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Abstract - Polycystic Ovary Syndrome (PCOS) is a prevalent hormonal disorder in women of reproductive age categorized by 

the presence of numerous tiny cysts on the ovaries, greater levels of androgen and irregular menstrual cycles. PCOS detection 

involves identifying and categorizing ovarian health conditions employing medical imaging modalities. Accurate detection is 

essential for appropriate treatment and inhibition of related health problems. Challenges such as the intrinsic complexity of 

ovarian morphological characteristics and differences in image quality due to transformations in acquisition settings or noise 

significantly affect the accuracy of detection systems. Conventional methods severely depend on manual image examination and 

feature extraction, often leading to variations and limited reliability. This research focuses on creating a hybrid Deep Learning 

(DL) system for the unfailing detection of PCOS employing ultrasound images. The system was assessed on the Kaggle PCOS 

dataset containing 3,856 images categorized into "infected" and "not infected" cases. Preprocessing and data augmentation 

techniques were utilized to increase variability in data, followed by feature extraction operating the hybrid model. The proposed 

system merges Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) 

architectures to collect spatial and temporal features expertly. The system achieved outstanding results with an accuracy of 

98.50%, precision of 98.59%, recall of 98.55% and an F1 score of 98.48%. These results underscore the efficacy of the hybrid 

framework in responding to the challenges of PCOS detection, providing an efficient and better solution for clinical applications. 

Keywords - Polycystic Ovary Syndrome, Deep Learning, Convolutional Neural Network, Ultrasound image, Long Short-Term 

Memory, Gated Recurrent Unit. 

1. Introduction 
PCOS is a common endocrine condition that mostly 

influences women at their reproductive age, with far-reaching 

problems with hormonal equilibrium and normal health. An 

estimated range of 8-13% of women at their reproductive 

stage are affected by PCOS worldwide.  

This disorder is characterized by various forms of 

hormonal imbalances and metabolic dysfunctions producing 

varied symptoms such as the occurrence of minute ovarian 

cysts, acne, irregular menstrual cycles, hirsutism and other 

androgen-related presentations depicted in Figure 1.  

Hyperandrogenic hormone levels, which are normally 

present in lower amounts in women, interfere with the process 

of ovulation and lead to abnormal or absent menstrual cycles 

[1]. The syndrome is linked to other long-term health hazards 

like a 30-40% incidence of distributed glucose metabolism 

and an increased risk of depression or other psychological 

issues. PCOS is the primary etiology for anovulatory 

infertility and has also been associated with other serious 

conditions like thyroid dysfunction, obesity and endometrial 

or ovarian malignancies, highlighting the imperative need for 

early detection and intervention [2]. 

 PCOS diagnosis usually relies on the Rotterdam criteria, 

which comprise three important markers: hyperandrogenism, 

irregular menstrual cycles and the existence of multiple 

ovarian cysts as detected by ultrasonography. 

Ultrasonography is the most accurate imaging technique.  

However, it is highly dependent on the skill of 

radiologists and is also often hampered by image noise and 

observer variability. This constraint is especially evident in 

underdeveloped areas where skilled medical practitioners are 

inaccessible, resulting in delayed diagnosis and treatment [3]. 

Conventional Machine Learning (ML) and computational 

approaches to PCOS diagnosis have primarily relied on 

manual image classification and significant human 

intervention. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sruthisanilkumar@outlook.com
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Fig. 1 Polycystic Ovary Syndrome (PCOS) 

These methods have difficulty handling medical imaging 

complexities, specifically regarding noise and variability of 

the ultrasound data, and produce less consistent data. DL 

provides a revolutionizing functionality for processing 

medical images and delivers reliable means for the automated 

identification of sophisticated diseases such as PCOS [4]. A 

hybrid DL system in this study brings CNN, LSTM and GRU 

models together. This method leverages the advantage of 

every architecture to gather the spatial and temporal 

characteristics from ultrasound images, improving detection 

accuracy and robustness. By overcoming the limitations of 

conventional methods, the proposed model seeks to provide a 

reliable, efficient, and automated diagnostic tool for early-

stage PCOS detection, ultimately enhancing patient outcomes 

and healthcare provision. The main contribution of the work 

includes 

 To develop a hybrid DL framework that integrates CNN, 

LSTM and GRU architectures to efficiently extract spatial 

and temporal characteristics from ultrasound images for 

PCOS detection.  

 The feasibility of the hybrid model presented will be 

examined utilizing evaluation metrics. 

 To compare the designed hybrid model with existing 

methods to demonstrate its superiority in PCOS detection 

accuracy and reliability. 

The remaining portion of the paper is arranged into four 

categories: Relevant research on ML and DL applications for 

PCOS detection is briefly reviewed in Section 2. The proposed 

methodology outlined in Section 3 presents the integration of 

CNN-LSTM-GRU architectures. Section 4 highlights the 

suggested hybrid framework's experimental outcomes and 

performance assessment. Section 5 concludes the research 

with key findings.  

2. Literature Survey 
2.1. PCOS Detection Using Machine Learning 

Zad et al. (2024) [5] sought to create an ML-based 

prediction framework to aid early detection of PCOS among 

an outpatient category at risk using Electronic Health Records 

(EHR) data from 30,601 women aged 18-45 years at Boston 

Medical Center. The study utilized ML methods to build 

models achieving an AUC between 80% and 85%, with 

hormone levels and obesity as significant positive predictors.  

A limitation noted was the applicability of the study to 

urban hospital-based populations and at-risk individuals, 

reducing its generalizability to broader or rural populations. 

Lim et al. (2023) [6] conducted a study to categorize and 

forecast PCOS using radial pulse wave parameters and ML 

models based on data from 459 individuals, comprising 316 in 

the PCOS cohort and 143 in the healthy cohort. The research 

applied seven supervised ML models, including KNN, 

Decision Trees (DT), LR, SVM, Voting, RF and LSTM, 

finding that the voting and LSTM models demonstrated 

72.174% testing accuracy and 0.818 F1 score.  

A limitation noted was the difficulty distinguishing noise 

from pulse signals during data collection. Batra and Nelson 

(2023) [7] created a Data-driven Computer-Aided Diagnostic 

System (DCADS) for the early detection of PCOS without 

clinical tests using the PCOS dataset from Kaggle. It applied 

the Synthetic Minority Oversampling Technique (SMOTE) 

for balancing and feature selection by correlation analysis and 

evaluated ML models, including RF, SVM and LR, achieving 

an accuracy of 92.024% with the RF model demonstrating 

promising results for non-clinical PCOS diagnosis. Suha and 

Islam (2023) [8] aimed to develop an Artificial Intelligence 

(AI) model for accurate PCOS detection using a modified 

ensemble ML technique that employed five traditional ML 

frameworks as base learners and a Gradient Boosting (GB) 

classifier as the meta-learner. The framework tested on patient 

symptom data with three types of feature selection strategies 

achieved 95.7% accuracy using PCA-selected top 25 features, 

surpassing other ML techniques.  

The study noted a limitation on the small sample size. 

Bhardwaj and Tiwari (2022) [9] conducted a study to explore 

the application of ML algorithms for diagnosing PCOS using 

clinical data and a detailed preprocessing step to address data 

discrepancies. The study employed models such as Multi-

Layer Perceptron (MLP), SVM with a Radial Basis Function 

(RBF) kernel, RF and XGBoost (XGB), achieving 93% 

accuracy with SVM and MLP supported by metrics like the 

ROC-AUC score and F1. Feature importance was assessed 

using a DT classifier with a Gini index identifying key factors 

like follicle size and prolactin levels. Rakshitha and Naveen 

(2022) [10] conducted a study to develop a hybrid and 

optimized ML approach for detecting PCOS using a 

combination of SVM with a linear kernel and LR (SVLR) 

optimized with the RMSprop optimizer. They collected 1600 
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datasets from a leading hospital in Bangalore Urban and 

demonstrated that their optimized-hybrid SVLR model 

achieved an accuracy of 89.03%, outperforming traditional 

algorithms like SVM, DT and RF. Dutta (2021) [11] aimed to 

develop an effective prediction model for early identification 

of PCOS, employing a dataset of 541 instances taken from the 

UCI repository with a significant class imbalance addressed 

through the SMOTE. The study employed LR, RF, DT, SVM 

and K-Nearest Neighbor (KNN), with SMOTE-based LR 

achieving an accuracy of 97.11% while SMOTE-based RF 

showed the lowest execution time.  

Despite its promising results, the study acknowledged 

challenges related to imbalanced data that impact the model's 

performance. Bharati et al. (2021) [12] concentrated on 

developing a data-driven method for diagnosing PCOS in 

women using a dataset from the Kaggle repository, which 

included 177 samples with 43 features. The study employed 

univariate feature selection and feature elimination methods to 

determine significant predictors ranking the Follicle-

Stimulating Hormone (FSH) to Luteinizing Hormone (LH) 

ratio as the most critical and applied ensemble ML models 

including soft and hard voting and CatBoost, with 5, 10 and 

20-fold cross-validation. The results demonstrated that soft 

voting achieved an accuracy of 91.12%, confirming the 

efficacy of ensemble learning for PCOS detection.  

2.2. PCOS Detection Using Deep Learning 

Kumar and Varadarajan (2024) [13] conducted a study 

aimed at creating prediction systems for early identification of 

PCOS to address related health risks using both image and text 

datasets. The study employed ensemble learning techniques, 

including LR, RF and SVM, achieving an 89% accuracy with 

an AUC of 0.83 and advanced DL models integrating CNN 

and LSTM networks for an enhanced fully connected neural 

network that reached a 96.07% accuracy with minimal loss. 

Umapathy et al. (2024) [14] conducted a study to detect PCOS 

by implementing YOLOv8 for ovarian follicle detection and 

segmenting them utilizing a hybrid fuzzy c-means-based 

active contour approach. It used two datasets: one dataset with 

50 normal and 50 PCOS subjects and another dataset with 100 

PCOS and 100 normal subjects.  

The study extracted features through Gray-level Co-

occurrence Matrices (GLCM). It tested several ML and DL 

classifiers, including a custom-built Follicles Net (F-Net) 

model that achieved a superior classification accuracy of 95% 

and 97.5% for the respective datasets. The study's limitation 

was its lack of clinical validation in real-world healthcare 

environments. Almoudi et al. (2023) [15] proposed improving 

the diagnosis of PCOS based on a DL strategy employing a 

dataset with ovary ultrasound images and clinical patient 

information. Inception and MobileNet models were used, 

reaching 84.18% accuracy using the Inception model for 

image diagnosis and 82.46% with a fusion model integrating 

image and clinical data. One of the study's main limitations 

was the restricted computational power that could be used to 

carry out the empirical analysis. Fan et al. (2023) [16] created 

a DL system, Ocys-Net, for the diagnosis and classification of 

ovarian cysts to help with quick diagnosis and alleviate 

doctors' workloads.  

The research utilized an ovarian cyst dataset, attaining a 

classification accuracy of 95.93% through the use of a reverse 

bottleneck structure scheme and an Efficient Channel 

Attention (ECA) module for improved feature extraction. The 

research underscored the constraints in medical image 

analysis as a result of the lack of theoretical knowledge that 

inhibits efficient visual feature extraction and processing. 

Wenqi Lv et al. (2022) [17] undertook research to develop an 

automated DL technique for PCOS detection grounded on 

scleral alteration analysis with the help of 721 full-eye images 

from Chinese women consisting of 388 PCOS-affected roles. 

 The approach entailed segmenting scleral images using 

an enhanced U-Net to extract deep features using a ResNet 

method and applying a multi-instance classification method 

with an AUC of 0.979 and an accuracy of 92.9%. The research 

was limited by a relatively small dataset and difficulties 

interpreting certain visualization results. Hosain et al. (2022) 

[18] sought to develop and contrast DL models for identifying 

PCOS from ovarian ultrasound images to aid in early 

diagnosis. PCONet was designed by the study as a bespoke 

CNN model, and a pretrained Inception V3 was fine-tuned by 

the study employing Transfer Learning (TL).  

The models were evaluated on a separate test set to 

prevent bias. PCONet outperformed Inception V3 with an 

accuracy of 98.12% compared to 96.56%, demonstrating its 

potential for clinical application. Srivastava (2020) [19] 

conducted a study aimed at detecting ovarian cysts using 

ultrasound images, recognizing their impact on female 

reproductive health and potential risks such as torsion and 

cancer. The study utilized a fine-tuned VGG-16 DL method 

with modifications to the last four layers trained on a custom 

dataset of ultrasound images collected from various women.  

This approach achieved an accuracy of 92.11%. The 

existing works are summarized in Table 1. Although numerous 

studies have applied ML and DL techniques to detect PCOS, 

there are still several issues in the existing research. Many 

studies have focused on specific data types, such as electronic 

health records clinical parameters, but few have integrated 

diverse data sources to provide a holistic diagnostic approach.  

While ML algorithms like RF, SVM and GB have shown 

moderate to high accuracy, their dependence on feature 

selection and handcrafted features limits their ability to 

generalize to unseen datasets. Although DL models effectively 

handle complex patterns in medical images, they often require 

large datasets for training, which is challenging given the 

sensitive and limited nature of medical data.  
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Table 1. Summary of existing studies

Author & Year Model Used Dataset Accuracy & Key Findings Limitations 

Zad et al.  

(2024) [5] 
LR, SVM, RF, GBT 

EHR data  

(30,601 women) 

80-85% (AUC): Identified 

hormone levels and obesity as 

key predictors 

Limited to urban, 

hospital-based 

populations 

Lim et al.  

(2023) [6] 

KNN, DT, LR, 

SVM, Voting, RF, 

LSTM 

Radial pulse wave 

data  

(459 subjects) 

72.17%: Voting and LSTM 

models performed best 

Difficulty distinguishing 

noise from pulse signals 

Batra & Nelson 

(2023) [7] 

RF, SVM, LR (with 

SMOTE) 

Kaggle PCOS 

dataset 

92.02%: Feature selection 

improved accuracy 

Dependent on feature 

engineering 

Suha & Islam 

(2023) [8] 

Modified ensemble 

ML (GB as meta-

learner) 

Patient symptom 

data 

95.7%: PCA-based feature 

selection improved results 
Small dataset size 

Bhardwaj & 

Tiwari (2022) [9] 

SVM (RBF), RF, 

XGBoost, MLP 
Clinical data 

93%: Identified follicle size 

and prolactin levels as key 

features 

Feature selection 

impacts generalizability 

Rakshitha & 

Naveen  

(2022) [10] 

SVM (Linear) + LR 

(SVLR) 

Clinical dataset 

(1600 samples) 

89.03%: Optimized hybrid 

SVLR model improved 

detection 

Traditional ML models 

are still used 

Dutta  

(2021) [11] 

LR, RF, DT, SVM, 

KNN (with 

SMOTE) 

UCI dataset  

(541 instances) 

97.11%: SMOTE improved LR 

model performance 
Class imbalance issues 

Bharati et al. 

(2021) [12] 

Soft & Hard 

Voting, CatBoost 

Kaggle dataset 

(177 samples) 

91.12%: FSH/LH ratio was the 

most critical predictor 

Small dataset, 

overfitting risk 

Kumar & 

Varadarajan 

(2024) [13] 

CNN-LSTM 
Image and text 

datasets 

96.07%: Improved feature 

extraction 
Needs further validation 

Umapathy et al. 

(2024) [14] 

YOLOv8 + Hybrid 

Fuzzy C-Means 

Two datasets (100 

PCOS, 100 

normal) 

95%-97.5%: Used follicle 

segmentation for better 

classification 

Lacks clinical validation 

Almoudi et al. 

(2023) [15] 

Inception, 

MobileNet 

Ovary ultrasound 

images 

84.18%: Fusion of image and 

clinical data improved 

detection 

Limited computational 

resources 

Fan et al.  

(2023) [16] 

Ocys-Net (Reverse 

Bottleneck + ECA) 

Ovarian cyst 

dataset 

95.93%: Enhanced feature 

extraction with attention 

mechanisms 

Lack of theoretical 

knowledge for image 

analysis 

Wenqi Lv et al. 

(2022) [17] 

Improved U-Net + 

ResNet 

Scleral images 

(721 samples) 

92.9% (AUC 0.979): Multi-

instance classification 

improved accuracy 

Small dataset, 

interpretation challenges 

Hosain et al. 

(2022) [18] 

PCONet (Custom 

CNN) + Inception 

V3 (TL) 

Ovarian 

ultrasound images 

98.12% (PCONet), 96.56% 

(Inception): PCONet 

outperformed transfer learning 

Model bias risk 

Srivastava  

(2020) [19] 
Fine-tuned VGG-16 

Custom 

ultrasound dataset 

92.11%: Effective for ovarian 

cyst detection 

Dataset variability limits 

generalization 

Studies employing hybrid models such as CNN-LSTM or 

ensemble techniques have demonstrated promise, yet they 

lack real-world clinical validation and often overlook the 

importance of incorporating temporal dependencies in PCOS-

related symptoms and imaging dataAnother limitation is the 

lack of explainability in DL models, which poses a challenge 

in gaining the trust of clinicians and patients. Many studies use 

imbalanced datasets or small sample sizes, leading to potential 

overfitting and reducing the reliability of the proposed models. 

Considering the efficiency of DL frameworks in PCOS 

detection, real-time implementation in clinical settings 

remains a challenge. Major challenges involve the high 

computational requirements for explainable AI for clinical use 

and the variability of ultrasound imaging conditions. 

Addressing these challenges requires developing stable hybrid 

frameworks that leverage varied data types and ensure 

interpretability. They are proven in real-world clinical settings 

to provide broad applicability and consistency.
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3. Materials and Methods 
Predictive modeling for the detection of PCOS employed 

a hybrid DL model with CNN, GRU and LSTM layers from 

ultrasound images. The methodology workflow is depicted in 

Figure 2. The input dataset is an ultrasound image that goes 

through preprocessing and augmentation to enhance the 

superiority and diversity of the data. Following preprocessing, 

a testing set and a training set were prepared from the data. A 

hybrid model is trained by means of the training set. CNN 

layers are employed to extract features, and GRU layers are 

used to determine sequential dependencies from the data. 

LSTM layers are then used to collect long-term dependencies, 

improving the system's ability to interpret complex patterns. 

The system performance is then measured after training using 

the testing set to analyze its accuracy and functionality. The 

trained model generates a final predicted output, classifying 

each input as "infected" or "not infected," which offers 

insights into PCOS detection from ultrasound images.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

  

Fig. 2 Block diagram of suggested method 

3.1. Dataset Description 

The data for predicting PCOS from ultrasound images is 

attained from Kaggle's database [20]. The dataset 

encompasses a total of 3,856 images. It is divided into two 

primary subfolders, 'train' and 'test', which were further split 

into two categories ", infected" and "not infected", as depicted 

in Figure 3. The 'infected' category consists of ultrasound 

images of PCOS-diagnosed ovaries, and the 'not infected' 

category consists of healthy ovaries images free from the 

disease.This dataset facilitates improved PCOS detection 

through automated means and aids in the early diagnosis by 

medical imaging analysis.    

 

3.2. Data Preprocessing and Augmentation 

Preprocessing is also important in improving the DL 

model's efficiency for PCOS detection from ultrasound 

images. It normalizes the input through techniques like 

resizing the images to the same dimension of 224*224 pixels 

and pixel value normalization to values between 0 and 1. The 

model can process the images better and learn from uniformly 

scaled data. Data augmentation advances the capability of the 

model to generalize by enhancing the variability of the 

training dataset. The augmentation methods used include 

random shear transformations (±20 degrees), zooming (up to 

20%), vertical and horizontal flipping and rotation (up to 30 

degrees). 

Ultrasound 

Image Dataset 

Data Preprocessing and Augmentation 

Data Splitting 

Test Data Train Data 

Proposed Hybrid Model 

CNN 

GRU 

LSTM 

Trained Model Performance 

Evaluation 

Predicted Output 

Infected Not Infected 
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(a) Infected images 

 

(b) Not infected images 

   Fig. 3 Sample images from the dataset 

These techniques help the model learn variations in 

ovarian structures and improve robustness against overfitting. 

A stratified split was used to maintain class balance in the 

training and validation sets, with 85% of the dataset applied 

for training and 15% reserved for testing, which enables the 

system to effectively classify the images 

3.3. Model Development 

The three models employed in this study are CNN, GRU 

and LSTM. CNNs are specialized for image data, utilizing 

convolutional layers to extract spatial features, pooling layers 

to decrease the dimensionality and Fully Connected (FC) 

layers for classification. GRU is a variant of Recurrent Neural 

Networks (RNN) that excels at handling sequential data by 

using reset and update gates to balance the retention of past 

and current information. LSTM is another RNN variant that 

uses memory cells to handle long-term dependencies in 

sequential data and gating mechanisms (input, forget and 

output gates), ensuring effective information flow across time 

steps. Altogether, these models provide a robust framework 

for processing and analyzing both spatial and temporal data in 

PCOS detection tasks. 

3.3.1. Convolutional Neural Network  

CNN are highly effective DL models created for 

analyzing structured grid-based data, particularly images and 

sequential data. As shown in Figure 4 it consists of several key 

elements which combine together to capture and process 

features from raw data. Convolutional layers modify the input 

by applying filters or kernels to identify local patterns such as 

edges, textures, and other distinct features. By sliding these 

filters along the data, CNN learns both low-level and abstract 

features as the data progresses through successive layers. The 

pooling layer decreases the resolution of feature maps by 

downsampling and compacting the data to retain essential 

information, lowering computational complexity and 

minimizing overfitting by focusing on key patterns. FC layers 

analyze these learned features to make high-level predictions 

such as classifications. Its architecture allows flexibility in 

configuring layer counts, filter sizes and activation functions, 

making them highly adaptable to diverse tasks [21].  

Convolution generates a feature map by sliding a filter over an 

input image, conducting element-wise multiplication at each 

position, and adding the results. This process is 

mathematically expressed in Equation (1). 

(𝐻 ∗ 𝐾)(𝑥, 𝑦) = ∑ ∑ 𝐾(𝑥 + 𝑚, 𝑦 + 𝑛) 𝐻(𝑚, 𝑛)𝑁−1
𝑛=0

𝑀−1
𝑚=0    

 (1) 

Where 𝐻 represents the input image, 𝐾 presents the 

convolutional kernel, 𝑥 and 𝑦 are the points in the output 

feature map and 𝑚 and 𝑛 are the indices iterating over the 

dimensions of the kernel 𝐾. After the convolution operation, 

the resulting feature map is subjected to a non-linear 

modification using an activation function, commonly the 

Rectified Linear Unit (ReLU). This transformation is 

mathematically described in Equation (2).  

𝑓(𝑥) = max (0, 𝑥)    (2)  

The pooling layers are used to decrease the 

dataimensionality while keeping its important features. Max 

pooling is widely regarded as one of the most commonly used 

techniques where a specified area of the feature map with 

maximum value is selected. This operation is mathematically 

represented by Equation (3). 

𝑍(𝑥, 𝑦) = max
(𝑚,𝑛)𝜖𝑆

𝐹(𝑚, 𝑛)               (3) 

The region 𝑆, represents the area over which maxpooling 

is applied.  
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   Fig. 4 Basic architecture of CNN 

After pooling, the feature maps are flattened into a 1D 

vector, which is then given into FC (dense) layers, which are 

assigned for performing classification or regression tasks. 

The computation performed by the dense layer is represented 

by Equation (4).  

   𝑤 = 𝐵 ∙ 𝑥 + 𝑏                            (4)      

Where 𝐵 demonstrates the weight matrix, the input vector 

from the previous layer is denoted as 𝑥 , 𝑏 is the bias term, and 

𝑤 is the FC layer output. The output layer then generates a 

probability distribution using the softmax function as given in 

Equation (5). 

𝜎(𝑤)𝑥 =
𝑒𝑤𝑥

∑ 𝑒𝑤𝑦𝐾
𝑦=1

                          (5) 

Where, 𝜎(𝑤)𝑥 is the probability of class 𝑥, and 𝐾 denotes 

all of the classes.  

3.3.2. Gated Recurrent Unit 

GRU is developed for sequential data processing, 

producing an output at each time step to capture complex 

temporal dependencies. Its architecture, shown in Figure 5, 

consists of two key gates, namely the reset gate, which 

identifies the proportion of the previous hidden state that 

should be "forgotten", and the update gate, which regulates the 

combination of new input and past information to form the 

new hidden state. It computes candidate activation by 

combining current input with the previous state and 

compresses this using a 𝑡𝑎𝑛ℎ function for a range between -1 

and 1. The final output layer uses the updated hidden state for 

predictions, representing sequential values or class 

probabilities [22]. The model processes the current input 𝑥𝑡 at 

each time step 𝑡  along with the hidden state from the 

preceding time step ℎ𝑡−1.This generates a new hidden state ℎ𝑡 

which is subsequently transformed into the next step for 

ongoing computation. 

 
Fig. 5 Basic architecture of GRU 

The update gate is denoted as 𝑧𝑡 which combines the roles 

of the traditional input and forget gates controlling how much 

of the past state is retained versus how much new information 

is added. This mechanism effectively balances memory 

retention and the integration of new data, as illustrated in 

Equation (6). 

𝑧𝑡 = 𝜎(𝑊𝑧 ∗ [ℎ𝑡−1, 𝑥𝑡])                        (6) 

Where𝑊𝑧, corresponds to the update gate 𝑧𝑡′s trainable 

weight matrix. The reset gate plays a crucial part in identifying 

the degree to which the preceding state's output is integrated 

into the current state. This influences the computation in 

Equation (7), which effectively balances the integration of 

past and current information to update the hidden state. 

𝑟𝑡 = 𝜎(𝑊𝑟 ∗ [ℎ𝑡−1, 𝑥𝑡])                   (7)  

     Where𝑊𝑟, corresponds to the trainable weight matrix of the 

reset gate 𝑟𝑡. The candidate activation vector ℎ̃𝑡, as shown in 

Equation (8), was derived by combining the current input 𝑥𝑡 

with an altered form of the preceding hidden state, which is 

controlled by the reset gate. This operation allows the network 

to selectively incorporate useful past information while 

calculating the candidate of the new hidden state. 

  ℎ̃𝑡 = tanh (𝑊ℎ ∗ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])                  (8) 

Here𝑊ℎ, represents an additional weight matrix involved 

in this computation that enables the smooth combination of 

past and current data to update the hidden state efficiently. The 

new hidden state ℎ𝑡 as described in Equation (9), was 

computed by combining the candidate activation vector with 

the previous hidden state, where the contribution is weighted 

by the update gate.  

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡                     (9) 
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3.3.3. Long Short-Term Memory 

LSTM is designed to overcome the limitation of RNN in 

capturing sequential data's long-term dependencies. LSTM 

networks provide a new architecture, as presented in Figure 6, 

consisting of memory cells and gating mechanisms, namely 

the output, input, and forget gates that regulate the flow of 

information. The architecture enables LSTMs to store 

important data for long durations and effectively deal with 

vanishing and exploding gradient issues prevalent in 

traditional RNNs. By selectively remembering or forgetting 

information, LSTM networks excel in tasks requiring context 

over sequences, such as language modeling, time-series 

prediction and speech recognition [23]. The basic formula to 

calculate the hidden state ℎ𝑡 at time step 𝑡 is described by 

Equation (10), which calculates the hidden state according to 

present input and previous state information.  

ℎ𝑡 = 𝑓(𝑀𝑥𝑡 + 𝑊ℎ𝑡−1)                     (10) 

Where 𝑓 denotes a non-linear activation function, 

including 𝑡𝑎𝑛ℎ() or ReLU. This function handles 𝑥𝑡 which is 

the current input state and ℎ𝑡−1 is the preceding hidden state 

at time steps 𝑡 and 𝑡 − 1. The LSTM's three gates control the 

procedure of adding, deleting and utilizing memory content 

accordingly. The forget gate (𝑓𝑡) in an LSTM handles the cell 

state by determining which data should be retained or deleted. 

It compares the earlier hidden state to the present input using 

a sigmoid activation function, and those outputs vary between 

0 and 1. If the output is close to 0, it is denoted that the 

information can be forgotten. If an output is near 1, it 

determines that the information should be preserved. This 

selective filtering directly modifies the cell state through 

element-wise multiplication, effectively removing irrelevant 

data and maintaining only essential information, as shown in 

Equation (11). 

                               𝑓𝑡 = 𝜎(𝑀𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1)                   (11) 

 
Fig. 6 Basic architecture of LSTM 

Where 𝑀𝑓 and 𝑊𝑓 are the weight matrix for the input state 

and hidden state. The input gate (𝑖𝑡) evaluates the relevance 

of the current input by combining it with the previous hidden 

state and a corresponding weight matrix. The important 

information is then incorporated into the cell state, modifying 

to reflect the new long-term memory, which is used in 

subsequent iterations of the network as depicted in Equation 

(12).  

  𝑖𝑡 = 𝜎(𝑀𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1)                   (12)        

Where 𝑀𝑖 and 𝑊𝑖 denotes the weight linked to the present 

input and previous hidden state. The output of an LSTM 

network is determined by the output gate (𝑜𝑡). The cell state, 

holding the long-term information, was modified by a 𝑡𝑎𝑛ℎ  

function, which refined the selection process. This mechanism 

allows the network to maintain relevant data over time and 

produce outputs of the given input sequence represented in 

Equation (13).  

𝑜𝑡 = 𝜎(𝑀𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1)                   (13)   

Where 𝑀𝑜 and 𝑊𝑜 represents the weight linked to the 

current input and preceding hidden state. LSTM utilizes the 

cell state 𝑐𝑡  that functions as the model's long-term memory 

and the hidden state ℎ𝑡  representing short-term memory for 

storing information. The cell state keeps the important data 

across extended sequences, and the hidden state extracts more 

information from recent computational steps. This dual 

memory allows LSTM to efficiently coordinate and utilize 

both current inputs and important past information, processing 

the present input. 𝑥𝑡, the previous cell state 𝑐𝑡−1 and the 

preceding hidden state ℎ𝑡−1. Equation (14) calculates the cell 

state as follows: 

𝑐̂𝑡 = tanh (𝑀𝑐𝑥𝑡 + 𝑊𝑐ℎ𝑡−1)               (14) 

The updated internal memory is calculated in Equation 

(15). 

𝑐𝑡 = 𝑐̂𝑡 ∗ 𝑖𝑡 + 𝑐𝑡−1 ∗ 𝑓𝑡                         (15) 

As a result, the output gate and memory cell state are used to 

determine the hidden state at time step 𝑡 in Equation (16) as 

follows.  

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡)                         (16) 

3.4. Proposed Hybrid Model 

The proposed hybrid DL network combines CNN with 

GRU and LSTM layers to extract spatial and temporal 

dependencies in the data. The model begins with the CNN 

branch, which performs feature extraction from the input 

images, employing convolutional layers with ReLU activation 

to identify spatial patterns. A max-pooling layer down a 

sample of the feature maps, reducing their dimensionality and 

dropout, is applied to prevent overfitting during training. This 

output is then transferred through an FC layer with ReLU 

activation before being further processed by a dense layer with 
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32 units. The second branch of the model incorporates the 

GRU layers to extract sequential dependencies. The input of 

the framework is given to convolutional layers to collect 

characteristics tailed by a max pooling, dropout and reshaping 

to prepare it for sequential processing. This allows the model 

to capture patterns over time, which is particularly useful for 

detecting long-term dependencies in ultrasound images. The 

third branch incorporates an LSTM layer to retain long-term 

dependencies. Similar to GRU, the features are extracted 

through a convolutional layer followed by max pooling and 

dropout. 

After reshaping, the data is run through an LSTM layer 

that processes the temporal data, allowing the model to capture 

long-term temporal patterns relevant to PCOS detection. 

Then, the CNN, GRU and LSTM outputs are concatenated and 

passed through a dropout layer to reduce overfitting. The 

concatenated output is then processed by a dense layer with 

ReLU activation followed by a final output layer with a 

softmax activation function producing a probability 

distribution across the "infected" and "not infected" classes. 

This hybrid architecture provides a powerful system for 

accurately identifying PCOS from ultrasound images. Figure 

7 presents the architecture of the suggested study. The 

algorithm for the suggested system is shown below. 

Algorithm: PCOS Detection Using Hybrid CNN-GRU-LSTM 

Model 

Input: Ultrasound images of ovaries  

Output: PCOS detection model (infected or not infected) 

Begin: 

Load and preprocess data: 

1. Collect dataset: C = {(Pi, Qi)}i=0
N−1, were Pi is an 

ultrasound image and Qi∈ {0, 1} (1: infected, 0: not 

infected). 

2. Preprocess:  

 Resize: Pi→Pi
′∈R224×224 

 Normalize: Pi
′ →

Pi
′−μ

σ
 

 Data Augmentation: Pi
′ → {Pi

′′}(Shear, 

Zoom, Flip (horizontal and vertical), 

Rotation) 

Define CNN-GRU-LSTM Model: 

1. Input: 224 × 224 × 3 

CNN Branch 

Conv2D (16, (3,3), activation=’relu') 

       MaxPooling2D (pool size= (2, 2)) 

       Dropout (0.9) 

       Flatten () 

       Dense (8, activation=’relu') 

       Dense (32) 

       GRU Branch 

Conv2D (8, (3,3), activation=’relu') 

MaxPooling2D (pool size= (2, 2)) 

               Dropout (0.9) 

               Flatten () 

               Reshape for GRU 

              GRU (4) 

              Flatten () 

    LSTM Branch 

Conv2D (8, (3,3), activation=’relu') 

MaxPooling2D (pool size= (2, 2)) 

Dropout (0.9) 

             Flatten () 

             Reshape for LSTM 

             LSTM (4) 

             Flatten () 

                   Concatenate () 

Fully Connected Layers: 

              Dropout (0.9)  

              Dense (8, activation=’relu') 

              Dense (2, activation=’softmax’) 

2. Compile the model X: 

optimizer=Adam () 

             learning rate=0.01 

             loss function=binary _crossentropy 

              metrics=[accuracy] 

3. Train the model X: 

Fit the model: X. fit (Ptrain , Qtrain ,validation_data= 

(Pval, Qval), batch size=32, epochs=50). 

4. Evaluate the model X: 

Evaluate: X. eval ((Ptest , Qtest), where metrics 

include accuracy, recall, precision and F1 Score.  

Save the Model 

End 

3.5. Software and Hardware Setup 

The proposed system was built using the Google 

Colaboratory platform, utilizing Python and the Keras model 

for implementation. The Colab notebooks use 64-bit Windows 

10 and come with a Graphics Processing Unit (GPU), 68.50 

GB of storage and 12.75 GB of RAM pre-installed with 

TensorFlow. Python's flexibility, straightforward syntax and 

extensive library support make it an ideal choice for this study. 

The hyperparameters, pre-set configurations that influence a 

DL model's learning process, were determined through 

empirical methods as summarized in Table 2.  

The framework that produced the optimal performance in 

classification was determined by comparing and analyzing 

several sets of variables. A 0.9 dropout rate was chosen to 

reduce overfitting due to the framework's complex 

architecture. Experiments with lower dropout rates resulted in 

higher variance and overfitting during validation.  

The selected dropout rate ensures better generalization on 

unseen data. The learning rate was optimized to balance 

convergence speed and stability, while the number of epochs 

was determined based on performance improvements 

observed during training.  
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Table 2. Hyperparameters of the hybrid model 

Hyperparameters Values 

Activation Function ReLU, Softmax 

Learning rate 0.01 

Dropout 0.9 

Number of Epochs 50 

Optimizer Adam 

Loss Function Binary Crossentropy 

Batch Size 32 

 
Fig. 7 Proposed model architecture 
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The optimizer was selected for its efficiency in handling 

complex gradient updates, and the batch size was adjusted to 

maintain a trade-off between computational efficiency and 

model accuracy. Activation functions were chosen to 

introduce non-linearity and improve classification 

performance, while the loss function was selected to 

effectively minimize classification errors in PCOS detection. 

4. Results and Discussion 
The accuracy plot presents the system's efficiency by 

tracking the proportion of correct predictions over time, and 

the loss plot monitors the error among the actual and predicted 

values during training. Both visualizations are essential for 

evaluating the model's learning progression with higher 

accuracy and lower loss, indicating better performance. In this 

study, these plots provide important insights into the model's 

capability to detect PCOS based on the dataset's features. 

Figure 8 displays the accuracy and loss plots for the suggested 

framework. At the initial epoch, the system accuracy is 

relatively low, starting around 86%. It determines that the 

model is just beginning to learn and understand the data 

patterns. The accuracy gradually improves during the initial 

training phase, showing that the framework successfully 

learns basic features from the training set. By the final epoch 

at around 50, the training accuracy becomes significantly 

higher, reaching approximately 98.5%.  This suggests that the 

model has effectively learned complex data relationships and 

patterns. When considering the loss of the system, it is 

relatively high at the initial epoch, as shown by the training 

loss starting above 0.5. The loss decreases rapidly over the 

early epochs as the model adjusts its biases and weights 

learning to represent the underlying structure of the data. By 

the final epoch, the system loss is significantly minimized and 

reaches around 0.1. This notable reduction in loss throughout 

the training process determines that the framework is 

efficiently improving its accuracy and reducing its error rate. 

Evaluation metrics are crucial for evaluating DL framework 

performance, offering information about their predictive and 

classification capabilities. Metrics commonly used include 

accuracy, precision, recall, and the F1 score, each providing 

an alternative viewpoint on the model's performance. These 

metrics are crucial for identifying issues like overfitting, 

underfitting or class imbalance, and they guide improvements 

during the training phase. Equations (17)-(20) define the 

formulas. 

                             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                  (17) 

                                 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (18) 

                               𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                          (19) 

                    𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                 (20) 

Where 𝑇𝑃 = True Positive, 𝑇𝑁 = True Negative, 𝐹𝑃 = 

False Positive, 𝐹𝑁 = False Negative. Figure 9 represents the 

graphical illustration of the suggested hybrid model that 

demonstrates excellent performance with 98.50% accuracy. 

Precision and recall are 98.59% and 98.55%, respectively, 

which presents the strong ability of the framework to make 

precise positive predictions while effectively identifying TP. 

The F1 score of 98.48% demonstrates a strong overall 

classification performance, correctly predicting positives and 

reducing FP and FN. Overall, the hybrid model exhibits a 

strong ability to classify data with high reliability and minimal 

errors.  

 
Fig. 8 Accuracy and loss plot of the hybrid method
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A tool utilized to examine the efficiency of a 

classification framework is a confusion matrix that displays 

the number of TP, TN, FP and FN. Figure 10 illustrates the 

confusion matrix by comparing the actual outcomes with the 

predicted ones. The matrix shows that the model correctly 

predicted 169 out of 171 samples as "not infected" and 170 out 

of 171 samples as "infected". There were 2 healthy ovaries 

misclassified as "infected" and 1 infected ovary misclassified 

as healthy. Overall, the model demonstrates high accuracy 

with a strong balance between sensitivity and specificity. An 

image selected randomly from the dataset was evaluated 

utilizing the proposed hybrid framework that accurately 

classified it as "infected." As demonstrated in Figure 11, this 

correct classification emphasizes the effectiveness of the 

system and its capacity to reliably identify and categorize 

images within the dataset. 

Fig. 9 Performance evaluation of the proposed hybrid model 

 
Fig. 10 Confusion matrix of the proposed hybrid model 
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Fig. 11 Predicted output of PCOS 

Table 3 provides a comparative analysis of the accuracy 

attained by various models in detecting PCOS across different 

datasets. The proposed hybrid CNN-GRU-LSTM model 

exhibits an exceptional accuracy of 98.50%, outperforming all 

existing frameworks. The voting-LSTM model obtained an 

accuracy of 72.17% on radial pulse wave data, and Inception 

attained 84.18% using ovary ultrasound images. Other 

methods like SLVR and RF attained an accuracy of 89.03% 

and 92.02%. It showed significant improvements but fell short 

compared to the proposed model. Even advanced models like 

U-Net, with an accuracy of 92.9%, and Ocys-Net, obtained an 

accuracy of 95.93%. The proposed hybrid model's superior 

performance can be attributed to the integration of CNN for 

feature extraction combined with the sequential modeling 

strengths of GRU and LSTM. This hybrid architecture 

effectively captures both temporal and spatial dependencies in 

ultrasound imaging data, providing a more thorough analysis 

than single models or less complex architectures. Using 

ultrasound image data enhances the robustness of the model, 

utilizing high-quality diagnostic imaging for accurate 

detection. Higher accuracy indicates that the proposed model 

could provide reliable and precise PCOS detection, ensuring a 

more effective solution than existing methods. Figure 12 

graphically illustrates the accuracy of comparing the hybrid 

model with the existing approaches.  

Table 3. Accuracy comparison of proposed and existing methods 

Authors & References Models Datasets Accuracy 

Lim et al. [6] Voting-LSTM Radial pulse wave data 72.17% 

Almoudi et al. [15] Inception Ovary ultrasound images 84.18% 

Rakshitha & Naveen [10] SLVR Clinical dataset 89.03% 

Batra & Nelson [7] RF Kaggle PCOS dataset 92.02% 

Wenqi Lv et al. [17] U-Net PCOS dataset 92.9% 

Bhardwaj & Tiwari [9] SVM Clinical data 93% 

Fan et al. [16] Ocys-Net Ovarian cyst dataset 95.93% 

Kumar & Varadarajan [13] CNN-LSTM Image and text datasets 96.07% 

Proposed Hybrid CNN-GRU-LSTM Model Ultrasound image dataset 98.50% 

 
Fig. 12 Accuracy comparison of the proposed model with existing approaches 
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5. Conclusion 
PCOS is a hormonal problem among women of 

reproductive age that is categorized by the existence of several 

small cysts on the ovaries, high levels of androgen and 

irregular menstrual periods. PCOS detection is the process of 

identifying and classifying the condition using medical 

imaging or clinical data. This study aims to create a robust and 

accurate approach DL approach for identifying PCOS from 

ultrasound images. The hybrid model proposed integrates 

CNN-GRU-LSTM models, each contributing its strengths in 

capturing spatial and temporal features of the data.  

The dataset from Kaggle used for this research includes 

3,856 ultrasound images, which are categorized into 

"infected" and "not infected" cases. Data preprocessing and 

augmentation methods such as resizing, normalization, and 

transformations were applied to enhance the variability and 

quality of the input data. The system architecture begins with 

CNN layers for feature extraction. Then, the GRU and LSTM 

layers are employed to capture sequential and long-term 

dependencies. The hybrid model concatenates the outputs 

from all three architectures to produce accurate predictions. 

The system achieves impressive performance, with 98.50% 

accuracy, 98.59% precision, 98.55% recall and a 98.48% F1 

score, determining the efficiency of the hybrid model in 

accurately classifying PCOS from ultrasound images 

surpassing existing methods. While achieving high accuracy 

in PCOS detection, this study shows certain limitations. The 

model relies solely on ultrasound images, limiting its 

applicability to cases where imaging is unavailable. The real-

time implementation in clinical settings requires further 

validation. Future research should explore multi-modal data 

integration and lightweight architectures optimized for real-

time deployment. 
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