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Abstract - At the Nexus of Intelligent Transportation Systems (ITS), Vehicular Ad-hoc Networks (VANETs) have become a 

quickly developing field, highlighting the necessity of a resilient and reliable VANET architecture to support increasing vehicle 

densities. This study has proposed a new technique, namely a Hybrid Swarm Intelligence Algorithm (HSIA), that mixes 

distributed exploration approaches rooted in hybrid swarm intelligence paradigms and dynamic learning mechanisms. Our 

proposed approach, which builds on the ideas of Artificial Bee Colony (ABC) and Ant Colony Optimization (ACO), combines 

network-distributed communication, dynamic learning rates, and reinforcement learning approaches to improve algorithm 

performance and adaptability. We provide novel equations for adaptive pheromone updates with Dynamic Learning, 

Collective Exploration with Network-Distributed Pheromone Update and Adaptive Exploration-Exploitation Trade-off with 

Reinforcement Learning. Our experimental results on VANETS show that our method is more controlling and versatile than 

conventional ACO or ABC algorithms when striving for quicker convergence rates and higher-quality results. MATLAB 

simulations are used for the experimental validation of the   HSIA technique, which shows improved performance over 

conventional ACO and ABC. Comparing HSIA to ACO, the packet delivery ratio and throughput increased significantly to 

1.09 percent and 1.48 percent, respectively. Compared to ABC, HSIA showed an incredible increase in its packet delivery 

ratio and throughput of 15.94% and 9.87%, respectively. HSIA experienced a 17.25% lower end-to-end delay compared to 

ABC. On the other hand, HSIA’s end-to-end delay was 5.59% lower than that of ACO. Critical performance metrics showing 

this improvement include packet delivery ratio, throughput, and end-to-end delay. 

Keywords - Vehicular Ad-hoc Networks, Artificial Bee Colony Optimization, Ant Colony Optimization, Reinforcement learning, 

Swarm intelligence. 

1. Introduction  
The VANETs are specialized mobile ad hoc networks 

created mainly to enable vehicle communication in dynamic 

transportation environments [1, 2]. For commuters, 

congestion in VANETs poses serious obstacles because it 

lengthens travel times, increases fuel consumption, and 

lowers road safety [3]. On-Board Units (OBUs), Roadside 

Units (RSUs), sensors and vehicles are all part of the 

VANETs architecture. In addition, the RSU can 

communicate with other RSUs and neighboring vehicles [4].  

Vehicle-to-Vehicle (V2V) systems enable direct data 

interchange between nearby vehicles to enable real-time 

information sharing for collision avoidance and cooperative 

driving applications. On the other hand, the interchange of 

data between moving vehicles and the roadside infrastructure 

is referred to as vehicle-to-Infrastructure (V2I) 

communication [5-8]. Various sensors positioned across the 

surroundings are used in Vehicle-to-Sensor (V2S) 

communication. Vehicles could receive information that can 

be sent to them through traffic cameras, sensors in other 

vehicles, and sensors on roadsides. Smart device connectivity 

can be extended with Vehicle-to-Device (V2D) 

communication. Smartphones and vehicles can 

communicate. For example, a driver’s Smartphone and a 

connected vehicle can synchronize to enable smooth, hands-

free operation [9].  

The ACO algorithm aims to find the best way to optimize 

search results using a probabilistic approach. The algorithm 

was presented by Marco Dorigo in 1992. Dorigo derived the 

idea from ants exploring paths when searching for food [10]. 

Karaboga from Turkey’s Erciyes University introduced the 

ABC swarm intelligence algorithm in 2005. The 

effectiveness of this process was analyzed in 2007. The 

intelligent foraging behavior of honeybees served as an 
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inspiration for the algorithm [11-13]. The collective behavior 

of social insects has served as an inspiration for the 

development of swarm intelligence algorithms, which are 

now very effective tools for resolving challenging 

optimization issues. Two of these algorithms, ABC and 

ACO, have attracted much interest due to their ability to 

search solution spaces and effectively identify superior 

solutions. In this study, we provide a unique technique that 

builds on the foundations of ACO and ABC to develop HSIA 

that can perform network-distributed exploration and 

dynamic learning. We want to improve the effectiveness and 

flexibility of these algorithms to deal with optimization issues 

in several areas.  

To achieve this, we use decentralized exploration tactics 

alongside dynamic learning mechanisms. The contributions 

that make our work major include adaptive pheromone 

updating formulas, networked communication for 

collaborative exploration, and reinforcement techniques that 

enable trade-offs between exploration and exploitation in 

adaptive learning. In response to learning goals and problem 

changes, this algorithm can now modify the searching 

procedure to achieve significant solutions towards 

exploration of a larger area for solutions as well as 

convergence on better alternatives. 

Congestion control is important for VANETs to ensure 

that V2V communication is reliable and efficient. In these 

dynamic environments, HSIA, which combines dynamic 

learning and network-distributed exploration, provides a 

powerful solution to congestion problems. The system can 

make real-time routing adjustments in response to shifting 

traffic conditions and network dynamics using dynamic 

learning methods. Because vehicles can change their path, 

they can select other routes, reducing areas where a lot of 

vehicles pass through, which leads to increased effectiveness 

of the highway system generally. Also, peer-to-peer 

communication through a network that is not centralized 

enables cooperative measures for preventing jams while 

sharing data related to them.  

Vehicles can use general traffic information to make 

informed decisions on routing, making congestion control 

strategies more efficient in such a decentralized approach 

[14]. It is also possible to have an adaptive congestion 

management strategy in which dynamic is feasible using 

reinforcement learning methods based on network 

performance criteria. Further, in VANETs, vehicles can learn 

and adapt to their environment over time, thus aiding with 

resource allocation efficiency and traffic jam modulation. 

Hybrid swarm intelligence algorithms can be leveraged to 

increase the performance and dependability of 

communication in VANETs, leading to more dependable and 

efficient congestion management systems. In conventional 

VANET, congestion control solutions are not very flexible in 

response to changing traffic conditions, have centralized 

control, which limits scalability, and have a high 

communication cost, which results in inefficient resource 

allocation and slows reaction times to congestion 

environments. These constraints need to be addressed to 

provide reliable communication and efficient traffic 

management in VANETs [15]. 

1.1. Challenges and Issues of ACO and ABC Algorithms 

 Achieving equilibrium between exploration and 

exploitation: The simultaneous exploration and 

exploitation of both the ACO and ABC algorithms are 

required to reach this equilibrium at their operations in a 

way that will yield the best results. 

 Early Convergence: ACO and ABC algorithms have 

difficulty with early convergence. This is when the 

algorithms stop looking for the best solution and start 

settling for any solution within a brief time frame. To 

avoid this problem from happening prematurely, the 

methods need some guidance on what they should do. 

 Sensitivity of Parameters: ABC needs the fine-tuning of 

its ants’ population, whereas ACO requires the 

determination of the evaporation ratio of its pheromones. 

There is a high degree of sensitivity to parameter settings, 

and fine-tuning is often necessary for these algorithms in 

practice. 

 Speed of Convergence: This challenge is widely 

acknowledged in the ACO and ABC algorithms, as both 

approaches can have slow convergence speeds, especially 

in intricate search spaces. The problem remains how to 

increase the convergence rate without compromising the 

quality of solutions for these two methods. 

 Scalability: Both algorithms, ABC and ACO, may come 

up with problems related to optimization problems on a 

larger scale. 

1.2. Motivation 

VANETs present distinct challenges and requirements 

that motivated the algorithm development described in 

“Dynamic Learning and Network-Distributed Exploration: 

Advancements in Hybrid Swarm Intelligence Algorithm”. In 

dynamic and unpredictable contexts, VANETs provide 

wireless V2V communication for vital information sharing in 

applications like infotainment, traffic management, and 

collision avoidance. Although VANETs have a great 

capability for effective communication and congestion 

management, their dynamic nature serves as a limiting factor. 

The major challenge VANETs face is traffic because it 

changes with respect to traffic flow, accidents, and road states. 

The failure to adapt may result in inefficient routing and 

increased communication delay times in the traditional 

congestion control algorithms. Attempts to manage 

congestion are made more difficult by the fact that many 

VANET applications are real-time, meaning they need 

consistent connectivity and low latency. The discussed 
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solution was developed using network-distributed exploration 

and dynamic learning to address these challenges. 

1.3. Contribution 

The algorithm featured in “Dynamic Learning and 

Network-Distributed Exploration: Advancements in Hybrid 

Swarm Intelligence Algorithm” is a notable breakthrough 

intended to resolve the complex problems linked to VANETs. 

Technology removes congestion hotspots and communication 

delays by allowing vehicles to flexibly change their path 

choices because of dynamic learning techniques that respond 

to the varying traffic conditions and network dynamics. 

Besides, adding network-embedded research enhances 

network scalability with more distributed vehicle 

communication, congestion data sharing, and cooperative 

ways to avoid it.  

The algorithm continuously modifies its communication 

settings to accommodate different traffic flows and congestion 

levels. This makes it possible to both save resources 

effectively and improve communication dependability 

besides increasing throughput. By doing this, redistribution of 

resources is facilitated. Its dynamic congestion management 

strategies and adaptive routing decisions, particularly in 

safety-relevant tasks such as the organization of urgent vehicle 

transport and accident avoidance, ensure that the algorithm 

greatly enhances safety, reliability, and overall network 

performance in VANETs. 

1.4. Organization of Work 

The following structure guides the organization of this 

paper. In Chapter 1, a basic overview of VANETs, the main 

issues, and difficulties with ABC and ACO algorithms are 

covered. The discussion revolves around the implementation 

of HSIA and its motivation behind the problems mentioned 

earlier. The background information and literature on earlier 

studies on ABC and ACO algorithms are included in Chapter 

2.  Newly designed HSIA is illustrated in Chapter 3. Chapter 

4 presents the comprehensive outcomes of the simulation. 

2. Literature Survey 
Several hybrid algorithms based on swarm intelligence 

can prevent congestion within VANETs by drawing from 

various optimization strategies.  

Due to their ability to blend the functionality of various 

optimization techniques, resulting in better strength and 

efficiency, researchers are getting more and more interested 

in hybrid swarm intelligence algorithms. Complex and 

dynamic environments like VANETs need sophisticated 

performance that can rarely be achieved through a single-

method solution, which is what makes these hybrid 

approaches preferable. Recent developments and real-world 

implementations of such methodologies are reviewed in this 

paper to show their capabilities in adapting to changing traffic 

scenarios and optimizing network efficiency. 

C. Kumuthini et al. [16] presented Ant with Artificial 

Bee Colony Techniques (AABC) algorithm, which yields 

more improvement, especially regarding energy 

consumption. Using ABC techniques, the VANET 

determines the optimal path scheduling techniques through 

the ant. Processing time, delay, throughput, and channel 

utilization are the parameters that are considered in this 

technique. The foundation of the AABC algorithm is two 

fundamental methods: variation and selection. Various 

search space locations are evaluated for availability, while 

historical data is utilized as a guarantee by the selection 

procedure. The AABC algorithm improves the quality of 

solutions by incorporating a more efficient local search 

mechanism. The simulation results show that the suggested 

methods will provide the highest possible level of service 

compared to the current methods. 

NingGuo et al. [17] proposed an improved hybrid ACO 

algorithm to reduce the overall mileage of the Multi-

Compartment Vehicle Routing Problem (MCVRP). The first 

step is to construct a probabilistic model that considers both 

related customer blocks and customer variations to guide the 

algorithm search towards high-quality regions. Afterwards, 

initial individuals are created for the probabilistic model 

through heuristic rules, which help find high-quality areas 

very quickly. Furthermore, the exploitation of the promising 

areas is regulated by a new local exploration using geometry 

optimization. Two distinct kinds of Variable Neighborhood 

Descent (VND) methods are created to enhance the local 

exploitation capability even further. These strategies are 

based on the initial move strategy and the speed-up search 

approach. Numerical experiment findings based on 

benchmark datasets ultimately show the efficacy and 

efficiency of an improved hybrid ACO algorithm. 

Sengathir Janakiraman et al. [18] proposed the Hybrid 

ACO and ABC Optimization Algorithm-based Cluster Head 

Selection method as an efficient way to choose a cluster head, 

effectively removing the restrictions of both ACO and ABC. 

Extensive combinations of factors considered ideal are 

presented in this proposed technique, along with an 

examination of the complete set of factors critical in 

determining an ideal cluster head in the Internet of Things. 

Consequently, the exhaustive combinations of components 

found by ACO are assumed to represent the first potential 

solutions for the ABC algorithm. Moreover, ACO employee 

bee agents assist with the initial exploitation stage and 

forecast the precision of every potential solution. 

Additionally, following the first degree of exploitation, the 

observer bee agents calculate the fitness and objective 

function across the first possible options. In the proposed 

system, these “onlooker bee” agents decide which set of 

parameters goes into selecting the optimal cluster head. The 

estimated combination of factors is again inputted into the 

ACO to identify the ideal combination of factors responsible 

for effective cluster head selection. This process is conducted 
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globally. According to the experimental study’s findings, the 

proposed approach efficiently outperforms the benchmarked 

cluster head selection strategies regarding throughput, 

residual energy, alive nodes and dead nodes percentage. 

Anxiang Ma et al. [19] presented an Adaptive Hybrid 

ACO Algorithm (A_HACO) for solving hybrid attribute 

classification problems and obtaining intelligible 

categorization rules simultaneously. It can solve 

classification problems with effectiveness. The ACO is 

integrated with the ABC optimization strategy. The 

A_HACO algorithm for classification issues incorporates the 

ABC optimization process into the ACO process. This allows 

the algorithm to gradually create accurate and understandable 

classification rules. Four candidate rule evaluation functions-

the Klosgen measure, F-measure, M-estimate, and Q+ are 

taken into consideration in A_HACO. The algorithm’s 

capacity to adaptively select the appropriate rule evaluation 

function can greatly improve classification accuracy. The 

experiment outcomes show that the proposed approach works 

better in terms of accuracy and applicability. 

M. Kefayat et al. [20] present the hybrid ACO-ABC 

algorithm, which combines the best features of the ACO and 

ABC algorithms to determine the ideal location and size of 

Distributed Energy Resources (DERs) on distribution 

networks. By using location optimization and size 

optimization mechanisms, the proposed approach combines 

the advantages of the ABC and ACO methods’ global and 

local search capabilities, respectively. Furthermore, a set of 

non-dominated solutions is produced using a multi-objective 

ABC and saved in an external archive. This work solves the 

optimization problem in a stochastic environment using the 

efficient Point Estimate Method (PEM). The IEEE 33- and 

69-bus distribution systems are used to test the proposed 

algorithm. Compared to other evolutionary optimization 

techniques, the outcomes show the ability and efficacy of the 

proposed process. 

Changsheng Zhang et al. [21] proposed an algorithm 

known as the hybrid ABC, which incorporates the ACO 

mechanism into the ABC optimization process to address the 

large-scale service problem. This algorithm models the 

search area depending on a grouping process using flexible 

self-adaptive varying construct graphs and employs a skyline 

query procedure to narrow down the pool of candidates for 

each service class; if quality candidates are retained, this can 

drastically cut down on the number of candidates to find. This 

method builds a self-adaptive dynamic cluster network, 

focuses on the large-scale service choosing an issue and is 

applied to predict the search-critical subarea. Lastly, using a 

variety of standard real datasets and synthetically created 

datasets, this approach is tested experimentally and 

contrasted with a few related service selection algorithms 

recently proposed. In terms of the magnitude of the solutions, 

the results are quite encouraging. 

Abba SugandaGirsang et al. [22] proposed a new hybrid 

algorithm named HABCO, a combination of Ant Colony 

System (ACS), Bee Colony Optimization (BCO), and ELU-

Ants. This tour portion can be recognized as the BCO stage, 

which includes a few cities. It is anticipated that the stage-

tour agent will evaluate the quality agent. Bees return to the 

hive on BCO after traveling one stage, which is divided into 

three types according to quality. Pheromone and distance are 

two crucial variables in ACS used to build the tour. The 

pheromones and distance cities collected in the first step are 

analyzed after a few city visits to see if both factors can be 

utilize to determine the quality agent’s assessment. HABCO 

offers three different kinds of pheromone updating. The three 

types of updates are global, semi-global, and local. The 

outcomes of the experiments demonstrate that HABCO, with 

or without 2opt, obtains the superior solution. 

Nan Zhao et al. [23] proposed a hybrid ACO–EO 

algorithm that expands the depth of search, which prevents 

local minima by combining the ACO algorithm with the 

Extremal Optimization (EO) local-search algorithm. Thus, by 

adding EO to ACO, the proposed procedure can get around 

ACO’s drawbacks and prevent getting stuck in local optimal 

conditions. Simulations show that the proposed method 

performs more effectively than alternative ACO methods and 

can match the most effective multiuser detector when the 

ACO–EO algorithm is utilized for multiuser detection in a 

Direct Sequence Ultra-Wideband (DS-UWB) 

communication network. 

HaoGao et al. [24] proposed a pair of novel updating 

equations for both employed and observer bees. Intelligent 

learning techniques are implemented to speed up the 

convergence rates of the onlooker, employed, and worst-

employed bees. Their local and global searches are balanced 

by using turbulent operators. Lastly, an intelligent learning 

strategy is provided to quicken the convergence rate of the 

lowest employed bee. The designed algorithm’s efficiency 

was determined using many benchmark functions and two 

industrial issues. The proposed strategy outperforms the 

others on both theoretical and applied problems. 

C. Nandagopal et al. [25] proposed a hybrid routing 

system that transfers data more effectively between locations 

by combining the optimization of artificial bee colonies with 

ant colonies. The best possible routing procedure was 

employed to avoid congestion and loss of links. The stability 

of the connection and the residual energy supply influence 

the fitness function’s design. The proposed technique is 

validated using fitness calculations, the update function, and 

solution encoding. Simulation outcomes are performed using 

the NS2 simulator. The results demonstrated that the hybrid 

algorithm was significantly more efficient than other 

VANET algorithms regarding the delivery of packets and 

latency. 
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Syed Mohd Faisal et al. [26] proposed an ACO-based 

routing technique to determine the dependability parameter 

value of backward and forward ants. Route discovery is made 

using an ACO technique, and reliable data transmission is 

ensured to identify novel paths, fixing broken connections in 

the communication networks using a reliability parameter. 

Forward ants search the pheromone database to get to the 

target node using this approach. After taking a few different 

routes to get to the destination node, the forward ant 

evaluated the packet’s legitimacy and used the advanced 

ants’ path as a guide. The backward ants compute the overall 

pheromone concentration and update it. 

3. Proposed Algorithm 
The proposed algorithm, “Dynamic Learning and 

Network-Distributed Exploration: advancements in Hybrid 

Swarm Intelligence Algorithm” is especially designed to 

address the difficulties in VANETs, and it marks a substantial 

development in hybrid swarm intelligence systems. This 

process adopts dynamic learning techniques and strategies 

for distributed network exploration that allow vehicles to 

change their route options instantly depending on traffic 

conditions and network dynamics. The network is made more 

robust and scalable.  

Furthermore, the technique enhances communication 

reliability and throughput in VANETs by optimizing 

bandwidth use and communication parameters through 

dynamic resource allocation. Concerning safety-critical 

applications, including collision avoidance or emergency 

vehicle coordination. The proposed method will greatly 

improve network performance, safety and reliability in 

dynamically changing traffic conditions. 

3.1. Adaptive Pheromone Update Equation with Dynamic 

Learning 

An optimization algorithm, like ACO, can dynamically 

modify the rate at which pheromone levels are updated using 

the adaptive pheromone update with a dynamic learning rate, 

as shown in Equation (1).  

Ant-bees, or agents as they are known, are categorized 

into three groups based on the ABC method: employed, 

onlooker, and scout bees at each level. 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌(𝑡)). 𝜏𝑖𝑗(𝑡) +

 
1

𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠
∑ ∆𝜏𝑖𝑗 

𝑘 .  
𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠
𝑘=1 𝜏(𝑡). 𝑒𝛼

𝑝
|𝑝| . 𝑓(𝑖, 𝑗)     (1) 

Where,  

 (t + 1): represents current pheromone level as of 

time(𝑡 + 1)on edge(𝑖𝑗). Pheromone levels show which 

path in the optimization process is more desirable. 

 (1-ρ(t)): represents the rate at which pheromones decay 

over time is determined by this parameter. The algorithm 

can modify its exploration-exploitation balance in 

response to changes in the dynamics of the problem 

being addressed or the optimization process by 

dynamically varying. 

 
1

𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠
∑ ∆𝜏𝑖𝑗 

𝑘𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠
𝑘=1 : represents the pheromone each 

individual ant-bee deposits on edge(𝑖𝑗) during the 

iteration. The total number of ant-bees in the algorithm 

is (𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠 ). 

 𝜏𝑖𝑗(𝑡): represents the pheromone increment constant’s 

current value at iteration(𝑡). It establishes an initial 

quantity of pheromone that will be added in an update. 

 𝑒𝛼
𝑝

|𝑝| : This term denotes the exponential decay factor, 

where𝛼determines the pace at which pheromone updates 

lose their influence as stages advance. It assures that 

pheromone updates have a greater initial impact and a 

progressively diminishing one over time. 

 𝑝: The current phase of the tour creation process is 

denoted by(𝑝). Both the strength of the pheromone 

update and the path creation process’s progress are 

indicated by it. 

 |𝑝|: The total number of phases in the path creation 

process is shown by|𝑝|𝑝|. By offering a normalizing 

factor, it assures that the impact of pheromone changes 

remains constant among various problem scenarios. 

 𝑓(𝑖, 𝑗) : The fitness function, denoted as 𝑓(𝑖, 𝑗), quantifies 

the quality of the path between nodes(𝑖)and(𝑗). It directs 

the optimization process by offering input on how 

effective various routes would be. 

The optimization process in ABC optimization is divided 

into discrete stages to replicate the actions of ant-bees within 

a hive. Artificial ant-bees are initially set up to represent 

possible solutions, laying the groundwork for further 

exploration. The next responsibility for the employed ant-

bees is to investigate neighbouring solutions, evaluate their 

quality, and adjust their placements as necessary. Onlooker 

ant-bees choose solutions from the data that employed bees 

have provided and then proceed to explore these solutions in 

more detail where they have potential.  

Pheromone modifications at these stages would mean 

looking for better search options as scout ant-bees create 

variety in case of stagnation. Reaching solutions effectively 

over the solution space, ABC converges to optimal solutions 

by trading off exploration versus exploitation as it balances 

alternatively. Every phase brings some algorithm 

performance, and this amalgamation of all enables consistent 

good optimization. 

Adaptive pheromone update equations with dynamic 

learning rates can benefit VANETs in several ways, such as 

increased communication efficiency and dependability. 

Network topology and traffic patterns might alter quickly in 

dynamic and unpredictably changing contexts. The algorithm 
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can adapt its routing strategy to reduce traffic jams and fully 

use resources by changing the frequency at which the 

pheromones are updated according to the conditions of traffic 

on the network, which leads to a decrease in communication 

lag time and an increase in traffic flow when drivers in their 

vehicles use this dynamic routing method which leads to 

taking routes that are less congested at each point in time.  

Moreover, the flexible adjustment of the dynamic 

learning rate permits the algorithm to respond to network 

conditions and modification of communication requirements, 

thereby allowing for the timely delivery of critical 

information while also enhancing communication reliability 

in VANET. Through different dynamic VANET scenarios, 

the algorithm remains effective because it responds to the 

network dynamics, thus improving resilience and increasing 

control.  

Altogether, the adaptive pheromone updating equation 

with dynamic learning rate emerges as an effective solution 

to the specific problems encountered in VANET 

communication, improving vehicular communication 

networks’ global efficiencies and reliabilities. Based on the 

quality of the solutions discovered, this algorithm iteratively 

modifies the pheromone levels on each edge of the solution 

path built by individual ant-bee. The method keeps running 

until it reaches a high-quality solution after a predetermined 

number of iterations. The ultimate pheromone levels are 

output after the predetermined number of iterations, as shown 

in algorithm 1. 

Algorithm-1: Adaptive pheromone update algorithm 

with dynamic learning rate 

1. Initial pheromone levels (𝜏) 

2. Number of iterations (max_iter) 

3. Number of ant-bees (𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠) 

4. Problem-specific parameters and constraints 

5. Initialize pheromone levels (𝜏)  with random 

values  

- for t = 1 to max_iter do 

- for each bee k = 1 to 𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠 do 

- Constructing solution path using ant-

like behavior 

 Evaluate solution quality 

 Update pheromone levels on 

edges based on solution 

quality and path 

- for each edge (i, j) in the solution path 

do 

𝜏𝑖𝑗(𝑡 + 1)

= (1 − 𝜌(𝑡)). 𝜏𝑖𝑗(𝑡)

+  
1

𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠

∑ ∆𝜏𝑖𝑗 
𝑘 .  

𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠

𝑘=1

𝜏(𝑡). 𝑒𝛼
𝑝

|𝑝| . 𝑓(𝑖, 𝑗) 

6. Output final Pheromone levels (r) 

3.2. Collective Exploration with Network-Distribution 

Pheromone Update  

A crucial method in optimization algorithms, collective 

exploration with network-distributed pheromone update, is 

especially motivated by ant colony behavior, as shown in 

Equation (2). 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌(𝑡)). 𝜏𝑖𝑗(𝑡) +

 
1

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
∑ ∆𝜏𝑖𝑗 

𝑘
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖) . (1 +

(𝛾(𝑡))

1+𝑒−𝜎(𝑡))    (2) 

Where: 

 𝜏𝑖𝑗(𝑡 + 1) : represents the pheromone level at time (t+1) 

on the edge (ij). Once the pheromone update process is 

complete, the term denotes the updated pheromone level 

on the edge. 

 𝜌: represents the constant rate of pheromone 

evaporation. It establishes the rate at which pheromones 

on edges evaporate throughout the network globally. 

This parameter influences the rate at which pheromone 

levels decrease over time. 

 
1

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
∑ ∆𝜏𝑖𝑗 

𝑘
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖) . (1 +

(𝛾(𝑡))

1+𝑒−𝜎(𝑡)) represents 

the quantity of pheromone that each nearby ant-bee adds 

to the edge(𝑖𝑗). 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠indicates the quantity of 

adjacent nodes within the network that exchange 

information. The time-varying parameter 𝛾(𝑡)regulates 

the impact of pheromone updates from nearby ant-bees. 

According to time-varying dynamics, it modifies the 

updated contribution of neighboring ant-bees. A time-

varying parameter called 𝜎(𝑡)regulates the logistic 

sigmoid function’s form. It modifies the logistic curve’s 

steepness and structure, which affects how information 

from nearby ant-bees is integrated. 

This method involves artificial agents communicating 

with their surrounding agents, such as ant bees, to share 

knowledge about potential solutions. Through decentralized 

communication, the swarm may more effectively explore the 

solution space [27]. Depending on the solutions’ quality, each 

agent modifies the pheromone levels on solution components 

and notifies nearby agents of these adjustments.  

This allows the swarm to use its collective intelligence, 

and the technique can steer the search process towards 

regions within the solution space that are most likely to 

contain good solutions. As a result of the continuous 

interaction of agents, network-distributed pheromones 

enhance the adaptability of the algorithm to dynamic 

circumstances. Therefore, this permits rapid adjustment by 

swarms in response to alterations in the attributes of the 

problem around it. Collective exploration with network-

distributed pheromone updating allows for effective 

information sharing and agent collaboration. By enhancing 

exploration and exploitation within optimization algorithms, 

this approach can leverage these abilities. Collective 
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exploration with network-distributed pheromone updating 

can greatly improve performance in VANETs, where V2V 

communication is essential for efficiency and safety.  

Vehicles can exchange information about traffic 

conditions, road hazards, and ideal routes through network-

distributed pheromone updates by applying ACO ideas to 

VANETs. Due to the decentralized communication among 

them, vehicles can collaboratively explore and exploit the 

dynamic environment, thus facilitating route selection and 

congestion management.  

Moreover, reliable and effective communication is 

ensured by the adaptability of the algorithm to changing 

traffic patterns and road conditions, leading to enhanced 

delivery of packets, lowered end-to-end delays, and increased 

throughput in VANETs. Pheromone levels are first initialized 

by algorithm 2, and then it uses collaborative exploration to 

iteratively construct solution pathways. According to 

pheromone levels, each artificial bee chooses nearby 

components probabilistically, updates the solution path and 

evaluates its quality.  

Then, the quality of solutions found influences how 

much pheromone levels are adjusted. Ant-bees help in 

spreading the pheromone update to other ant-bees through the 

network. They pass on information about how good the 

solution is and what has been done with the pheromone to 

ant-bees nearby. This method is appropriate for VANETs 

because it adopts collective exploration and communication 

in this procedure to efficiently explore the feasible solution 

field and converge towards some quality solutions. 

Algorithm-2: Collective exploration with network-

distributed pheromone update 

1. Initial pheromone levels (𝜏) 

2. Number of iterations (max_iter) 

3. Number of ant-bees (𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠) 

4. Number of neighbors (𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) 

5. Problem-specific parameters and constraints 

6. Initialize pheromone levels (𝜏)  with random 

values or a predefined heuristic 

- for t = 1 to max_iter do 

- for each bee k = 1 to 𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠 do 

- Construct a solution path using 

collective exploration 

- for each component i in the solution, do 

7. Calculate the probability of selecting each 

neighboring component  j 

8. Evaluate solution quality 

9. Update pheromone levels on edges based on 

solution quality 

- for each edge (𝑖, 𝑗) in the solution 

path do 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌(𝑡)). 𝜏𝑖𝑗(𝑡) +

 
1

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
∑ ∆𝜏𝑖𝑗 

𝑘
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)   

10. Exchange information with neighbors 

- for each bee k = 1 to 𝑁𝑎𝑛𝑡−𝑏𝑒𝑒𝑠 do 

- Share solution quality and pheromone 

updates with neighbors 

11. Update pheromone levels based on information 

received from neighbors 

- for each edge (𝑖, 𝑗) in the network do 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌(𝑡)). 𝜏𝑖𝑗(𝑡) +

 
1

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
∑ ∆𝜏𝑖𝑗 

𝑘
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖) . (1 +

(𝛾(𝑡))

1+𝑒−𝜎(𝑡))  

3.3. Adaptive Exploration-Exploitation Trade0off with 

Reinforcement Learning 
For optimization algorithms to dynamically balance 

between exploring novel solution regions and exploiting 

existing good solutions based on input from the environment 

or prior experiences, the adaptive exploration-exploitation 

trade-off with reinforcement learning is a key mechanism 

shown in Equation (3). 

𝑃𝑖𝑗 =  
𝜏𝑖𝑗

𝛼 .𝑄𝑖𝑗
𝛽

.(
𝜏𝑚𝑎𝑥−𝜏𝑖𝑗

∑ 𝜏𝑚𝑎𝑥−𝜏𝑘
𝑚
𝑘=1

)

∑ 𝜏𝑖𝑗
𝛼 .𝑄

𝑖𝑗
𝛽

𝑘𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑚𝑜𝑣𝑒𝑠 (
𝜏𝑚𝑎𝑥−𝜏𝑖𝑗

∑ 𝜏𝑚𝑎𝑥−𝜏𝑘
𝑚
𝑘=1

)

. (1 +

𝜁(𝑡).
1

1+𝑒−𝜒(𝑡))   (3) 

Where, 

 𝑃𝑖𝑗: represents the probability of choosing edge (ij) in the 

process of building a solution. It shows the probability of 

selecting a specific solution element (edge) according to 

its features. 

 𝜏𝑖𝑗: represents on-edge pheromone level(𝑖𝑗). Pheromone 

levels in optimization techniques, such as ACO, indicate 

the acceptability or attractiveness of solution 

components. Higher pheromone levels usually indicate 

better solutions. 

 Qij: represents Q-value connected to edge(𝑖𝑗) in a 

framework for reinforcement learning. The projected 

long-term benefit or utility of choosing edge(𝑖𝑗) based on 

prior knowledge and experiences is represented by the 

Q-value. More promising solutions are usually indicated 

by higher Q-values. 

 α and β: The pheromone effect is controlled by the 

parametersα,βand Q-values, respectively, enabling 

adaptive modification according to the advancement of 

learning. 

 𝜏𝑚𝑎𝑥  : Maximum observed pheromone across all edges. 

 τk : Usually, k is utilized as an index variable to represent 

every single agent. 

 𝑚 :  Total number of agent ant-bees. 

 ∑ 𝜏𝑖𝑗
𝛼 . 𝑄𝑖𝑗

𝛽
𝑘𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑚𝑜𝑣𝑒𝑠 : represents the summation term 

that reflects the overall impact of Q-values and 

pheromone levels for all permitted edges. It guarantees a 
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legitimate probability distribution by adding the 

probabilities computed for each possible move. 

 (1 + 𝜁(𝑡)).
1

1+𝑒−𝜒(𝑡) : presents a reinforcement learning-

based dynamic modification to the exploration-

exploitation trade-off. The time-varying parameter 𝜁(𝑡) 

regulates the adjustment’s magnitude. The form of the 

logistic sigmoid function, which modifies the 

exploration-exploitation balance over time, is controlled 

by a time-varying parameter called χ(t). 

This approach adaptively changes the exploration and 

exploitation strategies to ensure that the algorithm explores 

new solution spaces under high uncertainty and exploits the 

well-known promising solutions under high confidence. The 

algorithm uses reinforcement learning techniques for 

estimating the expected rewards based on different actions 

through past interactions with the environment. This allows 

the system to make informed decisions that effectively 

maximize long-term performance.  

Within VANETs, where communication between 

vehicles is critical to both efficiency and safety, routing and 

resource allocation decisions are optimized using the 

adaptive exploration-exploitation trade-off with 

reinforcement learning equation. The algorithm is constantly 

balancing exploration and exploitation to adjust to the 

dynamic and unpredictable characteristics of VANETs 

during low-traffic or high-reliability periods, and it might 

control known routes or channels for communication to 

optimize performance.  

Ant-bees utilize the adaptive exploration-exploitation 

trade-off equation to determine the probability Pij for every 

edge. Ant-bees use this probability to choose which edge is 

most likely to be exploited or explore a random edge, as 

shown in algorithm 3. 

Algorithm-3: Adaptive Exploration-Exploitation Trade-

off with Reinforcement Learning 

1. Set parameters: α, β, 𝜁(𝑡), 𝑎𝑛𝑑𝜒(𝑡) 

2. Initialize Q-values Q (ij) for all edges. 

3. Set convergence criteria. 

4. for each bee: 

- Calculate the probability Pij for each 

edge ( ij) using the equation 

𝑃𝑖𝑗 =  
𝜏𝑖𝑗

𝛼 .𝑄𝑖𝑗
𝛽

.(
𝜏𝑚𝑎𝑥−𝜏𝑖𝑗

∑ 𝜏𝑚𝑎𝑥−𝜏𝑘
𝑚
𝑘=1

)

∑ 𝜏𝑖𝑗
𝛼 .𝑄

𝑖𝑗
𝛽

𝑘𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑚𝑜𝑣𝑒𝑠 (
𝜏𝑚𝑎𝑥−𝜏𝑖𝑗

∑ 𝜏𝑚𝑎𝑥−𝜏𝑘
𝑚
𝑘=1

)

. (1 +

𝜁(𝑡).
1

1+𝑒−𝜒(𝑡))  

- With probability  ϵ, select a random 

edge to explore. Otherwise, select the 

edge with the highest probability for 

exploitation. 

5. For each selected edge: Update Q-values 

6. Adjust parameters: 

- Update time-varying parameters 

𝜁(𝑡), 𝑎𝑛𝑑𝜒(𝑡)  as needed. 

7. Check convergence: 

- If convergence criteria are met, stop; 

otherwise, continue. 

The algorithm for adaptive exploration-exploitation 

trade-off using reinforcement learning is shown in Figure 1. 

Initialization is the first step, during which parameters are set. 

The method then goes into a loop that doesn’t stop until the 

convergence requirements are satisfied. In this loop, Ant-

bees depend on the equation given to measure how likely 

each edge is and use it as a guide in determining whether to 

explore or exploit. They proceed by taking the chosen action 

and observing the reward before updating Q-values using the 

Q-learning rule. The loop may continue running depending 

on the convergence criteria, while parameters are altered if 

needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 HSIA block diagram 
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4. Simulation Results 
In this work, MATLAB is utilized to simulate the results 

of the proposed approach. These include the total number of 

vehicles, their velocity, and the size of the packets to evaluate 

the suggested adaptive pheromone updates with Dynamic 

Learning, Collective Exploration with Network-Distributed 

Pheromone Update and Adaptive Exploration-Exploitation 

Trade-off with Reinforcement Learning. Simulation is used 

to process data.  

A total of 300 vehicles were taken into consideration 

during the simulation phase, and the speed limit that was 

taken into consideration is 60 to 120 km/h; ten simulation 

runs with a 100-second simulation time, and a 1024-byte size 

of packet is employed for the simulation. The implemented 

strategy is compared with ABC and ACO. Three metrics are 

examined for performance exploration: throughput, packet 

delivery ratio, and end-to-end delay. 

4.1. Packet Delivery Ratio (PDR) 

By using an HSIA to dynamically optimize node 

placements, PDR in VANETs is enhanced. Equation (4) is 

used to compute PDR. This adaptive technique finds an 

equilibrium between exploration and exploitation to transport 

packets optimally. It also offers effective path optimization 

search [29]. As indicated in Table 1, PDR is computed by 

comparing the total number of packets transmitted from the 

sender to the destination and the total number of packets that 

arrived at the receiver’s end. Figure 2 illustrates how much 

better the PDR in this proposed HSIA is contrasted with the 

traditional ACO and ABC. The HSIA’s average PDR is 

37.1%, but the average PDR of ABC and ACO are 32% and 

36.7%, respectively. Accordingly, HSIA’s average PDR is 

1.09 % higher than ACO’s and 15.94 % higher than ABC’s. 

𝑃𝑎𝑐𝑘𝑒𝑡 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐻𝑆𝐼𝐴

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
*100  (4) 

Table 1. PDR according to speed 

Speed 

Improvement of Proposed HSIA  over ACO 

and ABC 

Packet Delivery Ratio (%) 

ACO ABC HSIA 

20 0.25 0.24 0.27 

40 0.29 0.26 0.28 

60 0.31 0.31 0.3 

80 0.42 0.36 0.43 

100 0.44 0.43 0.44 

120 0.48 0.44 0.49 

 
Fig. 2 Packet delivery ratio 

4.2. End-to-End Delay (EED) 

An HSIA algorithm is used to minimize EED in      

VANETs. Equation (5) is used to calculate EED. This 

dynamic node position optimization encourages efficient 

communication pathways in dynamic vehicle situations, 

reducing delays and enhancing overall performance. As 

demonstrated in Table 2, HSIA outperforms the ABC and 

ACO methods in terms of sending data with the least amount 

of delay from source to recipient utilizing the time of packets.  

Soon, the neighbor’s location will be anticipated. ABC’s 

EED is 32.6667 milliseconds on average, ACO has an 

average EED of 28.63333 milliseconds, and HSIA has an 

average EED of 27.03333 milliseconds. This discrepancy 

shows that HSIA’s EED was reduced by 5.59% compared to 

ACO and 17.25% compared to ABC, as shown in Figure 3. 

𝐸𝑛𝑑 − 𝑡𝑜 − 𝐸𝑛𝑑 𝑑𝑒𝑎𝑙𝑦 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 +
𝑃𝑟𝑜𝑝𝑜𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 + 𝑄𝑢𝑒𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦   (5) 

 
Table 2. EED according to traffic density 

Vehicle density 

Improvement of proposed HSIA  

over ACO and ABC 

End-to-End delay (milliseconds) 

ACO ABC HSIA 

50 26 29 25 

100 27 31 26 

150 28 32 25 

200 29 35 27 

250 31 36 30 

300 36 39 33 
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Fig. 3 End-to-End delay 

4.3. Throughput 

HSIA increases throughput in VANETs. Equation (6) is 

used to calculate throughput. This is accomplished as 

indicated in Table 3, which shows how node placements are 

dynamically optimized, efficient communication paths are 

encouraged. Delays are decreased to boost network 

throughput overall in dynamic vehicle situations [2].  

This adaptive method efficiently searches for the best 

pathways while balancing optimal throughput. Throughput is 

the amount of data that can flow in a predetermined amount 

of time. Figure 4 illustrates how the proposed approach HSIA 

significantly improves overall throughput performance when 

compared to the current ABC and ACO approaches. ABC, 

ACO, and HSIA have the following average throughputs: 

3.26441 Mb/sec, 3.5345 Mb/sec, and 3.5868 Mb/sec, 

respectively. This discrepancy suggests that HSIA’s 

throughput increased by 9.87% over ABC and 1.48% over 

ACO. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑜𝑢𝑡𝑒𝑑 𝑏𝑦 𝐻𝑆𝐼𝐴

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑟𝑜𝑢𝑡𝑒 𝑡ℎ𝑒 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 (6) 

Table 3. Throughput according to traffic density 

Vehicle 

Density 

Improvement of proposed HSIA  

over ACO and ABC 

Throughput (mb/sec) 

ACO ABC HSIA 

50 2.567 2.7132 2.76 

100 2.889 2.6859 2.9 

150 3.089 3.1416 3.4 

200 3.6 3.289 3.7 

250 4.689 4.1208 4.7 

300 5.86 4.5654 5.87 

 
Fig. 4 Throughput 

PDR, EED, and throughput are the three overall 

performance metrics employed in this work and are crucial 

for assessing the dependability and efficacy of 

communication protocols in VANETs. When examining the 

performance measurements of ABC, ACO, and HSIA, 

significant information regarding the impact of congestion on 

network performance is shown. When comparing HSIA to 

ABC and ACO, Table 4 shows the observed increases in 

PDR, throughput, and reduced EED, highlighting the 

effectiveness of congestion management solutions. Figure 5 

displays the average PDR, EED, and throughput values. 

These enhancements make the VANET more dependable and 

efficient, ensuring seamless communication between 

vehicles and infrastructure elements even in challenging and 

congested conditions. 

Table 4. Improvement of parameters according to traffic density 

Improvement of proposed HSIA over ACO and 

ABC 

Traffic 

Density 

Average PDR 

ACO ABC HSIA 

300 

36.7 % 32% 37.1% 

Average EED 

ACO ABC HSIA 

28.63333 

Millisecon

ds 

32.6667 

Milliseconds 

27.03333 

milliseconds 

Average Throughput 

ACO ABC HSIA 

3.5345 

mb/sec 

3.26441 

mb/sec 

3.5868 

mb/sec 

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300

E
n
d

 T
O

 E
n
d

 D
el

ay
 (

M
il

li
se

co
n
d

s)

Vehicle density

Comparision of ACO, ABC and HSIA

ACO ABC HSIA

0

1

2

3

4

5

6

7

50 100 150 200 250 300

T
h
ro

u
g
h
p

u
t(

M
b

/S
ec

)

Vehicle Density

Comparision of ACO,ABC and HSIA

ACO ABC HSIA



Kiran Kumar Jajala & Reddaiah Buduri / IJEEE, 12(2), 124-136, 2025 

134 

 

 

 
Fig. 5 Average PDR, EED and Throughput 

 

5. Conclusion 
Within hybrid swarm intelligence mechanisms, it is very 

significant that the optimization algorithms are enriched by 

network-distributed exploration and dynamic learning.  

By merging adaptive pheromone update equations with 

dynamic learning rates, network-distributed pheromone 

updates with collective exploration and reinforcement 

learning with adaptive exploration-exploitation trade-offs, 

we can use both ABC optimization and ACO. This hybrid 

technique enhances the algorithm’s robustness, adaptability, 

and efficacy in addressing complex problems.  

The results of the PDR demonstrate the superiority of 

HSIA, which surpassed both ACO of 36.7% and ABC of 32% 

with a PDR of 37.1%. In dynamic VANET setups, utilizing 

HSIA as the main optimization method and augmenting it 

with ABC and ACO guarantees efficient congestion 

mitigation and dependable packet delivery.  

The average EED values largely determine the 

effectiveness of congestion control in VANETs. With an 

average latency of 27.03333 milliseconds, HSIA outperforms 

both ACO of 28.63333 milliseconds and ABC of 32.6667 

milliseconds.  

In dynamic VANET setups, utilizing HSIA as the main 

optimization technique and complementing it with ABC and 

ACO ensures effective congestion mitigation and timely 

packet delivery. VANETs’ efficiency in controlling 

congestion can be understood from the average throughput 

values.  

With a throughput of 3.5868 Mb/sec, HSIA exceeds 

ABC of 3.26441 Mb/sec and ACO of 3.5345 Mb/sec, 

demonstrating its efficacy in sustaining high data 

transmission rates for congestion reduction in scenarios that 

are both mobile and decentralized like VANETs. These 

improvements are vital because they increase the PDR, lower 

EED and increase throughput.  

Proposed algorithms are more effective than traditional 

solutions when it comes to performance improvement and 

can be used efficiently to solve various optimization issues.  

In future research, it would be important to explore new 

dynamic ways of learning, like how one can combine 

machine learning strategies for adjusting parameters 

adaptively from real-time traffic information. In addition, 

improving network communication protocols may enable a 

more reliable and efficient network-centric exploration 

process that enhances the resilience and adaptability of mixed 

models of swarm intelligence algorithms under changing 

VANET conditions.
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