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Abstract - Dependence on thermal power plants (TPPs) for massive power generation leads to many consequences, such as 

changes in temperature and increasing pollution levels, which adversely affect human and vegetation health. So, proper 

maintenance and monitoring of TPPs are crucial, but to accomplish this, the traditional in-situ inspections prove time-

consuming, labour-intensive, and financially impractical. This research proposes the application of Remote Sensing (RS) and 

Geographical Information System (GIS) techniques as powerful tools to mitigate these challenges significantly. This study aims 

to analyze the impact of the SGTPS and its emitted pollutants on its surrounding forest confined within the two buffer zones by 

assessing the correlation between various indices (Soil Moisture Index (SMI), Land Surface Temperature (LST), Normalized 

Difference Vegetation Index (NDVI)), and pollutants (SO2, NOx, PM, CO) emitted and changes in forest cover through Land Use 

and Land Cover (LULC) change detection. The study also seeks to identify the reasons behind the observed variations. 

Consequently, it aims to offer insightful information that can support evidence-based decision-making and sustainable 

management techniques for the preservation of the irreplaceable forest ecosystems that border the SGTPS. Despite some 

observed variations, overall analysis suggests that the studied SGTPS has minimal impact on forest health, likely due to 

adherence to regulations and pollution mitigation efforts. Similar assessments nationwide could ensure sustainable energy 

production while meeting environmental standards. 
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1. Introduction 
Forests are essential for the Earth's ecological balance, 

providing vital resources for human survival. However, 

escalating anthropogenic activities and pollution pose severe 

threats to flora and fauna. In the contemporary technology-

driven era, power demand has led to a reliance on various 

energy resources, especially TPPs. In India, the Ministry of 

Coal reports that a predominant 75% of electricity production 

is derived from coal-based thermal power plants, [1] making 

it a crucial component of the nation's power generation. 

However, the emissions from these power stations pose 

significant threats to both human health and natural 

ecosystems, particularly forests. The pollutants released cause 

air pollution, acid rain, [2,3] leaf stomata clogging [4,5], 

which adversely impact plant chlorophyll content and result in 

damage of vegetation as well as narrowing of annual tree 

growth rings, leading to substandard timber and economic 

losses. [6] 

 

While these plants significantly contribute to power 

generation, their proper maintenance and monitoring are 

crucial. Traditional in-situ methods of Environment Impact 

Analysis (EIA) are time-consuming and costly, [7,8] 

prompting the exploration of efficient alternatives. In recent 

years, RS and GIS have emerged as indispensable tools for 

monitoring and analyzing such ecological changes. 

 

RS involves acquiring information about a target without 

direct contact [9], while GIS is a system for inputting, 

organizing, analyzing, and mapping various data, particularly 

geographic data. Both RS and GIS exhibit significant potential 

in forest ecology management, ranging from species 

identification to monitoring forest health and estimating 

vegetation biomass. [10-13] Numerous studies have utilized 

different satellite data for classification and land use and land 

cover mapping, [14,15] change detection, [16] and pollution 

analysis. [17,18] Additionally, RS and GIS facilitate the 

estimation of crucial vegetation health indices such as the 

SMI, LST, and NDVI. [18-21] 

 

Kantarci (2003) examined how three thermoelectric 

power plants affected the Yerkesik-Denizova woodlands in 

http://www.internationaljournalssrg.org/
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Mugla Province, Turkey.[6] Environmental assessments were 

used to determine how these power installations affected 

forest health. Although the study offered valuable insights, it 

was limited by a lack of long-term data on pollution levels and 

their effects on biodiversity. In contrast, Mondal et al. (2016) 

simulated the environmental impacts of the West Bengal 

Kolaghat thermal power station using modern RS and GIS 

tools. The study attempted to identify land use and pollutant 

changes by analyzing satellite images and geographical data. 

The study struggled to detect small-scale environmental 

changes due to the low resolution of available satellite images. 

[22] Padmavathi et al. (2015) assessed air pollution around the 

Dr Narla Tata Rao Thermal Power Station (NTTPS). The 

examination of significant air contaminants was helpful, but 

its regional and temporal scope may have missed pollution 

dynamics trends. [23] Chowdhury (2017) examined how the 

Rampal coal-fired power plant affected the Sundarbans, the 

world's most extensive mangrove forest. The study used field 

observations, data analysis, and literature evaluation to clarify 

ecological issues. Secondary data and forecasts may have 

obscured direct environmental effects. [24] Yadav and 

Prakash (2014) examined the existing scenario and 

environmental impacts of thermal power facility emissions in 

India. Despite the beneficial insights from emission data 

synthesis and regulatory compliance analysis, data accuracy 

and the lack of reported emissions may have influenced the 

study's conclusions. [25] Using spatial information research, 

Kumari and Sarma (2017) investigated how land use 

surrounding a thermal power plant in the Singrauli area of 

Madhya Pradesh related to shifting patterns in land surface 

temperature. However, the study could benefit from a more 

extensive temporal analysis to better understand long-term 

trends. [26] These collaborative efforts highlight the complex 

nature of comprehending the environmental impacts of 

thermal power plant operations. Also, although many studies 

have looked at how TPPs impact vegetation and forests in 

general, [6] [22-26] there is still a significant gap in 

understanding how SGTPS affects its surrounding forest 

explicitly, using RS and GIS techniques. 

 

The Sanjay Gandhi Thermal Power Station, located in 

lush green forests, serves as an exemplary case for studying 

industrial impacts on surrounding forest health. Unlike 

previous research that typically focuses on isolated aspects, 

this study comprehensively analyzes multiple factors, 

including LST, SMI, LULC changes, and pollutant levels on 

forest health, and examines the correlations between them 

using a simple yet innovative approach. Notably, it employs a 

comparative analysis between two buffer zones and examines 

data from two distinct years. Additionally, the study 

investigates potential reasons behind the observed changes 

and monitors whether various indices value, pollutant levels, 

and stack height comply with established standards. A 

significant novelty of this research lies in its simple yet 

effective methodology, and by zooming in on this specific 

area, the goal is to provide detailed insights that can help with 

conservation efforts tailored to the unique characteristics of 

the SGTPS surroundings, making it highly advantageous for 

conducting similar environmental impact studies. 

 

2. Study Area 
The study was conducted for the SGTPS situated at 

latitude 23°18′21″ N and longitude 81°03′54″ E, along with its 

surrounding area within two designated circular buffer zones. 

The first zone extended from a radial distance of 2.75 km, 

centered at the main stack of SGTPS, while the second 

spanned from 2.75 km to 5.5 km from SGTPS in Birsinghpur, 

Umaria district, Madhya Pradesh, India (Figure 1). The 

selection of these buffer zones is based on the conclusion that 

the highest concentrations of sulfur dioxide (SO2) and nitrogen 

dioxide (NO2) occur within a 5 km radius, as reported by the 

Central Electricity Authority (CEA). [27] 

 

3. Data and Methods 
3.1. Derivation of River Network and Watershed Using 

Digital Elevation Model (DEM) for Region of Interest (ROI) 

and Buffer Zone Creation 

For the analysis, an appropriate administrative border was 

investigated through various toposheets of administrative 

borders at state, district and village levels obtained from the 

Survey of India (SOI) containing the ROI; however, it was not 

appropriately circumscribed within any such boundary.  

 

By utilizing the standard watersheds provided by the 

Integrated Watershed Management Programme (IWMP), It 

has been identified that the area of interest is situated within 

watershed 2A6H4, which corresponds to the mainstream of 

the Johila River that flows through the study region. So, to 

derive the most recent watershed for the same region, Shuttle 

Radar Topography Mission-DEM (SRTM-DEM) data was 

downloaded for the ROI from the United States Geological 

Survey EarthExplorer (USGS EE) website. [28] It was found 

that two tiles contained the required ROI. So, after processing 

the DEM from the SRTM, these two tiles were mosaicked. 

Using this mosaicked DEM and Quantum Geographic 

Information System (QGIS) tools, a river network was 

derived. Out of this river network, the critical stream running 

through the study area was determined (Figure 2), which is 

further used to obtain its watershed, and its shape file is 

created as the study area boundary. 

 

As the next step for analysis, buffer zones were created 

using QGIS software's Geoprocessing tools at a radial distance 

of 2.75 km and another one from 2.75 km to 5.5 km around 

the central stack of SGTPS to study its impact on the 

surrounding forest. Their respective shape files were also 

created for further analysis (Figure 3).  
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Fig. 1 Location map of the study area 

 

 
Fig. 2 Derived Watershed and Study Area Using River Stream Lying in 

ROI 

 
Fig. 3 Buffer Zones Creation: Buffer 1 at a Radial Distance of 2.75 km 

and Buffer 2 at a Radial Distance of 2.75 km to 5.5 km Around SGTPS 
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3.2. Supervised Classification and Estimation of Change in 

LULC 

Using Sentinel-2 data, Google Earth Engine (GEE) and 

Google Earth images, supervised classification was performed 

to find the LULC change in the ROI between October 2016 

and October 2021.  

Based on the investigation through Google Earth Images, 

the ROI is classified into six broad classes, namely 

Waterbody, Ash Pond, Forest, Built-up area, Barren land and 

Agricultural land, as shown in Figure 4. 

3.3. Estimation of NDVI, LST, and SMI Indices Values for 

the Study Area 

Landsat-8 and Sentinel-2 satellite images for October 

2016 and October 2021 containing the study area were 

obtained from the USGS EarthExplorer website [28]. Using 

QGIS software, these images were pre-processed to remove 

unwanted haze and cloud cover, which may lead to errors in 

analysis. [29] Some bands of the images were converted to 

top-of-the-atmosphere (TOA) radiance for the analysis.  

 

Since the thermal power plants serve as heat centers, thus 

they may affect the land surface temperature and soil moisture 

of their surroundings, which in turn may affect the vegetation 

health, so it is essential to estimate the indices related to land 

surface temperatures and soil moisture such as LST and SMI 

respectively for the ROI and find the relationship between 

them and the vegetation health indicator index NDVI to get an 

idea about its impact on surrounding forest health. Thus, 

indices like the NDVI, LST, and SMI were estimated using 

pre-processed Landsat-8 satellite imagery for the ROI using 

the formulas given in Equation 1, 2, and 3, respectively. [20] 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
  (1) 

Where RED is the value of the red band, and NIR is the 

value of the near-infrared band. 

𝐿𝑆𝑇 =
𝐵𝑇

[1+(
𝜆∗𝐵𝑇

𝐶2
)∗ln 𝜖]

  (2) 

Where B.T. is at-satellite Brightness Temperature, λ is 

the wavelength of emitted radiance, C2 is constant (1.4388 

x10-2 meter Kelvin), and ϵ is emissivity (typically 0.95). 

𝑆𝑀𝐼 =
(𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇)

(𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑚𝑖𝑛)
     (3) 

Where the maximum and minimum surface temperatures 

for a specific LST are denoted by LSTmax and LSTmin. Then, 

correlation analysis is performed between NDVI, LST and SMI 

values to find a relationship between them for ROI. 

 
Estimated values of NDVI, LST and SMI for two buffer 

zones for the years 2016 and 2021 are depicted in pictorial 

form through the following maps shown in Figures 5, 6, 7, 8, 

9 and 10. 

 

 

 

 
(a)       (b) 

Fig. 4 LULC Maps for the Complete Study Area (a) October 2016, (b) October 2021 
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                                                                  (a)                                              (b) 

Fig. 5 NDVI Values for Buffer Zone 1 Estimated for October (a) 2016, (b) 2021  
 

 

   
                                                                   (a)                                             (b) 

Fig. 6 NDVI Values for Buffer Zone 2 Estimated for October (a) 2016, (b) 2021 

 

 

   
                                                                    (a)                            (b) 

Fig. 7 LST Values for Buffer Zone 1 Estimated for October (a) 2016, (b) 2021 
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(a)             (b) 

Fig. 8 LST values for buffer zone 2 estimated for october (a) 2016, (b) 2021 

 

   
(a)               (b) 

Fig. 9 SMI values for buffer zone 1 estimated for october (a) 2016, (b) 2021 

 

   
                                                                   (a)                                               (b) 

Fig. 10 SMI values for buffer zone 2 estimated for october (a) 2016, (b) 2021 

 

After estimating indices for complete ROI, some of these 

values at the same points within different buffer zones were 

randomly picked up and plotted in the form of a histogram in 

Figures 11, 12, 13, 14, 15 and 16.  

Correlation analysis is performed over these estimated 

values of NDVI, LST, and SMI using a linear regression 

model, and respective relationship trends are obtained, which 

are discussed in Section 4. 
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(a)      (b) 

Fig. 11 Estimated NDVI Value Histogram for Buffer 1 in (a) 2016, (b) 2021 

 

  
(a)      (b) 

Fig. 12 Estimated NDVI Value Histogram for Buffer 2 in (a) 2016, (b) 2021 

 

  
(a)       (b) 

Fig. 13 Estimated LST Value Histogram for Buffer 1 in (a) 2016, (b) 2021 
 

  
(a)       (b) 

Fig. 14 Estimated LST Value Histogram for Buffer 2 in (a) 2016, (b) 2021 
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3.4. Estimation of Monthly Mean Values of NDVI and 

Emitted Pollutants (SO2, NOx, PM, CO) by the SGTPS 

 In order to explore the effect of the pollutants released by 

the TPPs on the health of the surrounding forest's vegetation, 

the relationship between the emitted pollutants and NDVI was 

explored. The monthly and yearly data for major emitted 

pollutants like SO2, NOx, PM, and CO were obtained from 

SGTPS, and the GEE tool was used to estimate the monthly 

and yearly mean of NDVI for ROI. Then, the link between 

NDVI and SGTPS's emitted pollutants in the study area was 

explored using correlation analysis, employing scatter plots. 

All the generated data have been appropriately validated after 

completion of all preceding stages, and the reasons for the 

apparent association and for the shift in LULC have been 

investigated. Finally, conclusions are drawn based on data, 

analysis and observations of local scenarios and practices 

being followed at SGTPS. Additionally, future 

recommendations have been provided. The methodology 

followed is visually represented in Figure 17. 

 

4. Results and Analysis 
4.1. Accuracy Assessment of Derived Watershed 

 For the derived Watershed accuracy assessment, standard 

IWMP Watershed data (2A6H4) was used. Overlaying IWMP 

and derived watershed layers (Figure 18) revealed a 10.564 sq 

km difference, equating to a 0.696% error. The result obtained 

is summarized in Table 1. The derived watershed's accuracy 

came out to approximately 99.304%, considering the potential 

for boundary changes due to natural or anthropogenic factors. 
 

4.2. Estimation of Change in LULC Based on Supervised 

Classification 

 Based on the supervised LULC classification performed as 

mentioned under Section 3 and observing the obtained 

classification reports, an analysis is performed, and the 

following change in LULC is detected, as summarized in 

Table 2. The findings reveal that the reduction in waterbody 

areas can be majorly ascribed to the expansion of ash pond 

areas, and other possible causes can be sedimentation, 

inadequate cleaning practices, or desiccation of water bodies. 

The augmentation of built-up areas can be linked to increased 

human habitation and industrialization. 

 

A noteworthy surge in the ash pond's area implies 

increased water contamination due to the deposition of waste 

ash. The expansion of forested areas suggests a lack of 

significant adverse impacts from the SGTPS. 

 
 

 

  
                                                             (a)                             (b) 

Fig. 15 Estimated SMI Value Histogram for Buffer 1 in (a)2016, (b) 2021 

 

  
                                                                (a)                                (b) 

Fig. 16 Estimated SMI Value Histogram for Buffer 2 in (a) 2016, (b) 2021
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Fig. 17 Flowchart of methodology 

Table 1. Difference between derived and standard watershed 

S. No. Name of watershed Area (km2) Change in the area (km2) % error in the area 

1. IWMP watershed 2A6H4 1517.723 
-10.564 -0.696 

2 Derived watershed 1507.159 

 
Fig. 18 Difference Between IWMP Standard Watershed and Derived 

Watershed for ROI 

  However, the COVID-19 lockdown, which caused the 

cessation of anthropogenic activities, emerges as a noteworthy 

factor contributing to the restoration of natural conditions and 

improvements in the climate. [18] The decline in agricultural 

land and the rise in barren land may be attributed to the 

COVID-19 lockdown, or other factors can be the migration of 

individuals to urban centers in pursuit of enhanced educational 

opportunities for their children and employment.  

 

 Although good accuracy is obtained in classification, due 

to the COVID-19 pandemic, both training and validation for 

classification were based on the comparison between the 

classified satellite imagery and Google Earth images only, 

which limited its accuracy compared to in-situ observations. 

 

Data acquisition 

Ancillary data 

Data processing 

Satellite Images 

Image processing 

Data preparation 

and analysis 

River network, 

watershed derivation 

and buffer creation 

NDVI, LST, SMI 

estimation 

NDVI and SGTPS 

emitted pollutant's 

monthly mean 

estimation 

LULC classification 

and change detection 

Correlation analysis 

Overall analysis 
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4.3. Correlation Analysis of Estimated Values of NDVI, 

LST, and SMI for the Study Area 

LST and SMI can be associated with SGTPS activity 

since they operate as heat centers. Thus, their inclusion in the 

study is crucial. The estimation of all three indices, namely 

NDVI, LST and SMI, at different points in ROI, is already 

explained in Section 3. 

 

Correlation analysis is performed over the estimated 

values of NDVI, LST and SMI using a linear regression model 

and respective relationship trends obtained, which are 

represented in Figures 19, 20, 21, 22, 23 and 24. Based on 

these, as summarized in Table 3, NDVI and LST exhibit a 

direct association in buffer zone 1 but an inverse relationship 

in buffer zone 2 for 2016 and 2021. According to most of the 

literature, NDVI and LST have a negative relationship, 

[18,30] but according to some specific research publications, 

[19,20,31] NDVI and LST can have a positive relationship 

based on the season of observation. The recorded ranges of 

LST and SMI in buffer zones establish typical temperature and 

SMI levels. Consequently, despite the thermal power plant's 

activity, the impact on LST and SMI is minimal, ensuring the 

stability of vegetation health, particularly in forests. 

 

Table 2. Change in LULC from October 2016 to October 2021 

 

   
               (a)                   (b) 

Fig. 19 Estimated Scatter Plot Between NDVI and LST Values for 2016 in Buffer 1 (a) and Buffer 2 (b). 

 

   
                 (a)                   (b) 

Fig. 20 Estimated Scatter Plot Between NDVI and SMI Values for 2016 in Buffer 1 (a) and Buffer 2 (b). 

 

S.No. Class Area in 2016 

(sq Km) 

Area in 2021 

(sq Km) 

Percentage 

change in area 

1 Waterbody 16.1875 15.6678 -3.21 

2 Ash pond 0.7623 0.7867 3.20 

3 Forest 42.6873 43.4642 1.82 

4 Built-up area 5.3871 5.4937 1.98 

5 Barren land 5.1455 5.2232 1.51 

6 Agricultural land 22.8918 22.3699 -2.28 
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  (a)      (b) 

Fig. 21 Estimated Scatter Plot Between SMI and LST Values for 2016 in Buffer 1 (a) and Buffer 2 (b). 

 

   
  (a)       (b) 

Fig. 22 Estimated Scatter Plot Between NDVI and LST Values for 2021 in Buffer 1 (a) and Buffer 2 (b). 

 

   

  (a)      (b) 

Fig. 23 Estimated Scatter Plot Between NDVI and SMI Values for 2021 in Buffer 1 (a) and Buffer 2 (b). 

 

   
  (a)      (b) 

Fig. 24 Estimated Scatter Plot Between SMI and LST Values for 2021 in Buffer 1 (a) and Buffer 2 (b). 
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Table 3. Relationship Between NDVI, LST and SMI for Both Buffer Zones for Oct 2016 and Oct 2021 

Buffer 
 October 2016   October 2021  

Relationship NDVI LST SMI Relationship NDVI LST SMI 

Buffer1 

NDVI Perfect 

Positive 

Positive Negative NDVI Perfect 

Positive 

Negative Positive 

LST Positive Perfect 

Positive 

Perfect 

Negative 

LST Negative Perfect 

Positive 

Perfect 

Negative 

SMI Negative Perfect 

Negative 

Perfect 

Positive 

SMI Positive Perfect 

Negative 

Perfect 

Positive 

Buffer2 

NDVI Perfect 

Positive 

Positive Negative NDVI Perfect 

Positive 

Positive Negative 

LST Positive Perfect 

Positive 

Perfect 

Negative 

LST Positive Perfect 

Positive 

Perfect 

Negative 

SMI Negative Perfect 

Negative 

Perfect 

Positive 

SMI Negative Perfect 

Negative 

Perfect 

Positive 

 

4.4. Correlation Analysis of Estimated Monthly Mean 

Values of NDVI and Emitted Pollutants (SO2, NOx, PM, CO) 

by the SGTPS 

This study employs correlation analysis to assess the 

impact of pollutants from SGTPS on the surrounding forest. 

Results of the correlation between different emitted pollutants 

of SGTPS with the mean NDVI values for respective buffer 

zones for the years 2016 and 2021 are summarized in Table 4. 

Results show that pollutants emitted by the SGTPS have a 

modest negative relationship with NDVI, as suggested by the 

slope of linear regression, as pollutant levels align with CPCB 

standards. [32] Some instances exhibit a positive correlation, 

suggesting limited adverse effects on forest health. For such 

exceptional cases, factors like rainfall, [33] wind speed and 

direction, [34] extent of fly ash deposition on foliage, [35] and 

reduced anthropogenic activities during the COVID-19 

pandemic can be potential influencers, [18] forming the 

study's scope. Following scatter plots obtained during linear 

regression analysis as shown in Figures 25, 26, 27, 28, 29, 30, 

31 and 32.

   

        
                                                                  (a)                                (b) 

Fig. 25 Correlation Between emitted SO2 and NDVI values for 2016 Buffer 1 (a) and Buffer 2 (b). 

 

   
                                                                   (a)                                    (b) 

Fig. 26 Correlation between emitted NOx and NDVI values for 2016 Buffer 1 (a) and Buffer 2 (b). 
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        (a)             (b) 

Fig. 27 Correlation between emitted PM and NDVI values for 2016 Buffer 1 (a) and Buffer 2 (b). 

 

   
        (a)             (b) 

Fig. 28 Correlation between emitted CO and NDVI values for 2016 Buffer 1 (a) and Buffer 2 (b). 

 

   
        (a)             (b) 

Fig. 29 Correlation between emitted SO2 and NDVI values for 2021 Buffer 1 (a) and Buffer 2 (b). 

 

   
        (a)             (b) 

Fig. 30 Correlation between emitted NOx and NDVI values for 2021 Buffer 1 (a) and Buffer 2 (b). 
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         (a)             (b) 

Fig. 31 Correlation between emitted PM and NDVI values for 2021 Buffer 1 (a) and Buffer 2 (b). 

   
        (a)             (b) 

Fig. 32 Correlation between emitted CO and NDVI values for 2021 Buffer 1 (a) and Buffer 2 (b). 

 

Table 4. Relationship (Correlation coefficient) between Mean NDVI and pollutants emitted by SGTPS for both buffer zones for 2016 and 2021 

Pollutant 
Mean NDVI Mean NDVI Mean NDVI Mean NDVI 

(Buffer 1, 2016) (Buffer 2, 2016) (Buffer 1, 2021) (Buffer 2, 2021) 

SO2 
Negative 

(-0.294) 

Positive 

(0.229) 

Negative 

(-0.47) 

Negative 

(-0.392) 

NOx 
Negative 

(-0.209) 

Negative 

(-0.01) 

Negative 

(-0.02) 

Negative 

(-0.303) 

PM 
Negative 

(-0.571) 

Negative 

(-0.73) 

Positive 

(0.549) 

Positive 

(0.581) 

CO 
Positive 

(0.017) 

Negative 

(-0.199) 

Negative 

(-0.687) 

Negative 

(-0.524) 
 

 

5. Conclusion 
In conclusion, this study utilized a simple method based 

on RS and GIS to assess the impact of SGTPS on surrounding 

forests, focusing on LULC changes and the correlation of 

forest vegetation health indication index (NDVI) with emitted 

pollutants, LST and SMI, which is one of its prominent 

features which distinguishes it with other studies conducted so 

far who focused on only one aspect and are complex [22-26]. 

In contrast to [30], the usage of good-resolution satellite 

datasets such as Sentinel-2 datasets in this study helped to 

overcome the limitation of poor resolution. Overall, the study 

has shown an increase in forest area, which indicates there was 

not much deforestation or damage to the vegetation. It has 

been found that the values for the indices and pollutant levels 

lie within the suggested limit by the CPCB and show 

adherence to government norms. The relationships between 

the NDVI and other indices and pollutants are primarily in line 

with the literature, except for a few that need more 

investigation. Although it has been concluded that the emitted 

pollutants affected forest health, it is clear from the plots and 

correlation coefficients that no severe impact was exhibited, 

possibly attributed to the pollution mitigation practices of 

SGTPS. The findings show the potential of RS and GIS for 

effective monitoring, analysis, policy formulation, and 

improved management of thermal power plants and forests. 
 

 

Data Availability Statement 
Satellite data used for deriving watershed, LULC change 

detection, and indices estimation are available at the USGS EE 

website at https://earthexplorer.usgs.gov [28]. Data related to 
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SGTPS supporting the findings of this study is confidential 

and can be obtained at the request of the concerned authorities 

at SGTPS, Birsinghpur Pali, Madhya Pradesh, India. 
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