Alcohol Sensing Device using Glass Substrates Coated with Agarose Gel and HEC/PVDF Nanomaterial

International Journal of Electrical and Electronics Engineering
© 2023 by SSRG - IJEEE Journal
Volume 10 Issue 4
Year of Publication : 2023
Authors : Marlina Jahava, Mohd Hafiz Jali, Danusha Pillai, Haziezol Helmi Mohd Yusof, Md. Ashadi Md Johari, Aminah Ahmad, Siti Halma Johari, Sulaiman Wadi Harun, Siddharth Thokchom
pdf
How to Cite?

Marlina Jahava, Mohd Hafiz Jali, Danusha Pillai, Haziezol Helmi Mohd Yusof, Md. Ashadi Md Johari, Aminah Ahmad, Siti Halma Johari, Sulaiman Wadi Harun, Siddharth Thokchom, "Alcohol Sensing Device using Glass Substrates Coated with Agarose Gel and HEC/PVDF Nanomaterial," SSRG International Journal of Electrical and Electronics Engineering, vol. 10,  no. 4, pp. 37-45, 2023. Crossref, https://doi.org/10.14445/23488379/IJEEE-V10I4P104

Abstract:

This paper reported the development of an alcohol sensor based on a glass substrate platform. The glass substrate was coated with two nanomaterial types: Hydroxyethylcellulose/Polyvinylidene fluoride (HEC/PVDF) and Agarose Gel, for comparison purposes. Three layers of coating material have been applied to the glass substrate to obtain the optimum sensing response. The coated glass substrate is kept dry for 24 hours before expose to variations of ethanol concentration to investigate the sensing response. A significant response to alcohol concentrations has been observed for both samples due to the changeable refractive index layer of the coating material. The sensitivity improved by a factor of 1.18 and 1.51, respectively, compared to the bared glass. The proposed sensor employed low-cost and commercially available components such as a glass substrate, LED light source and Arduino microcontroller to perform as an alcohol sensor. It prevents using expensive laser-based sensors, which is less practical in real industrial applications. Based on the experiment results, the HEC/PVDF-coated glass produced has demonstrated better results in terms of repeatability, hysteresis, stability and sensitivity as compared to agarose gel-coated glass. Hence the proposed sensor has a decent potential as an alcohol sensor

Keywords:

Alcohol sensor, Glass substrate, HEC/PVDF, Agarose gel.

References:

[1] G. Ayares et al., "Public Health Measures and Prevention of Alcohol-Associated Liver Disease," Journal of Clinical and Experimental Hepatology, vol. 12, no. 6, pp. 1480-1491, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[2] E. Scafato et al., "The Undertreatment of Alcohol-Related Liver Diseases Among People with Alcohol Use Disorder," European Review for Medical and Pharmacological Sciences, vol. 24, no. 2, pp. 974-982, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Izanoordina Ahmad, Muhammad Firdaus Suhaimi, and Nur Asfarina Nasuha Yusri, "Development of Alcohol Sensor Detector with Engine Locking System for Accident Prevention," AIP Conference Proceedings, p. 020196, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[4] James C. Fell et al., "The Impact of Underage Drinking Laws on Alcohol-Related Fatal Crashes of Young Drivers," Alcoholism: Clinical and Experimental Research, vol. 33, pp. 1208-1219, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[5] Nicholas V. Emanuele, Terrence F. Swade, and Mary Ann Emanuele,, "Consequences of Alcohol Use in Diabetics," Alcohol Health and Research World, vol. 22, no. 3, pp. 211-219, 1998.
[Google Scholar] [Publisher Link]
[6] Zijie Lin et al., "Evaluation and Review of Ways to Differentiate Sources of Ethanol in Postmortem Blood," International Journal of Legal Medicine, vol. 134, no. 6, pp. 2081-2093, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[7] Delvin Sidqey, Veronica Horpestad Liane, and Lena Kristoffersen, "Quantitative Determination of Ethyl Glucuronide and Ethyl Sulfate in Postmortem and Antemortem Whole Blood Using Phospholipid Removal 96-Well Plate and UHPLC–MS-MS," Journal of Analytical Toxicology, vol. 45, no. 4, pp. 378-388, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[8] Dr.A.Bhavana, and M.Johnkarol, "Tensile, Thermal, and Morphological Belongings, with Consumption of Agro Ravage Polymers into PVC/NBR Alloys," SSRG International Journal of Chemical Engineering Research, vol. 2, no. 1, pp. 11-14, 2015.
[CrossRef] [Publisher Link]
[9] E. Filippo, A. Serra, and D. Manno, "Poly (Vinyl Alcohol) Capped Silver Nanoparticles as Localized Surface Plasmon Resonance-Based Hydrogen Peroxide Sensor," Sensors and Actuators B: Chemical, vol. 138, no. 2, pp. 625-630, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Lufsyi Mahmudin et al., "Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications," Journal of Modern Physics, vol. 6, pp. 1071-1076, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[11] Colette McDonagh, Conor S. Burke, and Brian D. MacCraith, "Optical Chemical Sensors," Chemical Reviews, vol. 108, pp. 400-422, 2008.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Jinjun Shi et al., "Recent Developments in Nanomaterial Optical Sensors," TrAC Trends in Analytical Chemistry, vol. 23, no. 5, pp. 351-360, 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Yuan-Qing Li, Shao-Yun Fu, and Yiu-Wing Mai, "Preparation and Characterization of Transparent Zno/Epoxy Nanocomposites with High-UV Shielding Efficiency," Polymer, vol. 47, no. 6, pp. 2127-2132, 2006.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Zohra Nazir Kayani et al., "Fabrication and Properties of Zinc Oxide Thin Film Prepared by Sol-Gel Dip Coating Method," Materials Science-Poland, vol. 33, pp. 515-520, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[15] Affa Rozana Abdul Rashid et al., "ZnO Coated Optical Fiber for Alcohol Sensing Applications," Solid State Phenomena, pp. 70-77, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[16] Kyu J. Lee et al., "Agarose-Gel Based Guided-Mode Resonance Humidity Sensor," IEEE Sensors Journal, vol. 7, no. 3, pp. 409-414, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[17] M. Batumalay et al., "Study of a Fiber Optic Humidity Sensor Based on Agarose Gel," Journal of Modern Optics, vol. 61, pp. 244-248, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[18] Malathy Batumalay et al., "Tapered Plastic Optical Fiber Coated With Graphene for Uric Acid Detection," IEEE Sensors Journal, vol. 14, no. 5, pp. 1704-1709, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[19] Alice Bukola Olanipekun, "Lattice Dynamics of Mixed Divalent Metal Fluorides," SSRG International Journal of Applied Physics, vol. 9, no. 1, pp. 12-16, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[20] Mohd Hafiz Jali et al., "Humidity Sensing Using Microfiber-Zno Nanorods Coated Glass Structure," Optik, vol. 238, p. 166715, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[21] Md Ashadi Md Johari et al., "Polyvinyl Alcohol Coating Microbottle Resonator on Whispering Gallery Modes for Ethanol Liquid Sensor," Optics & Laser Technology, vol. 143, p. 107379, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[22] Huda Adnan Zain et al., "Agarose Coated Micro-Bottle Sensor for Relative Humidity Detection," Optoelectronics Letters, vol. 17, pp. 328-333, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[23] Susana Novais, Marta S. Ferreira, and João L. Pinto, "Relative Humidity Fiber Sensor Based on Multimode Interferometer Coated with Agarose-Gel," Coatings, vol. 8, p. 453, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[24] Mohd Hafiz Jali et al., "Effect of HEC/PVDF Coating on Glass Substrate for Formaldehyde Concentration Sensing," PrzeglĄd Elektrotechniczny, vol. 98, no. 4, pp. 40-43, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[25] H. A. Zain et al., "HEC/PVDF Coated Microbottle Resonators for Relative Humidity Detection," Optik, vol. 232, p. 166534, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[26] M. O'Toole and D. Diamond, "Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices," Sensors, vol. 8, no. 4, pp. 2453-2479, 2008.
[CrossRef] [Google Scholar] [Publisher Link]
[27] Sarah A. Elawam et al., "Structural Configuration and Thermal Analyses of Composite Films of Poly (methyl methacrylate)/Lead Oxide Nanoparticles," SSRG International Journal of Applied Physics, vol. 3, no. 3, pp. 6-14, 2016.
[CrossRef] [Google Scholar] [Publisher Link]
[28] Masayuki Morisawa, and Shinzo Muto, "Plastic Optical Fiber Sensing of Alcohol Concentration in Liquors," Journal of Sensors, vol. 2012, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[29] Hasnida Saad, Mohd Tarmizi Ali, and M. Kamil Abd Rahman, "High Sensitivity Optical POF Sensor for Detecting Low Ethanol Concentration in Water," Advanced Materials Research, pp. 693-698, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[30] Ismel Dominguez et al., "Dually Nanocoated Planar Waveguides Towards Multi-Parameter Sensing," Scientific Reports, vol. 11, p. 3669, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[31] Riya Alice B. John, and A. Ruban Kumar, "A Review on Resistive-Based Gas Sensors for the Detection of Volatile Organic Compounds Using Metal-Oxide Nanostructures," Inorganic Chemistry Communications, vol. 133, p. 108893, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[32] Yali Cheng et al., "Low Cost Fabrication of Highly Sensitive Ethanol Sensor Based on Pd-Doped Α-Fe2O3 Porous Nanotubes," Materials Research Bulletin, vol. 105, pp. 21-27, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[33] K. Arunganesh et al., "Smart Voltage Protection System for Industries," International Journal of Electrical and Electronics Engineering, vol. 8, pp. 5-12, 2021.
[CrossRef] [Publisher Link]
[34] Mohd Hafiz Jali et al., "Agarose Gel Coated Glass Substrate for Formaldehyde Sensing Application," PrzeglĄd Elektrotechniczny, vol. 1, pp. 97-101, 2022.
[CrossRef] [Publisher Link]
[35] Gerd H. Woehrle, Marvin G. Warner, and James E. Hutchison, "Molecular-Level Control of Feature Separation in One-Dimensional Nanostructure Assemblies Formed by Biomolecular Nanolithography," Langmuir, vol. 20, pp. 5982-5988, 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[36] M. Batumalay et al., "Tapered Plastic Optical Fiber Coated with Zno Nanostructures for the Measurement of Uric Acid Concentrations and Changes in Relative Humidity," Sensors and actuators A: Physical, vol. 210, pp. 190-196, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[37] Feng-Bo Yang et al., "A Low-Cost Light-Emitting Diode Induced Fluorescence Detector for Capillary Electrophoresis Based on an Orthogonal Optical Arrangement," Talanta, vol. 78, no. 3, pp. 1155-1158, 2009.
[CrossRef] [Google Scholar] [Publisher Link]