Evaluation of Sea Surface Temperature based pCO2 Algorithm in the Southwest Bay of Bengal
International Journal of Geoinformatics and Geological Science |
© 2022 by SSRG - IJGGS Journal |
Volume 9 Issue 1 |
Year of Publication : 2022 |
Authors : Ramalingam Shanthi, Durairaj Poornima, Ayyappan Saravanakumar, Rajdeep Roy, Saroj B. Choudhry |
How to Cite?
Ramalingam Shanthi, Durairaj Poornima, Ayyappan Saravanakumar, Rajdeep Roy, Saroj B. Choudhry, "Evaluation of Sea Surface Temperature based pCO2 Algorithm in the Southwest Bay of Bengal," SSRG International Journal of Geoinformatics and Geological Science, vol. 9, no. 1, pp. 28-37, 2022. Crossref, https://doi.org/10.14445/23939206/IJGGS-V9I1P104
Abstract:
The partial pressure of carbon dioxide (pCO2) is one of the most effective measurements of carbon dioxide in seawater, and the increases in pCO2 profoundly affect the marine carbonate system. The role of SST on pCO2 is analyzed to develop a regional pCO2 algorithm using in-situ SST and calculated pCO2 by employing the polynomial regression functions such as linear, quadratic, and cubic to develop a pCO2 map and the best-fit algorithm of the cubic function developed for the postmonsoon season with an R2 of 0.537 and SEE of ± 36.543 has been validated for remote sensing applications. Evaluation of satellite-derived pCO2 with calculated pCO2 showed R2 of 0.498 and the root means square error (RMSE) of ±30.922 µatm with 75% of overestimation of calculated pCO2 by the satellite-derived pCO2. The satellite-derived pCO2 map error is mainly because of the inbound errors in MODIS-derived SST products. Hence, improvement in sensor technology and retrieval algorithm would improve the retrieval of input parameters (SST), which is useful in estimating pCO2 precisely. This would enable us to understand the biogeochemical processes behind the variability of CO2 in the surface waters of the southwest Bay of Bengal.
Keywords:
Chlorophyll, pCO2, Regression, SST, Bay of Bengal, MODIS.
References:
[1] Barton, I. and A. Pearce: Validation of GLI and Other SatelliteDerived Sea Surface Temperatures Using Data from the Rottnest Island Ferry, Western Australia. Journal of Oceanography, 62 (2006) 303-310.
[2] Copin-Mont'egut, C.: A new formula for the effect of temperature on the partial pressure of CO2 in seawater.Corrigendum. Marine Chemistry, 27 (1989) 143-144.
[3] Feely R. A., C. L. Sabine, T. Takahashi, and R. Wanninkhof: Uptake and storage of carbon dioxide in the Ocean: The Global CO2 survey. Oceanography, 14(4) (2001) 18-32.
[4] Frankignoulle, M. and A.V. Borges: European continental shelf as a significant sink for atmospheric CO2. Global Biogeochemical Cycles, 15(3) (2001) 569-576.
[5] Garbe, C.S., A. Rutgersson, J. Boutin, G. de Leeuw, B. Delille, C.W. Fairall, N. Gruber, J. Hare, D.T. Ho, M.T. Johnson, P.D. Nightingale, H. Pettersson, J. Piskozub, E. Sahlee W. Tsai, B. Ward, D.K. Woolf and C.J. Zappa: Transfer across the air-sea interface. In: Ocean-Atmosphere Interactions of Gases and Particles (Eds.: P.S. Liss and M.T. Johnson). Springer-Earth Sys. Sciences, Berlin, Heidelberg, (2014) 55-111.
[6] Gentemann, C.L.: Three-way validation of MODIS and AMSR-E sea surface temperatures. Journal of Geophysical Research: Oceans, 119 (2014) 2583-2598.
[7] Hosoda, K., H. Murakami, F. Sakaida and H. Kawamura: Algorithm and Validation of Sea Surface Temperature Observation Using MODIS Sensors Abroad Terra and Aqua in the Western North Pacific. Journal of Oceanography, 63 (2007) 267-280.
[8] IPCC: Carbon and other biogeochemical cycles. In: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds.: T. F. Stocker, D. Qun, G.K. Plattner, W. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley). Cambridge Univ. Press, Cambridge, (2013) 470-516.
[9] Keeling, R.F. and S. R. Shertz: Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nat., 358 (1992) 723–727.
[10] Landrum, L.L., R.H. Gammon, R.A. Feely, P.P. Murphy, K.C. Kelly, C.E. Cosca and R. F. Weiss: North Pacific Ocean CO2 disequilibrium for spring through summer, 1985–1989. Journal of Geophysical Research, 101(28) (1996) 539-555.
[11] Lee, K., R. Wanninkhof, T. Takahashi, S.C. Doney, and RA Feely: Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature, 396 (1998) 155-159.
[12] Lee, T., S. Hakkinen, K. Kelly, B. Qiu, H. Bonekamp and E.J. Lindstrom: Satellite observations of ocean circulation changes with climate variability. Oceanography, 23(4) (2010) 70-81.
[13] Lefèvre, N. and A. Taylor: Estimating pCO2 from sea surface temperatures in the Atlantic gyres. Deep-Sea Research, 49 (2002) 539-554.
[14] Lohrenz, S. E., and W. J. Cai: Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin. Geophysical Research Letters, 33 (2006) L01601.
[15] Lu, J., F.L. Qiao, X.H. Wang, Y.G. Wang, Y. Teng, and C.S. Xia: A numerical study of transport dynamics and seasonal variability of the Yellow River sediment in the Bohai and Yellow seas. Estuarine Coastal Shelf Science, 95 (2011) 39-51.
[16] Metzl, N., A. Poisson, F. Louanchi, C. Brunet, B. Schauer, B. Bres: Spatio-temporal distributions of air–sea fluxes of CO2 in the Indian and Antarctic oceans. Tellus., 47B (1995) 56-69.
[17] Narayanan, M., DT Vasan, AK Bharadwaj, P. Thanabalan, and N. Dhileeban: Comparison and validation of sea surface temperature (SST) using MODIS and AVHRR sensor data. International Journal of Remote Sensing and Geoscience, 2(3) (2013)1-7.
[18] Olsen, A., K.M. Brown, M. Chierici, T. Johannessen and C. Neill: Sea surface CO2 fugacity in the subpolar North Atlantic. Biogeoscience, 5 (2008) 535-547.
[19] Ono, T., T. Saino, N. Kurita, and K. Sasaki: Basin-scale extrapolation of shipboard pCO2 data by satellite SST and Chl a. International Journal of Remote Sensing, 25(19) (2004) 803-815.
[20] Bhavya, P. S., Sanjeev Kumar, G.V.M. Gupta, K.V. Sudharma, V. Sudheesh, and K. R. Dhanya: Carbon isotopic composition of suspended particulate matter and dissolved inorganic carbon in the Cochin estuary during postmonsoon. Current Science, 110(8) (2016) 1539-1543.
[21] Qin, B.Y., Z. Tao, Z.W. Li, and X.F. Yang: Seasonal changes and controlling factors of sea surface pCO2 in the Yellow Sea. IOP conference series: Earth and Environmental Science, 17 (2014) 012025.
[22] Sabine, C.L., R. Wanninkhof, R.M. Key, C. Goyet and F.J. Millero: Seasonal CO2 fluxes in the tropical and subtropical Indian Ocean. Marine Chemistry, 72, (2000) 33-55. [23] Sarma, VVSS, T. Saino, K. Sasaoka, Y. Nojiri, T. Ono, M. Ishii, H.Y. Inoue, and K. Matsumoto: Basin-scale pCO2 distribution using satellite sea surface temperature, Chl a, and climatological salinity in the North Pacific in spring and summer. Global Biogeochemical Cycles, 20 (2006) GB3005.
[24] Shanthi, R., D. Poornima, S. Raja, G. Vijaya Bhaskara Sethubathi and T. Thangaradjou: Validation of OCM-2 sensor performance in retrieving chlorophyll and TSM along the southwest Bay of Bengal coast. Journal of Earth System Science, 122(2) (2013) 479-489.
[25] Siegenthaler, U. and J.L. Sarmiento: Atmospheric carbon dioxide and the ocean, Nature, 365 (1993)119–125.
[26] Stephens, M.P., G. Samuels, D.B. Olson, R.A. Fine, and T. Takahashi: Sea-air flux of CO2 in the North Pacific using shipboard and satellite data. Journal of Geophysical Research, 100 (1995)13571– 13583.
[27] Tans, PP, I.Y. Fung, and T. Takahashi: Observational constraints on the global atmospheric CO2 budget. Science, 247 (1990)1431–1438.
[28] Wallace, D.W.R.: Monitoring global ocean carbon inventories, Background Rep. 5, Ocean Observation System Development Panel, Arlington, Va. (1995).
[29] Williams, G.N., A.I. Dogliotti, P. Zaidman, M. Solis, M.A. Narvarte, R.C. Gonzalez, J.L. Estevez, and D.A. Gagliardini: Assessment of Remotely-Sensed Sea-Surface Temperature and Chlorophyll-a Concentration in San Matías Gulf (Patagonia, Argentina). Continental Shelf Reserach, 52 (2013)159-171.
[30] Zhai, WD, M.H. Dai, W.J. Cai, Y.C. Wang, and Z.H. Wang: High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary. The Pearl River estuary, China. Marine Chemistry, 93 (2005) 21-32.
[31] Zhu, Y., S. Shag, W. Zhai and M. Dai: Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in Summer. Progress in Natural Science, 19 (2009) 775-779.
[32] Zui, T. A. O., Q. I. N. Bangyong, L. I. Ziwei, and Y. Xiaofeng: Satellite observations of the Partial Pressure of carbon dioxide in the surface water of the Huanghai Sea and the Bohai Sea. Acta Oceanologica Sinica, 31(3) (2012) 67-73