
SSRG International Journal of Electrical and Electronics Engineering Volume 12 Issue 2, 146-156, February 2025

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I2P116 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

A Survey on Matrix Based Error Detection and

Correction Codes

Kavya Cherakula1, Varadarajan Sourirajan2

1,2Department of ECE, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.

 1Corresponding Author : kavyach.phd@gmail.com

Received: 13 December 2024 Revised: 12 January 2025 Accepted: 10 February 2025 Published: 22 February 2025

Abstract - Semiconductor memories are prone to various types of faults, such as stuck-at faults, memory faults, etc, that manifest

as errors. As the data is usually stored in the memory in matrix form, the error correction capability is maximised by using

Matrix codes with a minimal number of parity bits and improvement in code rate. The survey of codes extracted include MPC,

3D, HVD, HVDD, DMC, MDMC, PMC, HDMC, OPC, PrMC and MPrMC codes. The results are obtained by modeling in

Verilog HDL using Xilinx Vivado Tool 28nm Zynq FPGA (XC7Z100-2FFG1156). These methods are evaluated for redundant

bits, code rate, area in terms of LUTs, power dissipation, delay, etc. The MPrMC method – 2 Code uses reduced bit overhead

by atleast 25.77% to 70.59%, increases code rate by 8.38% to 57.16%, decreases area occupied by 45.98% to 52.04% for

encoder, 7.43% to 13.37% for decoder, decreases PDP by 19.69% to 51.74% for encoder and 33.67% to 40.97% for decoder.

Hence, the MPrMC code proves to be a better choice in all aspects but trades off the area utilised.

Keywords - Code rate, Errors, Faults, Matrix codes, Radiation, Redundant bits.

1. Introduction
As the technology scales down, integrating many devices

within a single integrated circuit yields higher densities and

miniaturisation. Due to this, radiation occurs due to ionization

in the semiconductor memories, unlike the other essential

components in the ICs. The radiation is a manifestation of high

temperatures in the surrounding elements of semiconductor

devices say in integrated circuits, the MOSFETs and the

routed wires used for signal/ power transmission between the

devices and I/O Blocks.

The radiation caused may be characterized by alpha

particles, gamma rays, neutrons, electrons, etc. Memories are

the most affected devices with ionizing radiation effects,

which cause faults and manifest as errors. The radiation effects

are either transient or permanent based on recovery time from

radiation and restoration of its functionality. The transient

radiation effects occur when a heavily charged particle passes

through the element and creates Single Event Upsets (SEU) or

Single Event Effects (SEEs). They cause false signals or logic

states for a very short time that won’t damage the device. But

these induce soft errors. On the other hand, the permanent

radiation effect or hard error caused by gamma rays results in

altering the structure or functionality of the semiconductor

device. These cause hard errors like latch-up, snapback, etc

and can be resolved by turning off the device. The radiation

effects on memories might alter the bit stored, resulting in

erroneous data. These radiation effects affect semiconductor

memories and form faults like destructive read faults, coupling

faults, stuck-at faults, stuck-open faults, and address decoder

faults. These faults manifest as errors, which may be single or

multiple-bit errors. Multiple-bit errors [1] can be further

classified as adjacent or burst errors and random errors. If the

data read from memory has only a one-bit change, it is called

a single-bit error. If the data read from memory has multiple

changes in data bits that occur randomly at different data

locations, then they are called random errors. If the data read

from memory has multiple changes in data bits that occur in

adjacent bits of data, they are called burst errors. There are

many significant applications, such as medical and defense

applications, where the reliability of data stored is highly

necessary. For example, say the data stored in memory is

related to launching a satellite.

Even a bit of change might result in the satellite being

placed in a misplaced orbit, resulting in a waste of cost

incurred in the design and development of the satellite [2].

Also, in medical applications, as in the present scenario,

patient-related details are stored in databases for a long period

of time. If errors occur while reading the data, then the patient

might suffer from a wrong diagnosis, resulting in further

damage to health and wealth. In robotic surgeries, even a bit

of change might result in loss of life for the patient undergoing

surgery. Hence, the concept of EDAC codes ensures

reliability. The problem statement includes the necessity of

low overhead codewords and a high code rate to detect and

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1kavyach.phd@gmail.com

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

147

correct errors caused by faults in semiconductor memories to

facilitate the use of available bandwidth effectively to reduce

data errors. Much of the research is found to have only a 65%

code rate and atleast 70% bit overhead. This paper summarizes

the EDAC codes developed with a focus towards ensuring the

reliability of memories. The paper is ordered as a survey of

literature in section II, the EDAC codes evaluated in this paper

in section III, parameters used to assess EDAC codes in

section IV and simulation results with discussion in section V.

Finally, the paper is concluded.

2. Literature Survey
In [1], a new hybrid architecture for optimized

performance of reconfiguration techniques, such as hardwired

seed bits with interleaving capability based on compressed

redundant information, is used to correct Multiple Cell Upsets

(MCUs). Flexible unequal error control methodology is

devised with column line code represented as matrix code with

supported extended performing codes and parity checks [2].

In [3], using an auxiliary codeword, a two-level code based on

low-density parity-check codes is developed for Non-Volatile

Memories (NVM). In [4], a new optimised sub-expression

elimination method is proposed to reduce area and power

consumption without affecting speed and can detect double

errors and correct a single error.

The linear block code with various data segments

adaptive length is considered for higher reliability with a

suitable information rate utilized for FPGA-based

implementation [5]. Fault-tolerant encoders use logic-sharing

blocks for every two adjacent parity bits for Single Error

Correction (SEC) and Double Adjacent Error Correction

(DAEC) codes [6]. The reordering of the hamming matrix

along with a selective shortening scheme is proposed for SEC,

Double Error Detection (DED), and Triple Adjacent Error

Detection (TAED) codes to detect MCUs in SRAM memory

designs [7].

A new methodology with minimum error probability

along with bit interleaving is used for greater flexibility to

optimize memory and to enhance protection from MCUs [8]

is proposed. An optimized decoding method is proposed for

SEC-DED-DAEC codes with constraints on H - Matrix

suitable for different word lengths [9]. It offers a significant

reduction in circuit area, delay and power. The scrubbing

sequences improve the reliability of memories by mitigating

MCU errors with optimal interleaving distance, which has

been proven to improve Mean Time to Failure (MTTF) [10].

In [11], the focus is to improve manufacturing yield by

using Matrix code that combines parity codes to ensure the

reliability and yield of the memory chips. The matrix code

capable of correcting 11 errors in 32-bit data size and 9

erroneous bits in 16-bit data size is proposed with a modified

decoding algorithm [12]. In [13], new low redundant matrix

Error Correction Codes (ECCs) that can correct adjacent

errors with low redundancy in area, delay and power

consumption are observed. A channel coding technique [14]

that improves the reliability and efficiency of data

transmission is proposed based on a multidirectional parity

check code capable of correcting 4 error bits is developed. An

EDAC method using a 3D parity check code capable of

correcting 3 erroneous bits in data and parity bits is proposed

in [15]. It achieves higher reliability with a trade-off in area

and power consumption. In [16], The Decimal Matrix Code

(DMC) enhances memory reliability with low delay overhead

by dividing symbols. Further, the area overhead is minimized

by using the Encoder Reuse Technique. In [17], The Decimal

Matrix Code (DMC) is evaluated for mean time to failure,

delay overhead, etc, but still, bit overhead remains high.

The Modified Decimal Matrix Code (MDMC) uses

reconfigurable array XOR logic to compute decimal addition

equivalent [18]. The Parity Matrix Code (PMC) is provided as

an improved version of MDMC codes and proves to be better

reliable for memories [19]. In [20], the 2-D code is named

Horizontal Vertical Diagonal (HVD) code, where row,

column, slash, and backslash diagonal parity bits are used to

increase the correction capability. In [21], a Horizontal,

Vertical Double-bit Diagonal (HVDD) code detects and

corrects multi-bit soft errors using the comparatively low

overhead. The ECC code uses modified hamming code to

protect data from memory against 3-bit errors and reduce 4-

bit error detection probability [22]. In [23], a low latency zero

overhead burst error correction technique based on Decision

Feedback Equalization (DFE) is proposed that works with less

power consumption. A technique based on design rules and a

search algorithm extends 3-bit Burst Error Correction (BEC)

code and Quadruple Adjacent Error Correction (QAEC) [24].

An area-efficient matrix code using hardware redundancy

and encoder reuse technique is presented in [25]. In [28],

ultrafast error control codes are proposed, which work

independently of word length to increase reliability with very

low delays that combine DED and Adjacent Error Correction

(AEC). A Double Error Correction (DEC) systematic (16,8)

quasi-cycle code is used to detect Triple Adjacent Errors

(TAE) with Triple Error Correction (TEC) and Quadruple

Error Detection (QED) capability [29]. Hence, the major

observations include the number of errors corrected is nearly

only 1/4th of the erroneous data, the area utilization is more

than 50% of the device LUTs only for either encoder or

decoder, the power delay product remains a trade-off with

error correction capability, the bit overhead is large which

doesn’t improve code rate, as data bits increase, there is a

significant decrease in fault coverage which doesn’t ensure

reliability, etc.

3. EDAC Codes
The very basic EDAC is Hamming code [1] proposed by

R.W. Hamming for linear block ECC with SEC-DED. The

(12, 8) Hamming code is shown in Figure 1.

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

148

Fig. 1 The shortened hamming code (12,8)

The different and nonzero columns in the H matrix must

have odd-weight with data columns whose weight is >1, and

the sum of two adjacent columns must be nonzero [4]. The

Extended Hamming Codes use an additional parity bit to get

an even weight syndrome and ensure TAEC capability. Hsiao

codes [5] represent optimized Hamming codes [6] that use a

minimum odd number of 1s in each column, as shown in

Figure 2.

Fig. 2 (8,4) Hsiao code

The Hsiao codes detect one random error but can correct

up to 1/8th of adjacent errors. The other codes include SEC-

DAED [7], based on extended hamming code [8]. The

multidimensional parity-check codes use horizontal, vertical

and diagonal parity bits for EDAC, which increase bit

overhead [14]. There exist several codes that aim at TAED

[19, 20] but still have a bit of overhead and a decreased code

rate [21]. The HVD, i.e., Horizontal Vertical and Diagonal

codes, also called 3-D HVD Codes [15], increase parity bits to

ensure adjacent error corrections up to 1/4th of data bits [17].

As shown in Figure 3, the parity bits are calculated using

modulo - 2 operation for encoding that corrects up to 1/4th of

the adjacent errors. The 4-D Codes [22] use horizontal,

vertical, forward slash diagonal and backward slash diagonal

parity bits, which have the same error correction capability as

that of 3-D HVD Code, as shown in Figure 4. The ultrafast

codes [2, 3] modify Hsiao Codes with the hamming distance

of 1 in each column and can correct up to 1/4th of erroneous

data and 2 parity bit errors, as shown in Figure 5.

Fig. 3 HVD Code

Fig. 4 4-D codes

Fig. 5 (16, 8) Ultrafast code

The Quaternary Adjacent Error Correction (QAEC)

Codes [24] optimize decoder complexity and delay [9, 25].

The recursive backtracing algorithm is used to reduce run time

costs and improve performance. The Decimal Matrix Code

(DMC) [16, 17] divides symbols and uses the decimal integer

addition and subtraction [25] along with the Encoder Reuse

Technique (ERT), as shown in Figure 6. To maximise the

correction capability with low overhead, the optimal choice of

k and m must be ensured, as shown in Figure 7. The modified

DMC (MDMC) [18] modifies DMC using higher-order adders

and subtractors for H-bits. For N data bits, k-symbols of m-

bits are subdivided as N = k x m [25], as shown in Figure 8.

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

149

Symbol 7 Symbol 2 Symbol 5 Symbol 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 H9 H8 H7 H6 H5 H4 H3 H2 H1 H0

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 H19 H18 H17 H16 H15 H14 H13 H12 H11 H10

V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0

Fig. 6 DMC (k = 2 x 4, m = 4)

Fig. 7 DMC code

Symbol 7 Symbol 2 Symbol 5 Symbol 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0

Fig. 8 MDMC

Fig. 9 PMC

Fig. 10 3D Parity check

Encoder Decoder Using ERT

∑

Adder SRAM

Redundancy

SRAM

Information

D Corrector

D

H

V

U

D

Encoder Decoder

Data

Multiply

G-Matrix

RAM

Input Data

RAM

Redundant

Bits

Syndrome

Multiply

H Matrix

Corrector

D Correct

Memory

0

1

N-1

D Bits

V Bits

H
 B

it
s

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

150

Parity Matrix Code (PMC) [19], as shown in Figure 9,

ensures higher correction capability using an identity parity

matrix than MDMC. The matrix-reordered codes aim to

improve the number of bits corrected, and the 3D codes utilize

the matrix representation, as shown in Figure 10. For 64-bit

data, the matrix can be organized as 8 rows x 8 columns that

use 8-H Bits, 8-V Bits and 15-D Bits, as shown in Figure 11.

If the matrix is organized as 4 rows X 16 columns, then 4 H,

16 V and 19 D bits are used. If the matrix is organized as 2

rows X 32 columns, then 2 H, 32 V and 33 D bits are used.

(a) 8 x 8 Matrix

(b) 4 x 16 Matrix

(c) 2 x 32 Matrix

Fig. 11 3D Parity check code

D63 D62 D61 D60 D59 D58 D57 D56 D55 D54 D53 D52 D51 D50 D49 D48 D47 D46 D45 D44 D43 D42 D41 D40 D39 D38 D37 D36 D35 D34 D33 D32 H2

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 H1

V31 V30 V29 V28 V27 V26 V25 V24 V23 V22 V21 V20 V19 V18 V17 V16 V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0 H0

Fig. 12 HDMC encoding mechanism for 64-bit data size

The Half Diagonal Matrix Codes (HDMC), as shown in

Figure 12, focus on eliminating the usage of diagonal parity

bits and using horizontal bits themselves as bits to improve the

code rate.

In the decoder, △H is calculated from modulo-2 addition,

and the error is detected only if △H and S are nonzero

numbers [28]. The Optimal Parity Code -1 (OPC – 1) is similar

to DMC, but vector adjustment is performed S={S, 32’b0} for

MSB and S = {32’b0, S} for LSB data correction to correct

n/2 adjacent errors.

The process of EDAC by using total parity bits = 36 + 32

= 68 for 64 data bits and 8-bit adders is as shown below [29].

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

151

The Optimal Parity Code-2 (OPC-2) uses 16-bit adders

instead of 8-bit adders for H parity bits calculation, as shown

below.

It uses total parity bits = 34 + 32 = 66 for 64 data bits. The

changes in the encoder include

and the decoder includes

The Optimal Parity Code-3 (OPC-3) uses hamming bits

as H bits by considering each row of the matrix as 32-bit data,

which yields 6 H bits for each row, i.e., 12 H bits for 64-bit

data size, as shown below. It uses total parity bits = 12 + 32 =

44 for 64 data bits. The changes in the encoder include

and the decoder includes

The Optimal Parity Code-4 (OPC-4) uses a modulo – 2

addition operation for H bits, as shown below. It uses total

parity bits = 2 + 32 = 34 for 64 data bits. The changes in the

encoder include

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

152

, and the decoder includes

The proficient matrix codes utilise one way of encoding

and three different ways of decoding. The bit overhead and

code rate show a significant amount of improvement as the

number of data bits increase that are considered for

processing. The encoding mechanism is as depicted in Figure

13 [30] for 8-bit data where V[3...0], R[5...0] and H[1...0]

represent vertical, hamming and extended hamming parity

bits.

d[7] d[6] d[5] d[4] H[1] R[5] R[4] R[3]

d[3] d[2] d[1] d[0] H[0] R[2] R[1] R[0]

V[3] V[2] V[1] V[0]

Fig. 13 PrMC

Three decoding mechanisms, represented as method-1,

method-2, and method-3, use the values of H and V, which are

taken from the code word, but H’ and V’ are calculated from

data read from memory. In PrMC decoding method-1, the

extended parity bits and vertical bits for decoding are shown

below.

In PrMC decoding method-2, the correction capability of

up to 3 bits is enhanced by modifying the decoder and using

hamming bits in addition to extended hamming bits and

vertical parity bits, i.e., doi = ∆r ⊕△ V for an even number

of errors, as shown below.

In PrMC decoding method – 3, the decoder corrects 4

error bits by using hamming bits in addition to extended

hamming bits and vertical parity bits to verify △R and 𝑑𝑜 =
𝑑𝑟 ⊕ △ 𝑉 for an even number of errors, as shown below.

Method 3 is more efficient as it is capable of correcting 4

adjacent errors in 8 data bits, but beyond that, the number of

errors induced and observed remains the same. The Modified

Proficient Matrix Codes (MPrMC), as shown in Figure 14, use

vertical parity bits as modulo-2 addition of hamming bits

encoded, which further yields a significant change in the way

the data bits can be corrected from possible adjacent errors

with a simplified decoding mechanism [31].

d[7] d[6] d[5] d[4] H[1] R[5] R[4] R[3]

d[3] d[2] d[1] d[0] H[0] R[2] R[1] R[0]

 V[2] V[1] V[0]

Fig. 14 MPrMC

The MPrMC decoding mechanism uses two methods

represented by method-1 and method-2. In MPrMC method-

1, the change used is 𝑉′[𝑖] = 𝑅[𝑖] ⊕ 𝑅[𝑖 + 3] where the

decoded hamming parity bits are calculated as

𝑅′[𝑛] = 𝑑𝑟[𝑛] ⊕ 𝑑𝑟[𝑛 + 1] ⊕ 𝑑𝑟[𝑛 + 2] where n=0,1,2, …

and the decoded extended hamming parity bits are

calculated using

𝐻′[0] = 𝑑𝑟[0] ⊕ 𝑑𝑟[1] ⊕ 𝑑𝑟[2] ⊕ 𝑑𝑟[3]

𝐻′[1] = 𝑑𝑟[4] ⊕ 𝑑𝑟[5] ⊕ 𝑑𝑟[6] ⊕ 𝑑𝑟[7]

The algorithm is represented as

If △H or △R ≠ 0

then

do[i] = △Rall[i] ⊕ △Vall[i]

 The MPrMC method - 2 uses the following changes to

evaluate higher-order data sizes.

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

153

If △H or △R ≠ 0

then

do[i] = △Rcorresponding[i] ^ △V corresponding [i]

These EDAC codes are used for Network on Chip [32]

applications with data access through buffers as memories

[33].

4. Evaluation Metrics
The EDAC codes are evaluated for parameters like bit

overhead, code rate, correction capability, etc. The bit

overhead is defined as the ratio of the number of parity bits to

the number of data bits, which is usually the composition by

which the bits are written into the memory. It must be as low

as possible.

𝐵𝑖𝑡 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑟

𝑘
 (1)

Where r is the number of parity bits used, and k is the

number of data bits.

The Code Rate is defined as the ratio of a number of data

bits to the number of codeword bits, again the combination of

both data and parity bits. It must be as high as possible.

𝐶𝑜𝑑𝑒 𝑅𝑎𝑡𝑒 =
𝑘

𝑛
 (2)

Where k is the number of data bits and n is the number of

bits in the codeword, i.e., n = k + r.

The Correction Capability of any code is defined as the

number of bits corrected from the detected number of errors.

It must be the same as the number of erroneous bits detected.

The EDAC codes are further evaluated for technology-

related parameters like area Slice Look-Up Tables (LUTs)

occupied in the FPGA, combinational path delay, the power

dissipated by the design, power delay product as the figure of

merit, etc. Practically, these parameters must be as low as

possible.

5. Results and Discussion
The EDAC codes are modeled in Verilog HDL and

verified in Xilinx Vivado Tool for 28nm Zynq FPGA

(XC7Z100-2FFG1156) for 8, 16, 32 and 64-bit data sizes

processed at a time. Figure 15 shows the simulation result of

MPrMC decoder methods, which are capable of correcting 4

erroneous bits in 8-bit data size. The comparison is shown in

Table 1. For any communication system, the bit overhead

must be as low as possible, but the code rate must be as high

as possible. From Table 1, for 64-bit data, the bit overhead is

less for PrMC decoding using method-1 and the other two

methods have overhead increased by 50%. For n/2 correction

capability, method - 3 evolves as a better choice with optimal

code rate. Similarly, in MPrMC, the bit overhead is less, only

31.25%, with a code rate of 76.19%. Also, the MPrMC

encoder and decoder method – 2 prove to be a better choice.

The comparison of codes in terms of code rate and bit

overhead is shown in Table 1. The results give insight as

PrMC (method - 1, method – 2 or 3) and MPrMC codes

(method – 1 or 2) show improvement in bit overhead by atleast

19.02% over other codes. The proposed MPrMC method – 2

proves to be a better choice as it requires 20 parity bits for 64

bits of data size, which yields 31.25% with a correction

capability of 32-bit burst error. The proposed MPrMC method

– 2 code proves to be a better choice, and it provides a code

rate of 76.19%.

The area in terms of the number of slice LUTs occupied

and delay should be kept at a minimum, as shown in Table 1

for encoders. The PrMC method - 1 code encoder proves to be

a better choice, but still, for the area, HDMC and OPC – 4

codes remain a better choice. The PrMC method - 1 encoder

proves to be a better choice by 28.88%, but still, for power

delay products, HDMC code is a better choice. Among the

proposed codes, the MPrMC (method – 1) code decoder

proves to be a better choice by 13.37%, but still, for the area,

HDMC, OPC – 3 and OPC - 4 codes are a better choice. The

MPrMC method – 1 code is a better choice for less power

delay products by 40.97% than other codes. Hence, proficient

matrix codes have advantages like low bit overhead, high code

rate, good correction capability, less power delay product, etc.

However, the disadvantage is that it is unsuitable to use

advanced techniques like parallel processing, pipelining, etc.

Fig. 15 Simulation result of MPrMC decoder methods

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

154

Table 1. Comparison of matrix codes in terms of bit overhead, code rate and correction capability
C

o
d

es
/

P
a

ra
m

et
er

s

#
 D

a
ta

 B
it

s
(k

)

#
 P

a
ri

ty
 B

it
s

(r
)

#
 C

o
d

ew
o

rd
 B

it
s

(n
=

k
+

r)

B
it

 O
v

er
h

ea
d

(r
/k

)

C
o

d
e

R
a

te

(k
/n

)

C
o

rr
ec

ti
o

n
 C

a
p

a
b

il
it

y

(B
it

s)

A
re

a
 i

n
 t

er
m

s
o

f
S

li
ce

L
U

T
s

(o
u

t
o

f
2

7
7

4
0
0

)

fo
r

E
n

co
d

er

P
o

w
er

 D
el

a
y

 P
ro

d
u

ct

(p
W

s)
 f

o
r

E
n

co
d

er

A
re

a
 i

n
 T

er
m

s
o

f
S

li
ce

L
U

T
s

(o
u

t
o

f
2

7
7

4
0
0

)

fo
r

D
ec

o
d

er

P
o

w
er

 D
el

a
y

 P
ro

d
u

ct

(p
W

s)
 f

o
r

D
ec

o
d

er

MPC 64 31 95 48.4% 67.3% 7 38 404.98 134 849.26

HVD 64 42 106 65.6% 60.3% 3 39 558.38 128 857.69

HVDD 64 27 91 42.1% 70.3% 3 39 403.44 121 844.13

3D 64 31 95 48.4% 67.3% 8 38 404.98 118 766.58

DMC 64 68 132 106.25% 48.48% 16 98 637.518 150 763.28

MDMC 64 66 130 103.125% 49.23% 16 97 671.40 175 796.63

PMC 64 44 99 68.75% 59.26% 16 87 590.68 187 793.81

4 x 16

MRC
64 39 103 60.9% 62.1% 16 43 533.20 119 897.44

2 x 32

MRC
64 67 131 104.6% 48.8% 32 45 599.17 175 984.65

HDMC 64 35 99 54.69% 64.65% 32 30 259.02 80 671.08

OPC-1 64 68 132 106.25% 48.48% 32 98 637.52 150 763.28

OPC-2 64 66 130 103.125% 49.23% 32 97 671.40 159 847.91

OPC-3 64 44 108 68.75% 59.25% 32 55 542.70 80 835.06

OPC-4 64 34 98 53.125% 65.31% 32 30 435.74 80 736.28

PrMC

Method-1
64 34 98 53.12% 65.31% 31 32 288.04 112 588.01

PrMC

Method-2
64 46 110 71.87% 58.18% 31 64 483.02 188 528.04

PrMC

Method-3
64 46 110 71.87% 58.18% 32 64 329.03 155 539.02

MPrMC

Method-1
64 20 84 31.25% 76.19% 32 47 324.00 109 506.32

MPrMC

Method-2
64 20 84 31.25% 76.19% 32 47 324.00 162 506.32

6. Conclusion
This work aimed at maximizing the error correction

capability using Matrix codes for critical applications. The

methods considered focus on using a minimal number of

redundant bits and improving the code rate. The HDMC code

satisfies the area and PDP but trades off bit overhead and code

rate. Also, OPC – 4 code satisfies code rate, area occupied,

and PDP; still, bit overhead can be reduced. Even though the

correction capability was retained, the MPrMC code used the

least bit overhead of 31.25% with a code rate of 76.19%. Also,

when compared with existing codes, the MPrMC method – 2

Code uses reduced bit overhead by atleast 25.77% to 70.59%,

increases code rate by 8.38% to 57.16%, decreases area

occupied by 45.98% to 52.04% for encoder, 7.43% to 13.37%

for decoder, decreases PDP by 19.69% to 51.74% for encoder

and 33.67% to 40.97% for decoder.

Hence, from the proposed codes, the MPrMC code proves

to be a better choice in all aspects except in the area utilized.

If area remains a concern, then HDMC code is a better choice

but with a trade-off in bit overhead. If the area utilized and

PDP are not a concern, then 8 x 8 PPMC remains a better

choice. In the future, diagonal codes will be explored with a

focus on quantum EDAC and machine learning approaches.

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

155

References
[1] Andrés Jiménez Olazábal, and Jorge Pleite Guerra, “Multiple Cell Upsets Inside Aircrafts. New Fault-Tolerant Architecture,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 55, no. 1, pp. 332-342, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[2] Joaquín Gracia-Morán et al., “Improving Error Correction Codes for Multiple-Cell Upsets in Space Applications,” IEEE Transactions on

Very Large Scale Integration Systems, vol. 26, no. 10, pp. 2132-2142, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[3] “1890-2018 - IEEE Standard for Error Correction Coding of Flash Memory Using Low-Density Parity Check Codes,” IEEE, pp. 1-51,

2019. [CrossRef] [Google Scholar] [Publisher Link]

[4] Jagannath Samanta, Jaydeb Bhaumik, and Soma Barman, “Compact and Power Efficient SEC-DED Codec for Computer Memory,”

Microsystem Technologies, vol. 27, pp. 359-368, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Abdullah Mohammed A. Hamdoon, Zaid Ghanim Mohammed, and Emad A. Mohammed, “Design and Implementation of Single Bit

Error Correction Linear Block Code System Based on FPGA,” TELKOMNIKA Telecommunication, Computing, Electronics and Control,

vol. 17, no. 4, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Shanshan Liu et al., “Fault Tolerant Encoders for Single Error Correction and Double Adjacent Error Correction Codes,” Microelectronics

Reliability, vol. 81, pp. 167-173, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[7] Alfonso Sánchez-Macián, Pedro Reviriego, and Juan Antonio Maestro, “Hamming SEC-DAED and Extended Hamming SEC-DED-

TAED Codes through Selective Shortening and Bit Placement,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1,

pp. 574-576, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[8] Avijit Dutta, and Nur A. Touba, “Multiple Bit Upset Tolerant Memory Using a Selective Cycle Avoidance Based SEC-DED-DAEC

Code,” 25th IEEE VLSI Test Symposium, Berkeley, CA, USA, pp. 349-354, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[9] Pedro Reviriego et al., “A Method to Design SEC-DED-DAEC Codes with Optimized Decoding,” IEEE Transactions on Device Material

Reliability, vol. 14, no. 3, pp. 884-889, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[10] Wei Zhou et al., “Designing Scrubbing Strategy for Memories Suffering MCUs through the Selection of Optimal Interleaving Distance,”

International Journal of Computational Science and Engineering, vol. 19, no. 1, pp. 53-63, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[11] Costas Argyrides, Dhiraj K. Pradhan, and Taskin Kocak, “Matrix Codes for Reliable and Cost Efficient Memory Chips,” IEEE

Transactions on Very Large Scale Integration Systems, vol. 19, no. 3, pp. 420-428, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[12] M.S. Sunita, and V.S. Kanchana Bhaaskaran, “Matrix Code Based Multiple Error Correction Technique for N-Bit Memory Data,”

International Journal of VLSI Design & Communication Systems, vol. 4, no. 1, pp. 29-37, 2013. [Google Scholar] [Publisher Link]

[13] Joaquín Gracia-Moran et al., “Correction of Adjacent Errors with Low Redundant Matrix Error Correction Codes,” Eighth Latin-American

Symposium on Dependable Computing, Foz do Iguacu, Brazil, pp.107-114, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[14] Vishal Badole, and Amit Udawa, “Implementation of Multidirectional Parity Check Code Using Hamming Code for Error Detection and

Correction,” International Journal of Research in Advent Technology, vol. 2, no. 5, pp. 317-322, 2014. [Google Scholar] [Publisher Link]

[15] Shivani Tambatkar et al., “Error Detection and Correction in Semiconductor Memories Using 3D Parity Check Code with Hamming

Code,” International Conference on Communication and Signal Processing, Chennai, India, vol. 2, pp. 0974-0978, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[16] T. Maheswari, and P. Sukumar, “Error Detection and Correction in SRAM Cell Using Decimal Matrix Code,” IOSR Journal of VLSI and

Signal Processing, vol. 5, no. 1, pp. 9-14, 2015. [Google Scholar] [Publisher Link]

[17] Jing Guo et al., “Enhanced Memory Reliability Against Multiple Cell Upsets Using Decimal Matrix Code,” IEEE Transactions on Very

Large Scale Integration Systems, vol. 22, no. 1, pp. 127-135, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[18] A. Ahilan, and P. Deepa, “Modified Decimal Matrix Codes in FPGA Configuration Memory for Multiple Bit Upsets,” International

Conference on Computer Communication and Informatics, Coimbatore, India, pp. 1-5, 2015. [CrossRef] [Google Scholar] [Publisher

Link]

[19] S. Manoj, and C. Babu, “Improved Error Detection and Correction for Memory Reliability Against Multiple Cell Upsets Using DMC and

PMC,” IEEE Annual India Conference, Bangalore, India, pp.1-6, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[20] Shalini Sharma, and P. Vijayakumar, “An HVD Based Error Detection and Correction of Soft Errors in Semiconductor Memories Used

for Space Applications,” International Conference on Devices, Circuits and Systems, Coimbatore, India, pp. 563-567, 2012. [CrossRef]

[Google Scholar] [Publisher Link]

[21] Md. Shamimur Rahman et al., “Soft Error Tolerance Using Horizontal-Vertical-Double-Bit Diagonal Parity Method,” International

Conference on Electrical Engineering and Information Communication Technology, Savar, Bangladesh, pp. 1-6, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

[22] Wael Toghuj, “Modifying Hamming Code and Using the Replication Method to Protect Memory Against Triple Soft Errors,”

TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 18, no. 5, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1109/TAES.2018.2852198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+Cell+Upsets+Inside+Aircrafts.+New+Fault-Tolerant+Architecture&btnG=
https://ieeexplore.ieee.org/document/8409296
https://doi.org/10.1109/TVLSI.2018.2837220
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Error+Correction+Codes+for+Multiple-Cell+Upsets+in+Space+Applications&btnG=
https://ieeexplore.ieee.org/document/8370138
https://doi.org/10.1109/IEEESTD.2019.8654228
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=1890-2018+-+IEEE+Standard+for+Error+Correction+Coding+of+Flash+Memory+Using+Low-Density+Parity+Check+Codes&btnG=
https://ieeexplore.ieee.org/document/8654228
https://doi.org/10.1007/s00542-019-04366-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Compact+and+power+efficient+SEC-DED+codec+for+computer+memory&btnG=
https://link.springer.com/article/10.1007/s00542-019-04366-7
http://doi.org/10.12928/telkomnika.v17i4.12033
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+implementation+of+single+bit+error+correction+linear+block+code+system+based+on+FPGA&btnG=
https://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/12033
https://doi.org/10.1016/j.microrel.2017.12.017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+tolerant+encoders+for+Single+Error+Correction+and+Double+Adjacent+Error+Correction+codes&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0026271417305760?via%3Dihub
https://doi.org/10.1109/TDMR.2012.2204753
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hamming+SEC-DAED+and+extended+hamming+SEC-DED-TAED+codes+through+selective+shortening+and+bit+placement&btnG=
https://ieeexplore.ieee.org/document/6217302
https://doi.org/10.1109/VTS.2007.40
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+bit+upset+tolerant+memory+using+a+selective+cycle+avoidance+based+SEC-DED-DAEC+Code&btnG=
https://ieeexplore.ieee.org/document/4209937
https://doi.org/10.1109/TDMR.2014.2332364
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+method+to+design+SEC-DED-DAEC+codes+with+optimized+decoding&btnG=
https://ieeexplore.ieee.org/document/6853326
https://doi.org/10.1504/IJCSE.2019.099639
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+scrubbing+strategy+for+memories+suffering+MCUs+through+the+selection+of+optimal+interleaving+distance&btnG=
https://www.inderscienceonline.com/doi/abs/10.1504/IJCSE.2019.099639
https://www.inderscienceonline.com/doi/abs/10.1504/IJCSE.2019.099639
https://doi.org/10.1109/TVLSI.2009.2036362
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Matrix+Codes+for+Reliable+and+Cost+Efficient+Memory+Chips&btnG=
https://ieeexplore.ieee.org/document/5352255
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Matrix+code+based+multiple+error+correction+technique+for+N-bit+memory+data&btnG=
https://airccse.org/journal/vlsi/vol4.html#feb
https://doi.org/10.1109/LADC.2018.00021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Correction+of+Adjacent+Errors+with+Low+Redundant+Matrix+Error+Correction+Codes&btnG=
https://ieeexplore.ieee.org/document/8671577
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+Multidirectional+Parity+Check+Code+using+Hamming+Code+for+Error+Detection+and+Correction&btnG=
https://www.ijrat.org/archives/VOLUME-2-ISSUE-5
https://doi.org/10.1109/ICCSP.2017.8286516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Error+detection+and+correction+in+semiconductor+memories+using+3D+parity+check+code+with+hamming+code&btnG=
https://ieeexplore.ieee.org/document/8286516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Error+Detection+and+Correction+in+SRAM+Cell+using+Decimal+Matrix+Code&btnG=
https://www.iosrjournals.org/iosr-jvlsi/pages/5(1)Version-2.html
https://doi.org/10.1109/TVLSI.2013.2238565
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+Memory+Reliability+Against+Multiple+Cell+Upsets+Using+Decimal+Matrix+Code&btnG=
https://ieeexplore.ieee.org/document/6487418
https://doi.org/10.1109/ICCCI.2015.7218146
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+Decimal+Matrix+Codes+in+FPGA+Configuration+Memory+for+Multiple+Bit+Upsets&btnG=
https://ieeexplore.ieee.org/document/7218146
https://ieeexplore.ieee.org/document/7218146
https://doi.org/10.1109/INDICON.2016.7839094
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+error+detection+and+correction+for+memory+reliability+against+multiple+cell+upsets+using+DMC+and+PMC&btnG=
https://ieeexplore.ieee.org/document/7839094
https://doi.org/10.1109/ICDCSyst.2012.6188771
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+HVD+based+error+detection+and+correction+of+soft+errors+in+semiconductor+memories+used+for+space+applications&btnG=
https://ieeexplore.ieee.org/document/6188771
https://doi.org/10.1109/ICEEICT.2015.7307411
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Soft+error+tolerance+using+Horizontal-Vertical-Double-Bit+Diagonal+parity+method&btnG=
https://ieeexplore.ieee.org/document/7307411
http://doi.org/10.12928/telkomnika.v18i5.13345
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modifying+Hamming+code+and+using+the+replication+method+to+protect+memory+against+triple+soft+errors&btnG=
https://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/13345
https://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/13345

Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025

156

[23] Shovon Dey, Aurangozeb, and Masum Hossain, “Low-Latency Burst Error Detection and Correction in Decision-Feedback Equalization,”

IEEE Open Journal of Circuits and Systems, vol. 2, pp. 91-100, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[24] Jiaqiang Li et al., “Extending 3-Bit Burst Error-Correction Codes with Quadruple Adjacent Error Correction,” IEEE Transactions on Very

Large Scale Integration Systems, vol. 26, no. 2, pp. 221-229, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[25] J. Athira, and B. Yamuna. “FPGA Implementation of an Area Efficient Matrix Code with Encoder Reuse Method,” International

Conference on Communication and Signal Processing, Chennai, India, pp. 0254-0257, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[26] Luis-J. Saiz-Adalid et al., “Ultrafast Codes for Multiple Adjacent Error Correction and Double Error Detection,” IEEE Access, vol. 7, pp.

151131-151143, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[27] T.A. Gulliver, and V.K. Bhargava, “A Systematic (16, 8) Code for Correcting Double Errors and Detecting Triple Adjacent Errors,” IEEE

Transactions on Computers, vol. 42, no. 1, pp. 109-112, 1993. [CrossRef] [Google Scholar] [Publisher Link]

[28] Neelima K, and C. Subhas, “Half Diagonal Matrix Codes for Reliable Embedded Memories,” International Journal of Health Sciences,

vol. 6, no. S2, pp. 11664-11677, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[29] Neelima Koppala, and Chennapalli Subhas, “Low Overhead Optimal Parity Codes,” TELKOMNIKA Telecommunication Computing

Electronics and Control, vol. 20, no. 3, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[30] Neelima K, and C. Subhas, “Proficient Adjacent Error Correcting Codes,” IEEE 3rd International Conference on Applied

Electromagnetics, Signal Processing, & Communication, Bhubaneswar, India, pp. 1-5, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[31] Neelima K, C. Subhas, “Modified Proficient Adjacent Error Correcting Codes,” e-Prime - Advances in Electrical Engineering, Electronics

and Energy, vol. 5, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[32] Neelima Koppala et al., “Proficient Matrix Codes for Error Detection and Correction in 8-Port Network on Chip Routers,” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 29, no. 3, pp. 1336-1344, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[33] Neelima K, C. Subhas, “Modified Matrix Codes for Shielding Memories Against Adjacent Errors,” ASEAN Engineering Journal, vol. 14,

no. 2, pp. 19-25, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/OJCAS.2020.3039256
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-Latency+Burst+Error+Detection+and+Correction+in+Decision-Feedback+Equalization&btnG=
https://ieeexplore.ieee.org/document/9318039
https://doi.org/10.1109/TVLSI.2017.2766361
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Extending+3-bit+Burst+Error-Correction+Codes+with+Quadruple+Adjacent+Error+Correction%2C&btnG=
https://ieeexplore.ieee.org/document/8100640
https://doi.org/10.1109/ICCSP.2018.8524371
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+an+Area+Efficient+Matrix+Code+with+Encoder+Reuse+Method&btnG=
https://ieeexplore.ieee.org/document/8524371
https://ieeexplore.ieee.org/document/8524371
https://doi.org/10.1109/ACCESS.2019.2947315
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ultrafast+Codes+for+Multiple+Adjacent+Error+Correction+and+Double+Error+Detection&btnG=
https://ieeexplore.ieee.org/document/8868073
https://doi.org/10.1109/12.192220
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+%2816%2C+8%29+code+for+correcting+double+errors+and+detecting+triple+adjacent+errors&btnG=
https://ieeexplore.ieee.org/document/192220
https://doi.org/10.53730/ijhs.v6nS2.8117
https://scholar.google.com/scholar?q=Half+Diagonal+Matrix+Codes+for+Reliable+Embedded+Memories&hl=en&as_sdt=0,5
https://sciencescholar.us/journal/index.php/ijhs/article/view/8117
http://doi.org/10.12928/telkomnika.v20i3.23301
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low+Overhead+Optimal+Parity+Codes&btnG=
https://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/23301
https://doi.org/10.1109/AESPC59761.2023.10389891
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Proficient+Adjacent+Error+Correcting+Codes&btnG=
https://ieeexplore.ieee.org/document/10389891
https://ieeexplore.ieee.org/document/10389891
https://doi.org/10.1016/j.prime.2023.100277
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+Proficient+Adjacent+Error+Correcting+Codes&btnG=
https://www.sciencedirect.com/science/article/pii/S2772671123001729?via%3Dihub
http://doi.org/10.11591/ijeecs.v29.i3.pp1336-1344
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Proficient+matrix+codes+for+error+detection+and+correction+in+8-port+network+on+chip+routers&btnG=
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/28843
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/28843
https://doi.org/10.11113/aej.v14.20428
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+Matrix+Codes+for+Shielding+Memories+against+Adjacent+Errors&btnG=
https://journals.utm.my/aej/article/view/20428

