Petrogenesis of A-type Granitoids of Bauchi Migmatites NE, Nigeria. From Geochemical Perspective

International Journal of Geoinformatics and Geological Science
© 2021 by SSRG - IJGGS Journal
Volume 8 Issue 2
Year of Publication : 2021
Authors : Abdulmajid Isa Jibrin, Ahmed Isah Haruna, Abubakar Sadiq Maigari, Hamza Yelwa Muhammed, Idris Ismail Kariya, Yusuf Abdulmumin
pdf
How to Cite?

Abdulmajid Isa Jibrin, Ahmed Isah Haruna, Abubakar Sadiq Maigari, Hamza Yelwa Muhammed, Idris Ismail Kariya, Yusuf Abdulmumin, "Petrogenesis of A-type Granitoids of Bauchi Migmatites NE, Nigeria. From Geochemical Perspective," SSRG International Journal of Geoinformatics and Geological Science, vol. 8,  no. 2, pp. 45-52, 2021. Crossref, https://doi.org/10.14445/23939206/IJGGS-V8I2P105

Abstract:

A-type granitoids constitute a proportion of granitoid in the Bauchi granitoids, and they consist of syenogranites, monzogranites, granodiorites, and charnockites. The felsic and mafic members were formed through partial melting of the lower crust plus mingling and mixing of melts from the mantle. The granitoids are dominantly peraluminous to slightly metaluminous, which have high Fe content that maybe Fe-rich biotite and Fe-hornblende and also high total alkalis, Y, Nb, and REE with low CaO, MgO, and Sr abundances and high FeO/(FeO+MgO) ratios are the major features of these granitoids which make them be classified as collisional A2-type granite. Chondrite-normalized REE patterns show a negative Eu anomaly showing local fractionation during partial melting of lower crustal rocks.

Keywords:

A-type granites, Bauchi, granulite facie, partial melting, migmatites

References:

[1] Abdel-Rahman, A.F.M., Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. J. Petrol, 37(1994) 525-541.
[2] Ajibade, A. C., Wrigth, J. B., Togo-Benin-Nigeria shield: evidence of crustal aggregation in the Pan-African Belt. Tectonophysics 165(1989) 125-129.
[3] Barbarin, B., A review of the relationships between granitoid types, their origins, and their geodynamic environments. Lithos, 46(1999) 605-626.
[4] Caby, R., Precambrian terrains of Benin-Nigeria and Northeast Brasil and the Late Proterozoic South Atlantic Geological Society of America Special Paper, 230(1989) 145-153.
[5] Clemens, J.D, Holloway, J.R. and White, A.J.R., Origin of an A-type granite: experimental constraints. Amer. Mineral, 71(1986) 317-324.
[6] Collins, W.J, Beams, S.D, White, A.J.R. and Chappell, B.W., Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol, 80(1982) 189-200.
[7] Creaser, R.A, Price, R.C. and Wormald, R.J., A-type granites revisited: assessment of a residual-source model. Geology, 19 (1991) 163-166.
[8] Dall’Agnol, R, Scaillet, B. and Pichavant, M., An experimental study of a lower Proterozoic A-type granite from eastern Amazonian craton, Brazil. J. Petrol, 40 (1999) 1673-1698.
[9] Eby, G.N., The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1990) 115-134
[10] Eby, G.N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(1992) 641-644.
[11] Ferre, E. C. Caby, R., Peucat, J. J., Capdevila, R., Monie, P., Pan-African, Post-Collisional, Ferro-Potassic granite, and Quartz-monzonite plutons of Eastern Nigeria. Lithos 45(1998) 255-279.
[12] Frost, B.R, Barnes, C., Collins, W., Arculus, R., Ellis D. and Frost, C., A chemical classification for granitic rocks. J. Petrol., 42(2001) 2033-2048.
[13] Jibrin, A. I. Aliyu M., Lawal, A. Haruna, A. I. I.IKariya, H.M. Yelwa(2019) The Pre-Cambrian rocks of north-eastern Nigeria. science forum (journal of pure and applied sciences) 18 (2019) 1 – 6
[14] Kebede, T. and Koeberl, C., Petrogenesis of A-type granitoids from the Wallagga area, western Ethiopia: constraints from mineralogy, bulk-rock chemistry, Nd and Sr isotopic compositions. Precambrian Res., 121 (2003) 1-24.
[15] King, P.L., White, A.J.R., Chapell, B.W. and Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol., 38 371-391.
[16] Landenberger, B. and Collins, W.J., Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi Complex, eastern Australia. J. Petrol., 37 (1996) 145-170.
[17] Loiselle, M.C. and Wones, D.R., Characteristics and origin of anorogenic granites. Geol. Soc. Amer. Abst. Prog., 11(1979) 468.
[18] Maniar P.D. and Piccoli, P.M., Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., 101 (1989) 635-643.
[19] Mushkin, A., Navon, O., Halicz, L., Hartmann, G. and Stein, M., The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J. Petrol., 44(2003) 815-832.
[20] Patino Douce, A.E., Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(1997)
743-746.
[21] Patino Douce, A.E. and Beard, J.S., Effects of P, f(02), and MgMg/Fe ratio on dehydration melting of model metagreywackes. J. Petrol., 37(1996) 999-1024.
[22] Pearce, J., Sources and setting of granitic rocks. Episodes, 19 (1996) 120-125.
[23] Pearce, J., Harris, N.B.W. and Tindle, A.D., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25(1984) 956-983.
[24] Sylvester, RJ., Post-collisional alkaline granites. J. Geol., 97(1989) 267-280.
[25] Tollo, R.P., Aleinikoff, J.N., Bartholomew, M.J. and Rankin, D.W., Neoproterozoic A-type granitoids of the central and southern Appalachians: intraplate magmatism associated with episodic rifting of the Rodinian supercontinent. Precambrian Res., 128(2004) 3-38.
[26] Turner, S.P., Foden, J.D. and Morrison, R.S., Derivation of some A-type magmas by fractionation of basaltic magma; an example from the Padthaway Ridge, South Australia. Lithos, 28 (1992) 151-179.
[27] Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-types granites: geochemical characteristics, discrimination, and petrogenesis. Contrib. Mineral. Petrol., 95(1987) 407-419.