Energy Sustainability in Islands: Waste Management in the Archipelago Fernando de Noronha, Pernambuco (Brazil)
International Journal of Industrial Engineering |
© 2019 by SSRG - IJIE Journal |
Volume 6 Issue 1 |
Year of Publication : 2019 |
Authors : Mirella Maria Nóbrega Marques, Kardelan Arteiro da Silva, Soraya Giovanetti El-Deir |
How to Cite?
Mirella Maria Nóbrega Marques, Kardelan Arteiro da Silva, Soraya Giovanetti El-Deir, "Energy Sustainability in Islands: Waste Management in the Archipelago Fernando de Noronha, Pernambuco (Brazil)," SSRG International Journal of Industrial Engineering, vol. 6, no. 1, pp. 27-36, 2019. Crossref, https://doi.org/10.14445/23499362/IJIE-V6I1P105
Abstract:
The increase in population and the acceleration in the pattern of consumption cause a greater generation of solid waste. Among these residues, the urban solid waste that comes from human activities in cities and human settlements is significant. If these are not disposed of correctly, they can cause environmental impacts such as contamination of water, soil and atmosphere. In addition, many municipal solid wastes is toxic to living things. Alternatives to better management are fundamental to raising the environmental quality of ecosystems and the survival of the human species on the planet. Aiming to study a favorable sustainable use of the waste, this article made an analysis about the energy potential of these, advantages and limitations of the process. The research analyzed four types of thermochemical processes and estimated the efficiency of each relative to the gravimetric typology produced by the local population and visitors of the Fernando de Noronha archipelago. Incineration is the least efficient technique, while plasma gasification is the most recommended. When analyzing the cost-benefit of the processes, the conventional gasification is the most indicated, having the capacity to supply about 17.5% of the local residences. Thus, the implementation of thermo-chemical plants may be an alternative to waste management, reducing the economic costs and operational risks of the current process, thereby minimizing potential negative environmental impacts and reducing the population's dependence on other less sustainable sources of electric energy.
Keywords:
Energy reuse, Energy generation, Environmental management.
References:
[1] ABDEL-SHAFY, H.I.; MANSOUR, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 2018.
[2] ABRELPE – Associação Brasileira de Limpezas Públicas e Resíduos Especiais. Panorama dos resíduos sólidos no Brasil em 2014. Available in: http://abrelpe.org.br/panorama/. Accessed in: 15 Apr. 2019.
[3] ABRELPE – Associação Brasileira de Limpezas Públicas e Resíduos Especiais. Panorama dos resíduos sólidos no Brasil em 2017. Available in: http://abrelpe.org.br/panorama/. Accessed in: 10 Apr. 2019.
[4] ABRELPE – Associação Brasileira de Limpezas Públicas e Resíduos Especiais. Panorama dos resíduos sólidos no Brasil em 2016. Available in: http://abrelpe.org.br/panorama/. Accessed in: 11 Apr. 2019.
[5] ABRELPE – Associação Brasileira de Limpezas Públicas e Resíduos Especiais. Panorama dos resíduos sólidos no Brasil em 2015. Available in: http://abrelpe.org.br/panorama/. Accessed in: 10 Apr. 2019.
[6] ADENIRAN, A. E.; NUBI, A. T.; ADELOPO, A. O. Solid waste generation and characterization in the University of Lagos for a sustainable waste management. Waste Management, v. 67, p. 3-10, 2017.
[7] AHMED, A.; BAKAR, M. S. A.; AZAD, A. K.; SUKRI, R. S.; MAHLIA, T. M. I. Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review. Renewable and Sustainable Energy Reviews, v. 82, Part 3, Feb. 2018, p. 3060-3076
[8] ANTHRAPER, D.; MCLAREN, J.; BAROUTIAN, S.; MUNIR, M. T.; YOUNG, B. R. Hydrothermal deconstruction of municipal solid waste for solid reduction and value production. Journal of Cleaner Production, v. 201, p. 812-819, 2018.
[9] ARENA, U. Process and technological aspects of municipal solid waste gasification. Waste Management, vol. 32, p. 625- 639, Apr. 2012.
[10] ATDEFN – Autarquia Territorial do Distrito Estadual de Fernando de Noronha. Relatório de atividades anual de 2016. Available in: http://www.lai.pe.gov.br/web/defn/acoes-e-programas. Accessed in: 1 Apr. 2019.
[11] ATDEFN – Autarquia Territorial do Distrito Estadual de Fernando de Noronha. Relatório de atividades anual de 2017. Available in: http://www.lai.pe.gov.br/web/defn/acoes-e-programas. Accessed in: 1 Apr. 2019.
[12] BECK, H. E; ZIMMERMANN, N. E; MCVICAR, T. R; VERGOPOLAN, N; BERG, A; WOOD, E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, v. 5, p. 1-11, 2018.
[13] BERTICELLI, R.; PANDOLFO, A.; KORF, E. P. Gestão integrada de resíduos sólidos urbanos: perspectivas e desafios. Revista Gestão & Sustentabilidade Ambiental, v. 5, Issue. 2, p. 711-744, 2017.
[14] BISHT, A. S.; THAKUR, N. S. Small scale biomass gasification plants for electricity generation in India: Resources, installation, technical aspects, sustainability criteria & policy. Renewable Energy Focus, v. 28, Mar. 2019, p. 112-126
[15] BRASIL. Decreto Federal n. 96.693. Cria o Parque Nacional Marinho de Fernando de Noronha e dá outras providências. Diário Oficial [da] República Federativa do Brasil, 14 Sep. 1988.
[16] BRASIL. Lei Federal n. 9.985. Regulamenta o art. 225, § 1o, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Diário Oficial [da] República Federativa do Brasil, 18 Jul. 2000.
[17] CAMILLERI-FENECH, M.; OLIVER-SOL, J; FARRENY, R; GABARRELL, X. Where do islands put their waste?–A material flow and carbon footprint analysis of municipal waste management in the Maltese Islands. Journal of Cleaner Production, v. 195, p. 1609-1619, 2018.
[18] CAMILLERI-FENECH, M.; OLIVER-SOLÀ, J.; FARRENY, R.; GABARRELL, X. Where do islands put their waste? – A
material flow and carbono footprint analysis of municipal waste management in the Maltese Islands. Journal of Cleaner Production, v.195, p. 1609-1619, 2018.
[19] CASTRO, D.E. Tecnologia de recuperação térmica e energética de resíduos sólidos. Revista Educação & Tecnologia, Centro Federal de Educação Tecnológica, Minas Gerais. 2015.
[20] CHEN, J.; HUANG, L.W.; ZHANG, X.M. Pyrolysis analysis of RDF by TG–FTIR techniques. Environ. Sci. Technol, v. 31, p. 29–32, 2014.
[21] CHEN, Y. et al. Influence of The Interaction On Nox Emission During CoCombustion Of Combustible Solid Waste Components. Journal of the Energy Institute, v. 89, Issue. 3, p. 313–324, 2015.
[22] D’ALESSANDRO, B.; D’AMICO, M.; DESIDERI, U.; FANTOZZI, F. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration. Applied Energy, v. 101, p. 423-431, Jan. 2013.
[23] DALMO, F.C.; SIMÃO, N.M.; LIMA, H.Q.; JIMENEZ, A.C.M.; NEBRA, S.; MARTINS, G.; PALACIOS-BERECHE, R.; SANTANA, P.H.M. Energy recovery overview of municipal solid waste in São Paulo State, Brazil. Jounal of Cleaner Production, v. 212, p. 461-474, 2019.
[24] EPE – Empresa de Pesquisa Energética. Inventário Energético dos Resíduos Sólidos Urbanos. Nota Técnica DEN 18/14. Série Recursos Energéticos. Ministério de Minas e Energias. Rio de Janeiro, 2014.
[25] ESTAY-OSSANDON, C.; MENA-NIETO, A. Modelling the driving forces of the municipal solid waste generation in touristic islands. A case study of the Balearic Islands (2000–2030). Waste Management, v. 75, p. 70-81, 2018.
[26] FEAM - Fundação Estadual do Meio Ambiente. Secretaria de Estado do Meio Ambiente e Desenvolvimento Sustentável. Aproveitamento Energético De Resíduos Sólidos Urbanos: Guia De Orientações Para Governos Municipais De Minas Gerais. Belo Horizonte: Secretaria de Estado do Meio Ambiente e Desenvolvimento Sustentável, 2013.
[27] FERNANDES, R.; PINHO, P. The distinctive nature of spatial development on small islands. Progress in Planning, v. 112, p. 1-18, 2017.
[28] FERREIRA, R.L. Gaseificação por oxigênio: uma alternativa para o aproveitamento energético dos resíduos sólidos urbanos no Rio Grande do Sul. Trabalho de Conclusão de Curso - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2015.
[29] FULDAUER, L., I; IVES, M. C; ADSHEAD, D; THACKER, S; HALL, J. W. Participatory planning of the future of waste management in small island developing states to deliver on the Sustainable Development Goals. Journal of Cleaner Production, 2019.
[30] GARCIA, A.; MENDONÇA, M.A. Bio-óleo de resíduos sólidos obtido via pirólise: análise dos parâmetros fisicoquímicos. Brazilian Applied Science Review. Curitiba, v. 2, Issue. 5, p. 1632-1635, Oct./Dec. 2018.
[31] GARCÍA-VELÁSQUEZ, C. A.; CARDONA, C. A. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy, v. 172, 1 Apr. 2019, p. 232-242
[32] GAURAV, G. K.; KHANAM, S. Profitability analysis of power generation using waste heat of sponge iron process. Energy, v. 141, 15 Dec. 2017, p. 333-347
[33] IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Plano de Manejo Área de Preservação Ambiental – Fernando de Noronha-Rocas - São Pedro e São Paulo. Brasília, MMA, 2005. 93p
[34] IBGE – Instituto Brasileiro de Geografia e Estatística. Polução estimada de Fernando de Noronha 2018. Available in: https://cidades.ibge.gov.br/brasil/pe/fernando-de-noronha/panorama. Accessed in: 5 Apr. 2019.
[35] IBGE – Instituto Brasileiro de Geografia e Estatística. Produto Interno Bruto de Fernando de Noronha em 2016. Available in: https://cidades.ibge.gov.br/brasil/pe/fernando-de-noronha/panorama. Accessed in: 20 Jan. 2019.
[36] IBIKUNLE, R. A.; TITILADUNAYO, I. F.; AKINNULI, B. O.; DAHUNSI, S. O.; OLAYANJU, T. M. A. Estimation of power generation from municipal solid wastes: A case Study of Ilorin metropolis, Nigeria. Energy Reports, v. 5, November 2019, p. 126-135 [37] KARTHIKADEVI, M. Lean Based Manufacturing to Increase the Productivity, Quality and reduce waste of Textile Industries. SSRG International Journal of Industrial Engineering, 2014, v. 1, Issue. 1, p. 13-15.
[38] KHALIL, M.; BERAWI, M.A.; HERYANTO, R.; AKHMAD, R. Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, v. 105, p. 323-331, 2019.
[39] KINNUNEN, H.V.; KOSKINEN, P.E.P.; RINTALA, J. Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues. Bioresource Tecnologia, v. 155, p. 314-322, 2014.
[40] KLINGHOFFER, N.B.; CASTALDI, M.J. Waste to Energy Conversion Technology. Woodhead Publishing Series in Energy. Elsevier, 2013.
[41] KORAI, M. S.; MAHAR, R. B.; UQAILI, M. A.. The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renewable and Sustainable Energy Reviews, v. 72, p. 338-353, 2017.
[42] LI, Y.; JIN, Y.; BORRION, A.; LI, H. Current status of food waste generation and management in China. Bioresource Technology, v. 273, February 2019, p. 654-665
[43] LINO, F. A. M.; ISMAIL, K. A. R. Evaluation of the treatment of municipal solid waste as renewable energy resource in Campinas, Brazil. Sustainable Energy Technologies and Assessments, v. 29, p. 19-25, 2018.
[44] LINO, F. A. M.; ISMAIL, K. A. R. Recycling and thermal treatment of MSW in a developing country. IOSR J. Eng, v. 7, Issue. 7, p. 30-38, 2017.
[45] LIU, J.; NIE, J.; YUAN, H. To expand or not to expand: A strategic analysis of the recycler's waste treatment capacity. Computers & Industrial, Engineering, v. 130, Apr. 2019, p. 731-744
[46] MACHADO, C.F. Incineração: Uma Análise dos Tratamentos Térmicos dos Resíduos Sólidos Urbanos de Bauru-SP. Trabalho de Conclusão de Curso (Engenharia Ambiental) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015.
[47] MAZZONETO, A.W.; FIALHO, L. Geração de energia através de resíduos sólidos na indústria de autopeças - estudo de caso. Bioenergia em Revista: Diálogos, ano 6, Issue. 2, p. 8-30, Jul./Dec. 2016.
[48] MINELGAITĖ, A.; LIOBIKIENĖ, G. Waste problem in European Union and its influence on waste management behaviours. Science of The Total Environment, v. 667, 1 June 2019, p. 86-93
[49] MMA – MINISTÉRIO DO MEIO AMBIENTE. Plano de manejo da área de proteção ambiental de Fernando de Noronha – Rocas –São Pedro e São Paulo. ICMBio, Brasília, 156p. 2017.
[50] MOYA, D.; ALDÁS, C.; LÓPEZ, G.; KAPARAJU, P. Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, v.134, p. 286-295, 2017.
[51] NOTTON, G.; DUCHAUD, J.L.; NIVET, M.L.; VOYANT, C.; CHALVATZIS, K.; FOUILLOY, A. The electrical energy situation of French islands and focus on the Corsican situation. Renewable Energy, v. 135, p. 1157-1165, 2019.
[52] OKAMURA, L.A.; TOMAZZONI, G.; LOPES, E.J.; NETO, P.R.C. Obtenção sustentável de gás de síntese: prospecção das tecnologias disponíveis baseada em patentes e artigos. Cadernos de Prospecção, v. 6, n. 1, p. 27-35, 2014.
[53] OLIVEIRA, D.E.P.; MIRANDA, A.C.; KLEPA, R.B.; FRANCO, M.A.C.; DA SILVA, S.C.; SANTANA, J.C.C. Análise do potencial da produção de energia a partir da incineração de resíduos sólidos urbanos na cidade de São Paulo. Interciencia. v. 43, Issue. 11, p. 778-783, 2018.
[54] OUDA, O. K. M.; RAZA, S. A.; NIZAMI, A. S.; REHAN, M.; KORRES, N. E. Waste to energy potential: A case study of
Saudi Arabia. Renewable and Sustainable Energy Reviews, v. 61, August 2016, p. 328-340
[55] PERNAMBUCO. Decreto Estadual n. 12.553. Declara Área de Proteção Ambiental o Arquipélago de Fernando de Noronha e dá outras providências. Diário Oficial de Pernambuco, 7 de abril de 1989.
[56] PRATES, L.F.S.; PIMENTA, C.F.; RIBEIRO, H.F. Alternativas tecnológicas para tratamento de resíduos sólidos urbanos. APPREHENDERE – Aprendizagem & Interdisciplinaridade, v. 1, Issue. 2, Brasil, 2019.
[57] REDDY, V.R.; SREEMAN, E.S. Sustainable aspects of Green Supply Chain Management in Manufacturing Environment. SSRG International Journal of Industrial Engineering, 2016, v. 3, Issue 3, p. 17 – 22.
[58] ROCHA, A.L.L. Desenvolvimento de um reator de pirólise em escala de bancada para estudos com resíduos sólidos urbanos. Trabalho de conclusão de curso (Engenharia Ambiental) - Universidade Tecnológica Federal do Paraná, Londrina, 2016.
[59] RODRÍGUEZ-MONROY, C.; MÁRMOL-ACITORES, G.; NILSSON-CIFUENTES, G. Electricity generation in Chile using non-conventional renewable energy sources – A focus on biomass. Renewable and Sustainable Energy Reviews, v. 81, Part 1, January 2018, p. 937-945
[60] SALVACION, A. R.; MAGCALE-MACANDOG, D. B. Spatial analysis of human population distribution and growth in Marinduque Island, Philippines. Journal of Marine and Island Cultures, v. 4, Issue. 1, p. 27-33, 2015.
[61] SAMIRAN, N. A., JAAFAR, M. N. M., NG, J. Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, v. 62, p. 1047-1062, 2016.
[62] SANTAGATA, R.; VIGLIA, S.; FIORENTINO, G.; LIU, G.; RIPA, M. Power generation from slaughterhouse waste materials. An emergy accounting assessment. Journal of Cleaner Production, v. 223, 20 June 2019, p. 536-552
[63] SANTOS, I. F. S; VIEIRA, N. D. B; NÓBREGA, L. G. B; BARROS, R. M; TIAGO-FILHO, G. L. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. Resources, Conservation and Recycling, v. 131, p. 54-63, 2018.
[64] SANTOS, R. E; SANTOS, I. F. S; BARROS, R. M; BERNAL, A. P; TIAGO-FILHO, G. L; SILVA, F.D.G.B. Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis. Journal of Environmental Management, v. 231, p. 198-206, 2019.
[65] SILVA, R.S. A análise multicritério de tecnologias utilizadas na Gestão de Resíduos Sólidos Urbanos. Dissertação (Pós Graduação em Saúde Pública) – Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sérgio Arouca, Rio de Janeiro, 2017.
[66] SINGH, R.P.; TYAGI, V.V.; ALLEN, T.; HAKIMI IBRAHIM, M.; KOTHARI, R. An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews, v. 15, Issue. 9, p. 4797–4808, 2011.
[67] STICH, J.; RAMACHANDRAN, S.; HAMACHER, T.; STIMMING, U. Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia. l Energy, v. 135, 15 Sep. 2017, p. 930-942 [68] SWAMINATHAN, C.; NAGARATHINAM, G. A Perspective Observation of Power Generation using Wind Energy and its Benefits. SSRG International Journal of Industrial Engineering, 2016, v. 3, Issue 3, p. 7-11.
[69] THAKARE, S.; NANDI S. Study on Potential of Gasification Technology for Municipal Solid Waste (MSW) in Pune City. Energy Procedia, v. 90, Dec. 2016, p. 509-517 [70] THIYAGARAJAN, A.; GOKULAVASAN, B. Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application. SSRG International Journal of Industrial Engineering, 2014, V. 1, Issue. 2, p. 6-11.
[71] UNESCO – United Nations Educational, Scientific and Cultural Organization. Decision - 25 COM X.A -Brazilian Atlantic Islands: Fernando de Noronha and Atol das Rocas Reserves (Brazil), 2001. Available in: <http://whc.unesco.org/en/decisions/2319>. Accessed in: 09 Mar. 2019.
[72] VITASARI, C. R.; JURASCIK, M.; PTASINSKI, K. J. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock. Energy, v. 36, Issue. 6, p. 3825-3837, 2011.
[73] WANG, F.; CHENG, Z.; REISNER, A.; LIU, Y. Compliance with household solid waste management in rural villages in developing countries. Journal of Cleaner Production, v. 202, p. 293-298, 2018. [74] WEBER, D.; OBERHAUSEN, C.; PLAPPER, P. Value Stream Management in high variability production systems. SSRG International Journal of Industrial Engineering, 2015, v. 2, Issue. 1, p. 1-3.
[75] YOO, B.; JANG, M.. A bibliographic survey of business models,service relationships, and technology in electronic commerce. Electronic Commerce Research and Applications, v. 33, p. 100818, 2019.
[76] YOU, Z.; YANG, H.; FU, M.. Settlement intention characteristics and determinants in floating populations in Chinese border cities. Sustainable Cities and Society, v. 39, p. 476-486, 2018.
[77] YOUNG, G. C. Municipal Solid Waste to Energy Conversion Processes: economic, technical, and renewable comparison. John Wiley & Sons. Hoboken, New Jersey, p. 394, 2010.