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Abstract - Semiconductor memories are prone to various types of faults, such as stuck-at faults, memory faults, etc, that manifest 

as errors. As the data is usually stored in the memory in matrix form, the error correction capability is maximised by using 

Matrix codes with a minimal number of parity bits and improvement in code rate. The survey of codes extracted include MPC, 

3D, HVD, HVDD, DMC, MDMC, PMC, HDMC, OPC, PrMC and MPrMC codes. The results are obtained by modeling in 

Verilog HDL using Xilinx Vivado Tool 28nm Zynq FPGA (XC7Z100-2FFG1156). These methods are evaluated for redundant 

bits, code rate, area in terms of LUTs, power dissipation, delay, etc. The MPrMC method – 2 Code uses reduced bit overhead 

by atleast 25.77% to 70.59%, increases code rate by 8.38% to 57.16%, decreases area occupied by 45.98% to 52.04% for 

encoder, 7.43% to 13.37% for decoder, decreases PDP by 19.69% to 51.74% for encoder and 33.67% to 40.97% for decoder. 

Hence, the MPrMC code proves to be a better choice in all aspects but trades off the area utilised.  

Keywords - Code rate, Errors, Faults, Matrix codes, Radiation, Redundant bits. 

1. Introduction 
As the technology scales down, integrating many devices 

within a single integrated circuit yields higher densities and 

miniaturisation. Due to this, radiation occurs due to ionization 

in the semiconductor memories, unlike the other essential 

components in the ICs. The radiation is a manifestation of high 

temperatures in the surrounding elements of semiconductor 

devices say in integrated circuits, the MOSFETs and the 

routed wires used for signal/ power transmission between the 

devices and I/O Blocks.  

The radiation caused may be characterized by alpha 

particles, gamma rays, neutrons, electrons, etc. Memories are 

the most affected devices with ionizing radiation effects, 

which cause faults and manifest as errors. The radiation effects 

are either transient or permanent based on recovery time from 

radiation and restoration of its functionality. The transient 

radiation effects occur when a heavily charged particle passes 

through the element and creates Single Event Upsets (SEU) or 

Single Event Effects (SEEs). They cause false signals or logic 

states for a very short time that won’t damage the device. But 

these induce soft errors. On the other hand, the permanent 

radiation effect or hard error caused by gamma rays results in 

altering the structure or functionality of the semiconductor 

device. These cause hard errors like latch-up, snapback, etc 

and can be resolved by turning off the device. The radiation 

effects on memories might alter the bit stored, resulting in 

erroneous data. These radiation effects affect semiconductor 

memories and form faults like destructive read faults, coupling 

faults, stuck-at faults, stuck-open faults, and address decoder 

faults. These faults manifest as errors, which may be single or 

multiple-bit errors. Multiple-bit errors [1] can be further 

classified as adjacent or burst errors and random errors. If the 

data read from memory has only a one-bit change, it is called 

a single-bit error. If the data read from memory has multiple 

changes in data bits that occur randomly at different data 

locations, then they are called random errors. If the data read 

from memory has multiple changes in data bits that occur in 

adjacent bits of data, they are called burst errors. There are 

many significant applications, such as medical and defense 

applications, where the reliability of data stored is highly 

necessary. For example, say the data stored in memory is 

related to launching a satellite.  

Even a bit of change might result in the satellite being 

placed in a misplaced orbit, resulting in a waste of cost 

incurred in the design and development of the satellite [2]. 

Also, in medical applications, as in the present scenario, 

patient-related details are stored in databases for a long period 

of time. If errors occur while reading the data, then the patient 

might suffer from a wrong diagnosis, resulting in further 

damage to health and wealth. In robotic surgeries, even a bit 

of change might result in loss of life for the patient undergoing 

surgery. Hence, the concept of EDAC codes ensures 

reliability. The problem statement includes the necessity of 

low overhead codewords and a high code rate to detect and 
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correct errors caused by faults in semiconductor memories to 

facilitate the use of available bandwidth effectively to reduce 

data errors. Much of the research is found to have only a 65% 

code rate and atleast 70% bit overhead. This paper summarizes 

the EDAC codes developed with a focus towards ensuring the 

reliability of memories. The paper is ordered as a survey of 

literature in section II, the EDAC codes evaluated in this paper 

in section III, parameters used to assess EDAC codes in 

section IV and simulation results with discussion in section V. 

Finally, the paper is concluded. 

2. Literature Survey  
In [1], a new hybrid architecture for optimized 

performance of reconfiguration techniques, such as hardwired 

seed bits with interleaving capability based on compressed 

redundant information, is used to correct Multiple Cell Upsets 

(MCUs). Flexible unequal error control methodology is 

devised with column line code represented as matrix code with 

supported extended performing codes and parity checks [2]. 

In [3], using an auxiliary codeword, a two-level code based on 

low-density parity-check codes is developed for Non-Volatile 

Memories (NVM). In [4], a new optimised sub-expression 

elimination method is proposed to reduce area and power 

consumption without affecting speed and can detect double 

errors and correct a single error.  

The linear block code with various data segments 

adaptive length is considered for higher reliability with a 

suitable information rate utilized for FPGA-based 

implementation [5]. Fault-tolerant encoders use logic-sharing 

blocks for every two adjacent parity bits for Single Error 

Correction (SEC) and Double Adjacent Error Correction 

(DAEC) codes [6]. The reordering of the hamming matrix 

along with a selective shortening scheme is proposed for SEC, 

Double Error Detection (DED), and Triple Adjacent Error 

Detection (TAED) codes to detect MCUs in SRAM memory 

designs [7]. 

A new methodology with minimum error probability 

along with bit interleaving is used for greater flexibility to 

optimize memory and to enhance protection from MCUs [8] 

is proposed. An optimized decoding method is proposed for 

SEC-DED-DAEC codes with constraints on H - Matrix 

suitable for different word lengths [9]. It offers a significant 

reduction in circuit area, delay and power. The scrubbing 

sequences improve the reliability of memories by mitigating 

MCU errors with optimal interleaving distance, which has 

been proven to improve Mean Time to Failure (MTTF) [10].  

In [11], the focus is to improve manufacturing yield by 

using Matrix code that combines parity codes to ensure the 

reliability and yield of the memory chips. The matrix code 

capable of correcting 11 errors in 32-bit data size and 9 

erroneous bits in 16-bit data size is proposed with a modified 

decoding algorithm [12]. In [13], new low redundant matrix 

Error Correction Codes (ECCs) that can correct adjacent 

errors with low redundancy in area, delay and power 

consumption are observed. A channel coding technique [14] 

that improves the reliability and efficiency of data 

transmission is proposed based on a multidirectional parity 

check code capable of correcting 4 error bits is developed. An 

EDAC method using a 3D parity check code capable of 

correcting 3 erroneous bits in data and parity bits is proposed 

in [15]. It achieves higher reliability with a trade-off in area 

and power consumption. In [16], The Decimal Matrix Code 

(DMC) enhances memory reliability with low delay overhead 

by dividing symbols. Further, the area overhead is minimized 

by using the Encoder Reuse Technique. In [17], The Decimal 

Matrix Code (DMC) is evaluated for mean time to failure, 

delay overhead, etc, but still, bit overhead remains high.  

The Modified Decimal Matrix Code (MDMC) uses 

reconfigurable array XOR logic to compute decimal addition 

equivalent [18]. The Parity Matrix Code (PMC) is provided as 

an improved version of MDMC codes and proves to be better 

reliable for memories [19]. In [20], the 2-D code is named 

Horizontal Vertical Diagonal (HVD) code, where row, 

column, slash, and backslash diagonal parity bits are used to 

increase the correction capability. In [21], a Horizontal, 

Vertical Double-bit Diagonal (HVDD) code detects and 

corrects multi-bit soft errors using the comparatively low 

overhead. The ECC code uses modified hamming code to 

protect data from memory against 3-bit errors and reduce 4-

bit error detection probability [22]. In [23], a low latency zero 

overhead burst error correction technique based on Decision 

Feedback Equalization (DFE) is proposed that works with less 

power consumption. A technique based on design rules and a 

search algorithm extends 3-bit Burst Error Correction (BEC) 

code and Quadruple Adjacent Error Correction (QAEC) [24].  

An area-efficient matrix code using hardware redundancy 

and encoder reuse technique is presented in [25]. In [28], 

ultrafast error control codes are proposed, which work 

independently of word length to increase reliability with very 

low delays that combine DED and Adjacent Error Correction 

(AEC). A Double Error Correction (DEC) systematic (16,8) 

quasi-cycle code is used to detect Triple Adjacent Errors 

(TAE) with Triple Error Correction (TEC) and Quadruple 

Error Detection (QED) capability [29]. Hence, the major 

observations include the number of errors corrected is nearly 

only 1/4th of the erroneous data, the area utilization is more 

than 50% of the device LUTs only for either encoder or 

decoder, the power delay product remains a trade-off with 

error correction capability, the bit overhead is large which 

doesn’t improve code rate, as data bits increase, there is a 

significant decrease in fault coverage which doesn’t ensure 

reliability, etc.  

3. EDAC Codes 
The very basic EDAC is Hamming code [1] proposed by 

R.W. Hamming for linear block ECC with SEC-DED. The 

(12, 8) Hamming code is shown in Figure 1. 
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Fig. 1 The shortened hamming code (12,8)  

The different and nonzero columns in the H matrix must 

have odd-weight with data columns whose weight is >1, and 

the sum of two adjacent columns must be nonzero [4]. The 

Extended Hamming Codes use an additional parity bit to get 

an even weight syndrome and ensure TAEC capability. Hsiao 

codes [5] represent optimized Hamming codes [6] that use a 

minimum odd number of 1s in each column, as shown in 

Figure 2.  

    

 
Fig. 2 (8,4) Hsiao code 

The Hsiao codes detect one random error but can correct 

up to 1/8th of adjacent errors. The other codes include SEC-

DAED [7], based on extended hamming code [8]. The 

multidimensional parity-check codes use horizontal, vertical 

and diagonal parity bits for EDAC, which increase bit 

overhead [14]. There exist several codes that aim at TAED 

[19, 20] but still have a bit of overhead and a decreased code 

rate [21]. The HVD, i.e., Horizontal Vertical and Diagonal 

codes, also called 3-D HVD Codes [15], increase parity bits to 

ensure adjacent error corrections up to 1/4th of data bits [17].  

As shown in Figure 3, the parity bits are calculated using 

modulo - 2 operation for encoding that corrects up to 1/4th of 

the adjacent errors.  The 4-D Codes [22] use horizontal, 

vertical, forward slash diagonal and backward slash diagonal 

parity bits, which have the same error correction capability as 

that of 3-D HVD Code, as shown in Figure 4. The ultrafast 

codes [2, 3] modify Hsiao Codes with the hamming distance 

of 1 in each column and can correct up to 1/4th of erroneous 

data and 2 parity bit errors, as shown in Figure 5.  

 
Fig. 3 HVD Code 

 
Fig. 4 4-D codes 

 
Fig. 5 (16, 8) Ultrafast code  

The Quaternary Adjacent Error Correction (QAEC) 

Codes [24] optimize decoder complexity and delay [9, 25]. 

The recursive backtracing algorithm is used to reduce run time 

costs and improve performance. The Decimal Matrix Code 

(DMC) [16, 17] divides symbols and uses the decimal integer 

addition and subtraction [25] along with the Encoder Reuse 

Technique (ERT), as shown in Figure 6. To maximise the 

correction capability with low overhead, the optimal choice of 

k and m must be ensured, as shown in Figure 7. The modified 

DMC (MDMC) [18] modifies DMC using higher-order adders 

and subtractors for H-bits. For N data bits, k-symbols of m-

bits are subdivided as N = k x m [25], as shown in Figure 8. 
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Symbol 7 Symbol 2 Symbol 5 Symbol 0 

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 H9 H8 H7 H6 H5 H4 H3 H2 H1 H0 

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 H19 H18 H17 H16 H15 H14 H13 H12 H11 H10 

V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0 

Fig. 6 DMC (k = 2 x 4, m = 4) 

  

 

 

 

 

 

 

 

 

 

 
Fig. 7 DMC code 

Symbol 7 Symbol 2 Symbol 5 Symbol 0 

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 

V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0 

Fig. 8 MDMC 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 PMC 

  

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 10 3D Parity check 
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Parity Matrix Code (PMC) [19], as shown in Figure 9, 

ensures higher correction capability using an identity parity 

matrix than MDMC. The matrix-reordered codes aim to 

improve the number of bits corrected, and the 3D codes utilize 

the matrix representation, as shown in Figure 10. For 64-bit 

data, the matrix can be organized as 8 rows x 8 columns that 

use 8-H Bits, 8-V Bits and 15-D Bits, as shown in Figure 11. 

If the matrix is organized as 4 rows X 16 columns, then 4 H, 

16 V and 19 D bits are used. If the matrix is organized as 2 

rows X 32 columns, then 2 H, 32 V and 33 D bits are used. 

 
(a) 8 x 8 Matrix 

 
(b) 4 x 16 Matrix 

 
(c) 2 x 32 Matrix 

Fig. 11 3D Parity check code  

D63 D62 D61 D60 D59 D58 D57 D56 D55 D54 D53 D52 D51 D50 D49 D48 D47 D46 D45 D44 D43 D42 D41 D40 D39 D38 D37 D36 D35 D34 D33 D32 H2 

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 H1 

V31 V30 V29 V28 V27 V26 V25 V24 V23 V22 V21 V20 V19 V18 V17 V16 V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0 H0 

Fig. 12 HDMC encoding mechanism for 64-bit data size 

The Half Diagonal Matrix Codes (HDMC), as shown in 

Figure 12, focus on eliminating the usage of diagonal parity 

bits and using horizontal bits themselves as bits to improve the 

code rate.  

In the decoder, △H is calculated from modulo-2 addition, 

and the error is detected only if △H and S are nonzero 

numbers [28]. The Optimal Parity Code -1 (OPC – 1) is similar 

to DMC, but vector adjustment is performed S={S, 32’b0} for 

MSB and S = {32’b0, S} for LSB data correction to correct 

n/2 adjacent errors.  

The process of EDAC by using total parity bits = 36 + 32 

= 68 for 64 data bits and 8-bit adders is as shown below [29].  
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The Optimal Parity Code-2 (OPC-2) uses 16-bit adders 

instead of 8-bit adders for H parity bits calculation, as shown 

below.  

It uses total parity bits = 34 + 32 = 66 for 64 data bits. The 

changes in the encoder include  

 

and the decoder includes  

 

The Optimal Parity Code-3 (OPC-3) uses hamming bits 

as H bits by considering each row of the matrix as 32-bit data, 

which yields 6 H bits for each row, i.e., 12 H bits for 64-bit 

data size, as shown below. It uses total parity bits = 12 + 32 = 

44 for 64 data bits. The changes in the encoder include  

 

and the decoder includes 

 

The Optimal Parity Code-4 (OPC-4) uses a modulo – 2 

addition operation for H bits, as shown below. It uses total 

parity bits = 2 + 32 = 34 for 64 data bits. The changes in the 

encoder include 



Kavya Cherakula, & Varadarajan Sourirajan / IJEEE, 12(2), 146-156, 2025 

 

152 

 
, and the decoder includes 

 

The proficient matrix codes utilise one way of encoding 

and three different ways of decoding. The bit overhead and 

code rate show a significant amount of improvement as the 

number of data bits increase that are considered for 

processing. The encoding mechanism is as depicted in Figure 

13 [30] for 8-bit data where V[3...0],  R[5...0]  and H[1...0]  

represent vertical, hamming and extended hamming parity 

bits.  

d[7] d[6] d[5] d[4] H[1] R[5] R[4] R[3] 

d[3] d[2] d[1] d[0] H[0] R[2] R[1] R[0] 

V[3] V[2] V[1] V[0]     

Fig. 13 PrMC 

Three decoding mechanisms, represented as method-1, 

method-2, and method-3, use the values of H and V, which are 

taken from the code word, but H’ and V’ are calculated from 

data read from memory. In PrMC decoding method-1, the 

extended parity bits and vertical bits for decoding are shown 

below. 

 

In PrMC decoding method-2, the correction capability of 

up to 3 bits is enhanced by modifying the decoder and using 

hamming bits in addition to extended hamming bits and 

vertical parity bits, i.e., doi = ∆r ⊕△ V for an even number 

of errors, as shown below. 

 

In PrMC decoding method – 3, the decoder corrects 4 

error bits by using hamming bits in addition to extended 

hamming bits and vertical parity bits to verify △R and 𝑑𝑜 =
𝑑𝑟 ⊕ △ 𝑉 for an even number of errors, as shown below.  

 

Method 3 is more efficient as it is capable of correcting 4 

adjacent errors in 8 data bits, but beyond that, the number of 

errors induced and observed remains the same. The Modified 

Proficient Matrix Codes (MPrMC), as shown in Figure 14, use 

vertical parity bits as modulo-2 addition of hamming bits 

encoded, which further yields a significant change in the way 

the data bits can be corrected from possible adjacent errors 

with a simplified decoding mechanism [31].  

d[7] d[6] d[5] d[4] H[1] R[5] R[4] R[3] 

d[3] d[2] d[1] d[0] H[0] R[2] R[1] R[0] 

     V[2] V[1] V[0] 

Fig. 14 MPrMC 

The MPrMC decoding mechanism uses two methods 

represented by method-1 and method-2. In MPrMC method-

1, the change used is 𝑉′[𝑖] = 𝑅[𝑖] ⊕ 𝑅[𝑖 + 3] where the 

decoded hamming parity bits are calculated as  

𝑅′[𝑛] = 𝑑𝑟[𝑛] ⊕ 𝑑𝑟[𝑛 + 1] ⊕ 𝑑𝑟[𝑛 + 2] where n=0,1,2, … 

and the decoded extended hamming parity bits are 

calculated using  

𝐻′[0] = 𝑑𝑟[0] ⊕ 𝑑𝑟[1] ⊕ 𝑑𝑟[2] ⊕ 𝑑𝑟[3] 

𝐻′[1] = 𝑑𝑟[4] ⊕ 𝑑𝑟[5] ⊕ 𝑑𝑟[6] ⊕ 𝑑𝑟[7] 

The algorithm is represented as  

If △H or △R ≠ 0  

then  

do[i] = △Rall[i] ⊕ △Vall[i] 

       The MPrMC method - 2 uses the following changes to 

evaluate higher-order data sizes. 
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If △H or △R ≠ 0  

then  

do[i] = △Rcorresponding[i] ^ △V corresponding [i] 

These EDAC codes are used for Network on Chip [32] 

applications with data access through buffers as memories 

[33]. 

4. Evaluation Metrics 
The EDAC codes are evaluated for parameters like bit 

overhead, code rate, correction capability, etc. The bit 

overhead is defined as the ratio of the number of parity bits to 

the number of data bits, which is usually the composition by 

which the bits are written into the memory. It must be as low 

as possible.  

𝐵𝑖𝑡 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =  
𝑟

𝑘
 (1) 

Where r is the number of parity bits used, and k is the 

number of data bits. 

The Code Rate is defined as the ratio of a number of data 

bits to the number of codeword bits, again the combination of 

both data and parity bits. It must be as high as possible. 

𝐶𝑜𝑑𝑒 𝑅𝑎𝑡𝑒 =  
𝑘

𝑛
 (2) 

Where k is the number of data bits and n is the number of 

bits in the codeword, i.e., n = k + r. 

The Correction Capability of any code is defined as the 

number of bits corrected from the detected number of errors. 

It must be the same as the number of erroneous bits detected.  

The EDAC codes are further evaluated for technology-

related parameters like area Slice Look-Up Tables (LUTs) 

occupied in the FPGA, combinational path delay, the power 

dissipated by the design, power delay product as the figure of 

merit, etc. Practically, these parameters must be as low as 

possible. 

5. Results and Discussion 
The EDAC codes are modeled in Verilog HDL and 

verified in Xilinx Vivado Tool for 28nm Zynq FPGA 

(XC7Z100-2FFG1156) for 8, 16, 32 and 64-bit data sizes 

processed at a time. Figure 15 shows the simulation result of 

MPrMC decoder methods, which are capable of correcting 4 

erroneous bits in 8-bit data size. The comparison is shown in 

Table 1. For any communication system, the bit overhead 

must be as low as possible, but the code rate must be as high 

as possible. From Table 1, for 64-bit data, the bit overhead is 

less for PrMC decoding using method-1 and the other two 

methods have overhead increased by 50%. For n/2 correction 

capability, method - 3 evolves as a better choice with optimal 

code rate. Similarly, in MPrMC, the bit overhead is less, only 

31.25%, with a code rate of 76.19%. Also, the MPrMC 

encoder and decoder method – 2 prove to be a better choice. 

The comparison of codes in terms of code rate and bit 

overhead is shown in Table 1. The results give insight as 

PrMC (method - 1, method – 2 or 3) and MPrMC codes 

(method – 1 or 2) show improvement in bit overhead by atleast 

19.02% over other codes. The proposed MPrMC method – 2 

proves to be a better choice as it requires 20 parity bits for 64 

bits of data size, which yields 31.25% with a correction 

capability of 32-bit burst error. The proposed MPrMC method 

– 2 code proves to be a better choice, and it provides a code 

rate of 76.19%.  

The area in terms of the number of slice LUTs occupied 

and delay should be kept at a minimum, as shown in Table 1 

for encoders. The PrMC method - 1 code encoder proves to be 

a better choice, but still, for the area, HDMC and OPC – 4 

codes remain a better choice. The PrMC method - 1 encoder 

proves to be a better choice by 28.88%, but still, for power 

delay products, HDMC code is a better choice. Among the 

proposed codes, the MPrMC (method – 1) code decoder 

proves to be a better choice by 13.37%, but still, for the area, 

HDMC, OPC – 3 and OPC - 4 codes are a better choice. The 

MPrMC method – 1 code is a better choice for less power 

delay products by 40.97% than other codes. Hence, proficient 

matrix codes have advantages like low bit overhead, high code 

rate, good correction capability, less power delay product, etc. 

However, the disadvantage is that it is unsuitable to use 

advanced techniques like parallel processing, pipelining, etc. 

 
Fig. 15 Simulation result of MPrMC decoder methods 
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Table 1. Comparison of matrix codes in terms of bit overhead, code rate and correction capability 
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MPC 64 31 95 48.4% 67.3% 7 38 404.98 134 849.26 

HVD 64 42 106 65.6% 60.3% 3 39 558.38 128 857.69 

HVDD 64 27 91 42.1% 70.3% 3 39 403.44 121 844.13 

3D 64 31 95 48.4% 67.3% 8 38 404.98 118 766.58 

DMC 64 68 132 106.25% 48.48% 16 98 637.518 150 763.28 

MDMC 64 66 130 103.125% 49.23% 16 97 671.40 175 796.63 

PMC 64 44 99 68.75% 59.26% 16 87 590.68 187 793.81 

4 x 16 

MRC 
64 39 103 60.9% 62.1% 16 43 533.20 119 897.44 

2 x 32 

MRC 
64 67 131 104.6% 48.8% 32 45 599.17 175 984.65 

HDMC 64 35 99 54.69% 64.65% 32 30 259.02 80 671.08 

OPC-1 64 68 132 106.25% 48.48% 32 98 637.52 150 763.28 

OPC-2 64 66 130 103.125% 49.23% 32 97 671.40 159 847.91 

OPC-3 64 44 108 68.75% 59.25% 32 55 542.70 80 835.06 

OPC-4 64 34 98 53.125% 65.31% 32 30 435.74 80 736.28 

PrMC 

Method-1 
64 34 98 53.12% 65.31% 31 32 288.04 112 588.01 

PrMC 

Method-2 
64 46 110 71.87% 58.18% 31 64 483.02 188 528.04 

PrMC 

Method-3 
64 46 110 71.87% 58.18% 32 64 329.03 155 539.02 

MPrMC 

Method-1 
64 20 84 31.25% 76.19% 32 47 324.00 109 506.32 

MPrMC 

Method-2 
64 20 84 31.25% 76.19% 32 47 324.00 162 506.32 

6. Conclusion 
This work aimed at maximizing the error correction 

capability using Matrix codes for critical applications. The 

methods considered focus on using a minimal number of 

redundant bits and improving the code rate. The HDMC code 

satisfies the area and PDP but trades off bit overhead and code 

rate. Also, OPC – 4 code satisfies code rate, area occupied, 

and PDP; still, bit overhead can be reduced. Even though the 

correction capability was retained, the MPrMC code used the 

least bit overhead of 31.25% with a code rate of 76.19%. Also, 

when compared with existing codes, the MPrMC method – 2 

Code uses reduced bit overhead by atleast 25.77% to 70.59%, 

increases code rate by 8.38% to 57.16%, decreases area 

occupied by 45.98% to 52.04% for encoder, 7.43% to 13.37% 

for decoder, decreases PDP by 19.69% to 51.74% for encoder 

and 33.67% to 40.97% for decoder.  

Hence, from the proposed codes, the MPrMC code proves 

to be a better choice in all aspects except in the area utilized. 

If area remains a concern, then HDMC code is a better choice 

but with a trade-off in bit overhead. If the area utilized and 

PDP are not a concern, then 8 x 8 PPMC remains a better 

choice. In the future, diagonal codes will be explored with a 

focus on quantum EDAC and machine learning approaches.  
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