A Chirality Based Noise Margin Analysis of Carbon Nanotube FET Devices
International Journal of Electrical and Electronics Engineering |
© 2020 by SSRG - IJEEE Journal |
Volume 7 Issue 7 |
Year of Publication : 2020 |
Authors : Hasin Akhyear, Ashiqure Rashid, Showmik Singha |
How to Cite?
Hasin Akhyear, Ashiqure Rashid, Showmik Singha, "A Chirality Based Noise Margin Analysis of Carbon Nanotube FET Devices," SSRG International Journal of Electrical and Electronics Engineering, vol. 7, no. 7, pp. 51-56, 2020. Crossref, https://doi.org/10.14445/23488379/IJEEE-V7I7P109
Abstract:
Carbon nanotubes have shown great promises in the field of nano-electronic devices by the enhancement of overall performance matrices compared to traditional silicon-based devices. The goal of this paper is to seek for ways how to influence the performance of digital devices by varying the property of the carbon nanotubes. Our work focuses on the chiral property of the nanotubes and its impact on the noise margin of the inverter. We have designed a 6T SRAM to analyze the relation between N-curve stability parameters and the chirality of the channel. Simulation and analysis using CNTFET show promising results in enhancing the robustness and stability of digital devices.
Keywords:
CNTFET, chirality, threshold voltage, noise margin, SRAM, N-curve.
References:
[1] Schaller, R.R., 1997. Moore's law: past, present and future”. IEEE spectrum, 34(6), pp.52-59.
[2] Javey, A., Guo, J., Farmer, D.B., Wang, Q., Yenilmez, E., Gordon, R.G., Lundstrom, M. and Dai, H., 2004. “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays”. Nano letters, 4(7), pp.1319-1322.
[3] Stanford University 2014, Stanford CNFET Model Hspice, Stanford, California, USA, viewed 2 February 2020, <https://nano.stanford.edu/stanford-cnfet-model-hspice>.
[4] Iijima, S., 1991. “Helical microtubules of graphitic carbon”. nature, 354(6348), pp.56-58.
[5] Dresselhaus, G. and Riichiro, S., 1998. “Physical properties of carbon nanotubes”. World scientific.
[6] Laird, E.A., Kuemmeth, F., Steele, G.A., Grove-Rasmussen, K., Nygård, J., Flensberg, K. and Kouwenhoven, L.P., 2015. “Quantum transport in carbon nanotubes”. Reviews of Modern Physics, 87(3), p.703.
[7] Cui, Y., Zhong, Z., Wang, D., Wang, W.U. and Lieber, C.M., 2003. “High performance silicon nanowire field effect transistors”. Nano letters, 3(2), pp.149-152.
[8] Schiller, J., Schiller, Y. and Clapham, D.E., 1998. “NMDA receptors amplify calcium influx into dendritic spines during associative pre-and postsynaptic activation”. Nature neuroscience, 1(2), pp.114-118.
[9] Torres-Dias, A.C., Cerqueira, T.F., Cui, W., Marques, M.A., Botti, S., Machon, D., Hartmann, M.A., Sun, Y., Dunstan, D.J. and San-Miguel, A., 2017. “From mesoscale to nanoscale mechanics in single-wall carbon nanotubes”. Carbon, 123, pp.145-150.
[10] Sinha, S.K. and Chaudhury, S., 2015. “Analysis of different parameters of channel material and temperature on threshold voltage of CNTFET”. Materials Science in Semiconductor Processing, 31, pp.431-438.
[11] De Vusser, S., Genoe, J. and Heremans, P., 2006. “Influence of transistor parameters on the noise margin of organic digital circuits”. IEEE Transactions on Electron Devices, 53(4), pp.601-610.
[12] Lin, S., Kim, Y.B. and Lombardi, F., 2009. “Design of a CNTFET-based SRAM cell by dual-chirality selection”. IEEE Transactions on Nanotechnology, 9(1), pp.30-37.
[13] Wann, C., Wong, R., Frank, D.J., Mann, R., Ko, S.B., Croce, P., Lea, D., Hoyniak, D., Lee, Y.M., Toomey, J. and Weybright, M., 2005, April. “SRAM cell design for stability methodology”. In IEEE VLSI-TSA International Symposium on VLSI Technology, 2005.(VLSI-TSA-Tech). (pp. 21-22). IEEE.
[14] Cheung, K.Y., Watanabe, K., Segawa, Y. and Itami, K., 2020. “Synthesis of a Zigzag Carbon Nanobelt (Doctoral dissertation”, Institute of Transformative Bio-Molecules, Nagoya University).
[15] Dresselhaus, M.S., Lin, Y.M., Rabin, O., Jorio, A., Souza Filho, A.G., Pimenta, M.A., Saito, R., Samsonidze, G. and Dresselhaus, G., 2003. “Nanowires and nanotubes”. Materials Science and Engineering: C, 23(1-2), pp.129-140.
[16] Hill, C.F., 1967. “Definitions of noise margin in logic systems”. Mullard Tech. Commun, 89, pp.239-245.
[17] Bae, W., 2019. “CMOS Inverter as Analog Circuit: An Overview”. Journal of Low Power Electronics and Applications, 9(3), p.26.
[18] Rajput, S.S. and Jamuar, S.S., 2002. “Low voltage analog circuit design techniques”. IEEE Circuits and Systems Magazine, 2(1), pp.24-42. [19] Rabaey, J.M., Chandrakasan, A.P. and Nikolić, B., 2003. “Digital integrated circuits: a design perspective” (Vol. 7). Upper Saddle River, NJ: Pearson Education.
[20] Lin, S., Kim, Y.B., Lombardi, F. and Lee, Y.J., 2008, November. “A new SRAM cell design using CNTFETs”. In 2008 International SoC Design Conference (Vol. 1, pp. I-168). IEEE.
[21] La Rosa, G., Ng, W.L., Rauch, S., Wong, R. and Sudijono, J., 2006, March. “Impact of NBTI induced statistical variation to SRAM cell stability”. In 2006 IEEE International Reliability Physics Symposium Proceedings (pp. 274-282). IEEE.
[22] Grossar, E., Stucchi, M., Maex, K. and Dehaene, W., 2006. “Read stability and write-ability analysis of SRAM cells for nanometer technologies”. IEEE Journal of Solid-State Circuits, 41(11), pp.2577-2588.