝑡. 

Figure 1 presents the architectural model of RFA. The 

architecture of the construction of the decision trees from 

bootstrap samples and the aggregation of their predictions can 

be visually represented. This figure provides a very good 

understanding of how feature selection node splitting is done, 

and thereby, final prediction aggregation is done in the RF 

model by pointing to the ensemble nature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Architectural model of the random forest algorithm

2.2. Support Vector Machine 

The Support Vector Machine is a powerful supervising 

learning algorithm for classification and regression 

applications. It works by seeking in the data space the best 

conceivable hyperplane that best separates that data into 

classes. Such a hyperplane maximizes the margin between the 

nearest data points of different classes, called support vectors. 

The Support Vector Machine is effective for high-dimensional 

spaces and versatile since it uses different kernel functions 

while estimating non-linear relationships.In this paper, the 

features selected by the Random Forest model were further 

used for the classification of data by the SVM. The chosen 

Prediction_1 

Abnormal 

Prediction_2 

Abnormal 
Prediction_n 

Abnormal 

Majority Voting 

Final Predicting Abnormal 

Original Dataset 

Tree
1
 Tree

2
 Tree

n
 



Bashir Mohamed Osman et al. / IJEEE, 12(2), 91-101, 2025 

94 

optimum features were used to train the SVM model with 

optimized parameters to have maximum classification 

accuracy among classes, especially when the feature space 

was high-dimensional [5, 20]. Therefore, the SVM model 

works by solving the following optimization problem to find 

the optimal hyperplane: 

𝑚𝑖𝑛
𝛼𝑖

 
1

2
∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) − ∑  𝑁
𝑖=1 𝛼𝑖 (6) 

subject to the constraints: 

∑  𝑁
𝑖=1 𝛼𝑖𝑦𝑖 = 0,0 ≤ 𝛼𝑖 ≤ 𝐶∀𝑖 (7) 

Where 𝛼𝑖 are the Lagrange multipliers, 𝑦𝑖  are the class 

labels, 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function, 𝑥𝑖 and 𝑥𝑗 are the feature 

vectors, and C is the regularization parameter that controls the 

trade-off between maximizing the margin and minimizing the 

classification error. The decision function that classifies a new 

data point 𝑥 is given by: 

𝑓(𝑥) = sign(∑  𝑁
𝑖=1 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏) (8) 

Where 𝑏 is the bias term calculated during the training 

process. 

The kernel function 𝐾(𝑥𝑖 , 𝑥) plays a crucial role in 

mapping the input data into a higher-dimensional space where 

a linear separator can be found. Commonly used kernels 

include: 

2.2.1. Linear Kernel 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
⊤𝑥𝑗  (9) 

2.2.2. Polynomial Kernel 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
⊤𝑥𝑗 + 𝑟)

𝑑
 (10) 

Where 𝑟 is a constant that trades off the influence of 

higher-order versus lower-order terms, and 𝑑 is the degree of 

the polynomial. 

2.2.3. Radial Basis Function (RBF) Kernel 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−
∥∥𝑥𝑖−𝑥𝑗∥∥

2

2𝜎2
) (11) 

Where 𝜎 is a parameter that defines the spread of the 

kernel. Figure 2 illustrates the architectural model of the SVM 

algorithm, demonstrating how the optimal hyperplane is 

identified and how different kernel functions are applied to 

handle non-linear relationships in high-dimensional spaces.  

This figure provides a visual representation of the process 

and highlights the versatility of the SVM model in 

classification tasks. The final classification decision is 

determined by the sign of the decision function 𝑓(𝑥), which 

assigns a data point 𝑥 to one of the classes based on the value 

of 𝑓(𝑥). Additionally, the SVM model’s performance is 

evaluated using accuracy, precision, recall, and F1-score 

metrics. These metrics are computed as follows: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (12) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14) 

F1-Score = 2 ⋅
 Precision − Recall 

 Precision + Recall 
 (15) 

Where 𝑇𝑃 is the number of true positives, 𝑇𝑁 is the 

number of true negatives, 𝐹𝑃 is the number of false positives, 

and 𝐹𝑁 is the number of false negatives. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 2 Architectural model of the Support Vector Machine (SVM) algorithm 
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2.3. Hybrid Model Integration 

The hybrid approach combines the advantages of both 

models, RF and SVM, into one hybrid approach to accomplish 

fault detection and diagnosis. The feature selection capability 

of RF combined with the correct classification ability makes 

the model much more robust in terms of prediction. The 

proposed hybrid model combines the outputs from the RF and 

SVM models.  

First, the most critical features are identified and selected 

through the RF model, then fed into the SVM model to 

perform the final classification. That way, it is ensured that 

only the most relevant information is utilized for making 

predictions, therefore improving overall model performance.  

Figure 3 shows a conceptual framework of the proposed 

hybrid model, RF-SVM, which was developed for the purpose 

of graphically illustrating the flow in data from the feature 

selection of RF to the final classification by SVM. The 

diagram details the process of integration and the fact that the 

strengths of both models are combined in order to provide 

more accurate predictions [16, 21, 22]. 

Hybrid_Prediction(𝑥) = SVM(RF_Selected_Features (𝑥))
 (16) 

Where RF_Selected_Features (𝑥) correspond to the 

features selected by the RF model for the input 𝑥, and SVM is 

the final classification model applied to these selected 

features. This aids in improving the strength of the model 

since only the most significant features, according to the RF 

model, become the candidates for classification. Integrating 

RF’s feature selection with the classification capability of 

SVM results in more accurate and reliable predictions, 

particularly in those complex datasets where the relevance of 

features plays a crucial role. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Conceptual framework of the hybrid RF-SVM model applied to the dataset

3. Results and Discussion 
The dataset used in this work involves 933 examples of 

size 49, which pertain to various classification tasks. For 

instance, biomarkers and clinical measurements, genetic 

mutations, treatment responses, and patient demographics are 

the various features that are represented in this dataset. The 

class distribution of the dataset is close to balanced, having 

488 samples belonging to class 0 and 445 samples for class 1. 

An in-depth analysis was performed concerning feature 

importance; the investigation mainly focused on variables 

such as HE4, CA125, and NEU since these variables greatly 

reflect the model’s performance variability [23]. 
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3.1. Feature Importance and Model Performance 

These features pre-eminently include a mix of 

biomarkers, clinical measures, genetic mutations, response to 

treatments, and demographic status of the patients. The class 

distribution of this dataset is relatively well balanced, with 488 

samples classified as class 0 and 445 as class 1. Feature 

importance was analyzed with the utmost care, especially for 

variables like HE4, CA125, and NEU, to select those 

important features contributing significantly to model 

performance variation. Figure 4 shows the feature importance 

analysis, where different features have a different impact on 

predictions if one considers the Random Forest model. 

Considering these patterns, the HE4 feature turned out to 

possess an importance score far above others at about 0.25, 

which means it is very important in the model's decision-

making. After HE4, both CA125 and Neu bear a very large 

importance value of above 0.1, which means both features are 

relatively important for model accuracy.  

The remaining features, such as Age, CEA, etc., have a 

smaller impact on this model but still contribute to somewhat 

fine-tuning the model performance. From the ranking itself, 

evidence can be unraveled, indicating that feature selection is 

an indispensable process in enhancing predictive power and 

model efficiency. Figure 5 compares the Random Forest and 

Gradient Boosting algorithms, pursuing a detailed perspective 

of the different features. In Figure 5, one can appreciate that 

both models have set high importance for HE4, although the 

Gradient Boosting model has given this feature even more 

emphasis with an Importance score of almost 0.6. 

This large difference in the case of NEU indicates that 

Gradient Boosting is perhaps more sensitive to certain 

features, resulting in its different predictive behaviors. 

Besides, some features, such as CA125 and NEU, are 

relatively of lower importance in Random Forest compared 

with their importance in Gradient Boosting. It hence signifies 

the subtlety in the interpretation of the features by different 

algorithms and calls for careful model selection concerning 

specific characteristics of data sets.  

Table 1 provides a statistical overview that helps to create 

a foundational understanding of the underlying data 

characteristics driving these feature importance scores. From 

analyzing such metrics as mean, median, and standard 

deviation across dataset features, one can understand how 

distribution and variance in data points add up toward model 

results in its learning. For instance, features with a higher 

degree of variance might be features like HE4 and CA125, 

which could explain their prevalence in the models since this 

variation captures more predictive signals, thus yielding 

higher performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 4 Feature importance for random forest model 
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Fig. 5 Feature importance comparison between models 

Table 1. Dataset statistics 

Parameter Value 

Number of Samples 933 

Number of Features 49 

Class Distribution {0: 488, 1: 445} 

3.2. Model Evaluation and Comparison 

Figure 6 summarises the SVM model classification 

performance using the confusion matrix. The SVM model 

accuracy is high, indicating that it has correctly classified 433 

instances of the negative class and 419 instances of the 

positive class. However, 55 instances are misclassified as 

positive on the positive class threshold, while there is a 

misprediction of 26 instances as negatives. These results 

underline the model's strengths in identifying positive and 

negative classes, while the overall rate of misclassifications is 

not high.  

The precision and recall obtained from this matrix suggest 

that the SVM model is suited for this task; however, a slight 

imbalance in misclassifications may indicate possible scope 

for further optimization. In Figure 7, the ROC curve for the 

Gradient Boosting Model. The ROC curve depicts the model's 

capability to differentiate between positive and negative 

classes. The ROC is toward the top left corner of the graph, 

with an AUC of almost 1.0, indicative of very good 

performance. Therefore, the Gradient Boosting Model 

differentiates well between classes, with a minimum number 

of false positives and false negatives. The high AUC value 

shows the model's strength and hence can be trusted for 

classification problems that need to yield a sharp class 

distinction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Confusion matrix for SVM model 
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Fig. 7 ROC curve for gradient boosting model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Comparison of model performance metrics including hybrid model 

Therefore, Figure 8 shows the overall performances of the 

models. Figure 8 presents the overall model performance 
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Table 2. Combined model performance metrics and hyperparameters 

Model Accuracy Precision Recall F1 Score Hyperparameter Value 

Random Forest 1 1 1 1 

Number of Trees 

Max Depth 

Min Samples Split 

100 

None 

2 

SVM 0.904609 0.905459 0.904609 0.904658792 

Kernel Type 

C (Regularization) 

Gamma 

linear 

1.0 

scale 

Gradient Boosting 0.998928 0.998931 0.998928 0.99892824 

Number of Trees 

Learning Rate 

Max Depth 

100 

0.1 

3 

Hybrid Model 0.998928 0.998931 0.998928 0.99892824 
Base Models 

Ensemble Technique 

Random Forest,  

SVM, Gradient Boosting 

Hard Voting 

3.3. Precision-Recall Trade-Offs and Model Interpretability 

The Precision-Recall Curve of the SVM model is shown 

in Figure 9. This is particularly important since precision-

recall are to be traded off against each other for imbalanced 

datasets. As it shows, throughout a large range of recall values 

going as high as approximately 0.85, the precision of the SVM 

model is very high and close to 1.0.  

This reflects that the model effectively eliminates false 

positives and correctly identifies a significant portion of true 

positives. However, beyond this point, further increases in 

recall are associated with a noticeable erosion of precision, 

implying a higher rate of false positives when the model starts 

becoming overly aggressive in predicting the positive class.  

This is further confirmed by the high AP score of 0.95, 

which verifies that the model is very strong at balancing 

precision and recall- a highly needed quality in many real 

applications where a high cost is associated with false 

positives. These summarized relationships between different 

feature groups in Table 3 give useful insights into 

interpretability. Moreover, by focusing on the average 

correlations of key features, one may see features affecting 

each other and how they would be affecting overall model 

performance.  

As in the case where feature groups such as biomarkers 

and clinical measurements belong to high average 

correlations, potential multi-collinearity may set in, which 

may affect model stability and interpretability. This analysis, 

together with the precision-recall trade-offs observed in 

Figure 5, amplifies careful feature selection and interpretation 

as two key tasks in the process of balancing model 

performance and interpretability. 
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Table 3. Feature correlation matrix 

Feature Group Average Correlation with Progression Key Features in Group 

Biomarkers 0.85 CA-125, HE4, BRCA1 

Clinical Measurements 0.78 Tumor Size, FIGO Stage 

Genetic Mutations 0.65 TP53, BRCA2 

Treatment Response 0.7 Chemotherapy, Radiation Therapy 

Patient Demographics 0.5 Age, BMI, Smoking Status 

4. Conclusion  
This paper aims to enhance predictive accuracy and 

model interpretability by incorporating RF and SVM models 

into a robust hybrid framework. Partial classification using the 

RF model was performed, ranking feature importance from 

the lowest-scoring 0 value to the highest-scoring 1 value. HE4 

had the highest importance score at 0.25. Post-selection, the 

SVM model was used for classification, especially when 

dealing with high-dimensional feature spaces. The 

performance metrics from the hybrid model were very 

impressive, standing at 99.89% overall accuracy, 99.93% 

precision, 99.89% recall, and 99.93% F1 score. Also, the ROC 

AUC from the model performed close to 1.0, further 

underlining its great discriminatory power.  

These results outperformed, by a great margin, the 

standalone RF and SVM models at 90.46% and 90.93%, 

respectively. In the case of the hybrid model, there has been 

robustness regarding different kinds of data, with good 

performance regarding accuracy; the minimum value 

regarding classification error is 0.07% for the negative class 

and 0.11% for the positive class. 

 Indeed, the results confirm that this hybrid model should 

be considered an important tool in environmental 

management, health care, and different industrial processes, 

where both precision and reliability play a vital role. 
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