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Abstract - The rapid advancement of composite material manufacturing is essential in sustaining market growth across multiple 

industries. This study investigates the impact of Wire Electrical Discharge Machining (WEDM) of Al-Al2O3-B4C composites, 

which is affected by process variables such as wire feed rate, sample compositions, input current, and pulse time. The two 

reinforcement particles (wt% of alumina and boron carbide) and three input parameters, pulse-on time (PON), Wire Feed Rate 

(WFR), and Input current (Ip), were chosen to demonstrate the effect on the output response of Material Removal Rate (MRR) 

and Roughness Average (Ra). The Grey Relational Analysis (GRA) method determines hybrid composite materials’ MRR and 

Ra. The Al-based MMC contains micro particles of alumina (45-micron mesh size, 99.90% purity) and Boron Carbide (50-

micron mesh size, 99.95% purity). Al2O3 and B4C reinforce Al 6061 at weight percentages of 1, 3, 5%, and 1, 2, and 3%, 

respectively. The stir casting technique is used for composite preparation because it produces a homogeneous mixture. Based 

on the experimental findings, augmenting the PON and input current leads to a rise in the MRR, while decreasing the PON time 

and input current improves surface roughness; thus, PON and Ip are highly influencing parameters for MRR, while surface 
roughness and wire feed rate are fewer influencing parameters. Surface roughness and MRR were improved by using the 

parameters obtained by the GRA technique, which included a wire feed rate of 6 m/min, input current of 10 A, PON of 105 µs, 

and Al-MMC Aluminum 6061 with 1% and 5% by weight of boron carbide and alumina. 

 

Keywords - Al+Al2O3+B4C, Multi-response optimization, Stir casting, WEDM, Grey relational analysis.  

 

1. Introduction 
The rapid advancement in the manufacturing of 

composite materials has become one of the most essential 

factors in fostering industrial innovation and sustainable 

development. Industries are always searching for developing 

materials that may perform better than their traditional 

relatives; hence, manufacturing composite materials becomes 

pertinent. This realization has made aluminium-based 

composites such as Al-Al2O3-B4C popular due to their 

lightweight nature, corrosion resistance, high strength, and 

good wear properties.  

 
These properties have made these composites worthwhile 

in the aerospace, automotive, and manufacturing sectors. 

Their adoption has skyrocketed, a clear testament to the 

pivotal role of these new materials in meeting the stringent 

demands of modern applications. Aluminum-based metal 

matrix composites are broadly utilized due to their exceptional 

strength and functional versatility. These composites, with 

their unparalleled combination of lightness and durability, not 

only boost the performance of industrial components but also 

prolong their lifespan, leaving us in awe of their immense 

potential. Another significant area of focus within the research 

community is the advancement of processing techniques for 

these materials. One of the most notable is the Electrical 
Discharge Machining (EDM) process.  

 

This process facilitates the precision manufacturing of 

intricate geometries with a high-quality surface finish, 

particularly over electrically conductive material. This 

capability is essential for improving the characteristics of 

composites based on aluminum and allows for increased 

automation and efficiency in the material processing process. 

The continuous evolution of composite material technology is 

vital for meeting current industrial needs and shaping the 

future of manufacturing for sustainability and performance 
optimization [1]. 

 

One of the biggest challenges in realizing the potential of 

advanced composite materials is related to the complexities of 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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their machining processes. Theoretically, conventional 

machining techniques need to be revised to address the unique 

needs of these materials; hence, it is advised to rely on other 

methodologies. Among others, WEDM is among the most 

crucial techniques developed, ensuring the needed accuracy to 

manufacture complex geometries and attain better surface 
finishes.  

 

This capability makes WEDM a fundamental tool in 

machining electrically conductive composite materials. 

Strategic optimization of WEDM parameters is essential in 

enhancing machining efficiency and quality of outputs for 

MMCs. In industries that use advanced technological 

materials like aerospace, automotive, and manufacturing, 

proper and precise machining is critical to the performance 

and reliability of components. Advanced statistical and 

computational techniques are underpinned by pioneering 

work by Phate et al. [2] and Majumder et al. [3], who use 
techniques such as PCA and GRNN to fine-tune the 

parameters. These studies highlight that settings for POFF and 

Ip are critical since variables like current intensity and pulse-

off time significantly impact the machining results, thus 

showing potential criticality in tapping MMCs to the 

maximum.  

 

In another work, Phate et al. [2] applied Principal 

Component Analysis with Artificial Neural Network (PCA-

ANN) to perform multi-parametric optimization on 

Aluminum/Silicon Carbide Metal Matrix Composite (Al/SiC 
MMC) during WEDM. This approach, which combines PCA-

ANN and WEDM, is novel and has yet to be extensively 

explored in the literature. Employing an observed result using 

Taguchi L18 orthogonal arrays experimental design, it pointed 

out the excellent influence of the Silicon Carbide (SiC) 

composition in the material  Pulse on  Pulse Off Time (PON) 

and Current Intensity (Ip), among other things. 

 

Following a similar trajectory, Majumder et al. [3] 

utilized both Multiple Regression Analysis and General 

Regression Neural Networks to predict and compare outcomes 

in surface roughness (Ra), material removal rate and kerf 
width in the Wire Electrical Discharge Machining of Titanium 

grade 6. Their findings demonstrated the superior accuracy of 

GRNN models, providing an error estimate of ±5%, compared 

to the ±10 % error estimate of MRA models. This underscores 

the high efficacy of neural networks in intricate machining 

processes. 

 

Continuing the development of WEDM research, 

Kavimani et al. [4, 5] and Sonawane et al. [6] applied General 

Regression Analysis (GRA) with the Taguchi technique to 

further enhance the knowledge and optimization of process 
variables to accomplish maximum MRR and Ra. Kavimani et 

al. conducted a critical review and refined the application of 

GRA and response tuning for better utilization. They 

successfully machined a graphene-SiC magnesium composite, 

where the experimental results showed that MRR was 

enhanced with an increase in Pulse on  Pulse Off Time (PON) 

and Wire Feed Rate (WFR).  

 

In contrast, an increase in PON significantly enhanced 

Ra. Taguchi-Grey relational grade values were used to suggest 
the best levels for the input processing variables. These studies 

contribute to academic literature; however, they have 

significant practical implications for an industry where 

accurate component machining is critical to ensuring product 

performance and reliability. The work has emphasized the 

continued furtherance of the WEDM parameters that expand 

its practicality and accuracy in industry applications.                                                                 

 

Sonawane et al. [6] utilized the PCA-based Taguchi 

technique to optimize WEDM machining parameters. PON, 

SV, POFF, IP, WFR, and cable tension are elected as input 

parameters to get the optimum variables for MRR, SR, and 
overcut. According to ANOVA results, pulse-on-time reflects 

a significant contribution to influencing the factors as per 

ANOVA results. When using PCA, engineers’ judgment for 

allocating weights to quality characteristics becomes more 

transparent and more straightforward when using PCA 

compared to alternative methods.  

 

Singh et al. [7] HMMCs have better qualities than single-

reinforced composites and are being investigated in several 

sectors. Due to their superior resistance to wear, specific 

strength, and thermochemical qualities, they can be 
recommended for various engineering applications, including 

automotive, marine, and aviation, as well as those related to 

structure and mineral processing.  

 

By optimizing the various parameters at different levels 

(i.e., wire feed velocity, wire tension, open voltage, servo 

voltage, PON Time, POFF -Time, and dielectric pressure by 

different thickness material) for tool steel D2, Ikram et al. [8] 

investigated the impacts of composites’ kerf width, surface 

roughness, and MRR in WEDM. In the experimental design, 

Taguchi’s L18 orthogonal array approach was applied. The 

control parameters and ideal values were found by statistical 
analysis using ANOVA and the S/N ratio. The findings show 

a significant relationship exists between Pulse Pulse on Time 

and the SR, kerf, and MRR.  

 

Garg et al. [9] Prepared the novel composite of 

Al/ZrO2(p) MMC by applying the liquid stir casting process 

and mechanized by WEDM: machining input parameters, 

pulse width, Pulse Pulse off Time, dielectric conductivity, 

max. Feed rate, PON, WFR, wire tension, SV, and dielectric 

injection pressure are selected to find the performance of 

MRR and spark gap. The Taguchi technique was used to 
organize, carry out, and evaluate the trials to discover the ideal 

parameter setting. Prasad et al. [10] examined the Ti alloy’s 

machining behavior using the WEDM technique.  
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Goyal et al. [11] The samples A75B25 and B100A0 

exhibited a similar pattern. Because of the reduction in gap 

voltage or pulse current intensity, sample A100B0 exhibits a 

falling SR trend as a pulse on time increases (from 32 μs to 64 

μs). By continuously stirring the reinforcing particles, sample 

A100B0 was determined to have minimal SR at machining 
settings of 3 A, 44 V, and 128 μs.  Ravikumar et al. [12] 

explored the wear resistance and hardness properties of 

Al7075 enhanced with alumina and silicon carbide Hybrid 

Metal Matrix Composites (HMMC) produced through the stir 

casting method. They employed Taguchi’s L27 orthogonal 

array to optimize process variables. Results show that 

increasing reinforcement improves hardness, and a wear test 

performed by applying a pin to a disc reflects that increased 

reinforcement increases wear resistance. 

 

Despite the increasing interest in WEDM of composite 

materials, there remains a significant research gap in 
optimizing machining parameters, especially for Al-Al2O3-

B4C composites. While several studies have been conducted 

on WEDM of various composite materials, including Metal 

Matrix Composites (MMCs), there is a lack of comprehensive 

research on the influence of process variables like wire feed 

rate, sample composition, input current, and pulse time on the 

machining performance of Al-Al2O3-B4C composites. This 

study investigates how WEDM of Al-Al2O3-B4C composites 

is affected by process variables such as wire feed rate, sample 

compositions, input current, and pulse time.  

 
Al6061+ Alumina + Boron Carbide was prepared as 

matrix composite material by adding two or more materials 

and base matrix material. WEDM was applied to machining 

the prepared MMCs. Utilizing the Taguchi method and GRA, 

this research aimed to determine which WEDM process 

parameter combinations are most helpful in influencing output 

responses. The experimental setup followed the Taguchi 

method, employing an L27 orthogonal array for systematic 

testing. MRR and Ra were quantified by comparing initial and 

final weights over the machining duration. 

 

2. Material  Preparation 
2.1. Fabrication of Composites 

In this research, Al6061+Alumina+Boron Carbide 

composite material was chosen as the matrix due to its 

Commendable strength despite its lower machinability. 

Aluminum 6061 is a widely used matrix alloy for metal matrix 

composites, based on the chemical composition outlined in 
Table 1 [13-15].  The selection of materials was meticulously 

done considering their properties. The aluminum-based metal 

matrix composite incorporates microparticles of alumina, 

characterized by a 45-micron mesh size and 99.90% purity, 

along with boron carbide, featuring a 50-micron mesh size and 

99.95% purity. A flow chart of the procedure used for 

composite preparation is shown in Figure 1. The photographs 

of MMCs can be depicted in Figure 2.  

 

In Figure 1, The composite was meticulously prepared via 

the stir casting technique, wherein Al6061 served as the base 

metal, reinforced by B4C and Al2O3. During the composite 

preparation process, several critical steps were adhered to. 

Initially, ingots of the base metal, Al6061, were selected and 

cut into small pieces to fit the dimensions of the crucible. 
Subsequently, the crucible was heated to 750 °C to ensure 

proper melting.  
 

Simultaneously, the reinforced particles and crucible 

were preheated to 400 °C, ensuring the optimal conditions for 

the subsequent mixing process. Once Al6061 was molten, the 

preheated reinforced particles were added to the base metal 
while stirring at 300 rpm for 10 minutes. This was crucial in 

ensuring the even dispersion of the reinforcing particles within 

the matrix material. This stirring procedure enabled the 

consistent dispersion of the reinforcing particles and 

guaranteed thorough wetting of the matrix material. 

Additionally, 1% magnesium was introduced to enhance 

wettability, while hexachloroethane was added for 

degasification of the molten metal, maintaining a constant 

temperature. The molten metal was transferred in a cast iron 

die in accordance with the requirements of the intended 

specimen when the stirring procedure was complete.  
 

3. Experimental Methodology 
The experimental approach employed a systematic 

method to optimize the process parameters of WEDM for the 

Al6061+Alumina+Boron Carbide composite material. The 

goal was to increase the MRR, lower the roughness of the 

surface, and narrow the kerf as much as possible. Following 

the stir casting process, the newly formed composite material 

underwent machining via WEDM. It was found that cutting 

using a 0.25 mm diameter brass wire coated with zinc worked 

better. Composite plates measuring 20×20×15 mm were used 

in the WEDM process for testing purposes. A piece of work 

and the WEDM test setup are shown in Figure 1. Table 2 

shows the setup used for the WEDM experiments and lists the 

details of the experimental facility. The WEDM process 
parameters examined for improvement included Input current, 

Pulse on Time, and Wire feed rate. For consistency’s sake, the 

Pulse Off time stayed the same during the experiment. A 

methodical design of the experiment’s approach was used to 

run the experiments.  
 

The orthogonal arrays and Taguchi method was used to 
identify the ideal settings and explore the parameter space. To 

minimize the number of trials required for complete testing, 

an L27 orthogonal array was utilized to organize the 

experiments. Table 3 also lists the specific input parameters 

that were thought about for the WEDM process, giving a 

complete picture of the variables that were being studied. PON 

(105, 108, and 110), WFR (4, 5, and 6 m/min), and Input 

current (10, 11, and 12A) are the different input parameters 

that were looked at for the machining and the Pulse Off time 

stayed the same. 
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Fig. 1 Flow chart of procedure used for composite preparation

 

Table 1. Chemical composition of aluminum alloy 6061 [15] 

Elements Cu Mg Fe Cr Cu Zn Mn Ti Al 

Composition in Percentage (%) 0.40 0.80 0.70 0.05 0.40 0.10 0.10 0.05 Balance 

 

Fig. 2 Schematic of WEDM photograph of WEDM machine and workpiece 

Reinforcement Particles 01: 
Boron Carbide B4C 

(Preheated upto 400 °C) 
Add to the crucible and heat 

Reinforcement Particles 01: 
Alumina Al2O3 (Preheated 

upto 400 °C) 

Base Metal (Aluminum 6061 

alloy) in Ingot form 

Addition of Reinforcement 
particle slowly in the 

crucible in the presence of 
Stirring action at 300 rpm 

(Stir till 10 min) 

Pouring into Mould 

Composite 
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Table 2. Details of experimentation facility 

Facility Used for 

Experimentation 
Specifications 

Material of Composite 

Al6061, Boron Carbide, 

Alumina (Boron Carbide 1%, 

2%, 3% by wt., Alumina 

1%,3%,5% by wt.) 

Specifications of 

Machine Used 

Wire Electrical Discharge 

Machine 

Machining Parameters 

Selection 

Wire feed rate, Input current, 

Pulse on Time 

Parameter for output 
Material Removal Rate 

(MRR) 

Surface Roughness, Ra 
Mahr’s Surface Tester in 

Techno-management 

Table 3. The input process variables for WEDM machining of Al6061 

composite 

Input Parameters 
Level 

1 2 3 

Alumina (% by weight) 1 3 5 

Boron Carbide (% by weight) 1 2 3 

Pulse On Time (μs) 105 108 110 

Wire feed rate (m/min) 4 5 6 

Input Current (A) 10 11 12 

 

Table 4 presents the experimental outcomes for MMR 

(mm3/min) and Ra and their corresponding input parameters. 

The experiments utilized the Design of Experiment (DOE) 

methodology. The objective of the experiment was to 

determine the optimal input parameters to enhance both the 

MRR and the weight difference before and after machining 

per unit of machining time, which was used to calculate the 

MRR, serving as a vital indicator of machining effectiveness 
and productivity. 

 

Table 4. Experimental results data of MRR of Al6061-based MMC 

Sr. No. Alumina B4C 
Pulse On 

Time (µs) 
WFR (m/min) Ip (A) Ra (µm) MRR (mm3/min) 

1 1 1 105 4 10 1.876 11.55 

2 1 1 105 4 11 2.097 14.235 

3 1 1 105 4 12 2.138 17.872 

4 1 2 108 5 10 2.687 16.478 

5 1 2 108 5 11 2.736 20.003 

6 1 2 108 5 12 3.012 23.376 

7 1 3 110 6 10 3.264 20.476 

8 1 3 110 6 11 3.056 23.658 

9 1 3 110 6 12 3.843 26.895 

10 3 1 108 6 10 2.142 17.362 

11 3 1 108 6 11 2.016 20.448 

12 3 1 108 6 12 2.072 23.847 

13 3 2 110 4 10 4.874 19.496 

14 3 2 110 4 11 3.983 23.082 

15 3 2 110 4 12 3.598 26.683 

16 3 3 105 5 10 1.651 9.241 

17 3 3 105 5 11 2.021 12.189 

18 3 3 105 5 12 2.874 15.768 

19 5 1 110 5 10 3.882 20.769 

20 5 1 110 5 11 2.587 23.717 

21 5 1 110 5 12 2.047 26.909 

22 5 2 105 6 10 1.65 9.507 

23 5 2 105 6 11 2.157 13.289 

24 5 2 105 6 12 2.784 15.989 

25 5 3 108 4 10 2.046 14.323 

26 5 3 108 4 11 3.859 17.204 

27 5 3 108 4 12 4.564 20.988 
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Surface roughness was measured using Mahr’s surface 

tester, which provided Ra, Rz, Rmr, and Rsm values for all 

species. Ra, measured in microns, represents the average 

deviation of the surface profile from the mean line, offering 

insights into surface quality and finish. By systematically 

adjusting process parameters such as PON, WFR, and Input 
Current and measuring MRR and surface roughness 

throughout each experimental iteration, the goal was to 

optimize machining outcomes. The MRR formula is provided 

below [17]. 

 

MRR(mm3/min)=
(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒−𝐹𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒)(𝑔𝑟𝑎𝑚)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦∗𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 ((
𝑔𝑟𝑎𝑚

𝑚𝑚3
) × 𝑡)

  (1) 

 

Density (g/mm3) =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒 (𝑔𝑟𝑎𝑚)

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒 (𝑚𝑚3)
  (2) 

 

4. Results & Discussion 
4.1. Surface Topography of the Machined Surface 

Figure 3(a) shows some of the surface features of a 

WEDM aluminum alloy specimen. The surface represents 

micro ridges and craters, which characterize the material 

removal mechanism in WEDM or wire electrical discharge 

machining.  

Due to the aluminum alloy 6061’s high thermal 

conductivity, the craters are more evident. These are the ones 

that are visible at the surface level and are probably caused by 

the liberation of gases that were trapped during machining. 

Further, the workpiece’s electrochemical dissolution gives 

way to these micro voids’ development.  
 

Microcracks and black patches on the machined surface 

exhibit heavy thermal and mechanical stresses in a few places. 

Usually, micro-cracks are found near the particle-matrix 

interface, suggesting debonding between different material 

phases. The black patches are most probably the residue that 

is being left out by the machining process. Such patches are 

generally made because of their arcing nature, especially in 

composite materials like B75A25.  

 

The EDS (Energy Dispersive Spectroscopy) analysis  of 

the graph of the adjacent part shows the elemental 
composition of the machined surface: the main element is 

oxygen, at 46.5%; aluminum is 38.5%; iron is 11.8%; minor 

percentages of magnesium, silicon, manganese, copper, and 

zinc are present. Those are consistent with the phenomena that 

have been outlined in the given text and, in so doing, point out 

the typical surface features and defects that are observed in 

WEDM processes on aluminum alloys. 

 

 

 
Fig. 3 Micrographs of the hybrid MMC machined surface (a) B1A1, and (b) B5A3.
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In Figure 3(b), the surface texture is rough and uneven, 

having many micro-craters. Such a surface is characteristic of 

the material removal process in WEDM, where localized 

melting and vaporization of the composite material occur. 

Micro-cracks are located in the interfacial region between the 

particle and matrix.  
 

The debonding of the reinforcement particles and matrix 

is indicated in those regions. Most likely, debonding occurs 

due to thermal stresses initiated during machining.  

 

The right EDS spectrum depicts the machined surface’s 

elementary composition. The major elements found are 

Aluminum (61.8%) and Oxygen (32.3%), with traces of 

Magnesium, Manganese, Copper, and Zinc. 

 

The findings’ surface features and defects agree with the 

phenomena described in the accompanying text, pointing to 
roughness in the machined composite material. This 

roughness is normally obtained when machined with WEDM. 

The surface texture and microcracks are effects of thermal and 

mechanical stresses developed during material removal. 

 

4.2. Design of Experiment (DOE) 
The experimental design is optimized to minimize the 

experiments conducted using the Taguchi method. These 

experimental findings offer significant insights into how PON, 

WFR, and Input Current alterations impact both MRR and Ra 

in WEDM of the Al6061+Alumina+Boron Carbide composite 
material l.  

 

Using Minitab 17 software, the experimental trials were 

meticulously designed according to specified parameters. Five 

input variables were considered, with one variable having 

three levels, as depicted in Table 3.  

 

To efficiently explore the parameter space and ensure 

comprehensive testing, a 27L orthogonal array was utilized for 

experimentation. Table 4 presents the results obtained from 

the experimental trials, detailing the MRR and 

Ra values for every set of input parameters. The analysis of 
the input variables of the output responses was conducted with 

a focus on the Signal-to-Noise Ratio (S/N).  

 

This analysis chose The MRR to be maximized, as higher 

MRR levels indicate superior machining performance. By 

scrutinizing the S/N ratio across diverse input variables, it is 

possible to derive insightful information about how each 

parameter affects the responses that are produced. Hence, the 

S/N ratio was computed to maximize the MRR. 

 
𝑆

𝑁
 =  −10[

1

𝑛
∑(𝑦𝑖𝑗  2)],            (2) 

 

Where, n- observations number, yij-observed response, 

i=1,2….n, j=1,2..k. 

Table 5. S/N ratio and normalized values for Al 6061 MMC 

S. 

No. 

S/N 

Ratio 

MRR 

S/N 

Ratio SR 

Normalized 

MRR Value 

Normalized 

SR Value 

1 21.2516 -5.4647 0.1307 0.9299 

2 23.0671 -6.4320 0.2827 0.8614 

3 25.0435 -6.6002 0.4885 0.8486 

4 24.3381 -8.5854 0.4096 0.6783 

5 26.0219 -8.7423 0.6091 0.6632 

6 27.3754 -9.5771 0.8000 0.5775 

7 26.2249 -10.2750 0.6359 0.4994 

8 27.4796 -9.7031 0.8160 0.5639 

9 28.5934 -11.6934 0.9992 0.3198 

10 24.7920 -6.6164 0.4596 0.8474 

11 26.2130 -6.0898 0.6343 0.8865 

12 27.5487 -6.3278 0.8267 0.8691 

13 25.7989 -13.7577 0.5804 0.0000 

14 27.2655 -12.0042 0.7834 0.2764 

15 28.5247 -11.1212 0.9872 0.3958 

16 19.3144 -4.3549 0.0000 0.9997 

17 21.7194 -6.1113 0.1669 0.8849 

18 23.9555 -9.1697 0.3694 0.6203 

19 26.3483 -11.7811 0.6525 0.3077 

20 27.5012 -8.2559 0.8193 0.7094 

21 28.5980 -6.2224 1.0000 0.8769 

22 19.5609 -4.3497 0.0151 1.0000 

23 22.4698 -6.6770 0.2291 0.8427 

24 24.0764 -8.8934 0.3819 0.6483 

25 23.1207 -6.2181 0.2876 0.8772 

26 24.7126 -11.7295 0.4507 0.3148 

27 26.4394 -13.1869 0.6649 0.0962 

 

4.3. Multi-Response Optimization Using Grey Relational 

Analysis  
We are optimizing multiple responses utilizing the 

Taguchi method with GRA. A system where a certain quantity 
of data is known while some is uncertain is called a “grey 

system” [1]. Due to the constant uncertainty, grey systems will 

provide various potential answers. This theory’s foundation, 

grey relational analysis, was modified to solve the intricate 

interactions between the specified performance indicators [1].  

 

This analysis favorably defines the Grey Relational Grade 

(GRG) as an effective characteristic metric for assessment. 

Researchers are now focusing on Multi-Criteria Decision-

Making (MCDM) strategies because of their unwavering 

ability to evaluate distinct alternatives based on various 
criteria to determine which is superior.  
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This writing suggested that MCDM concentrate upon 

GRA to examine the wire electrode discharge process 

optimization issue associated with Aluminum alloy (6061) 

composites [1]. GRA is a multi-response optimization 

technique that helps determine the best possible set of all 

process parameters and how every input parameter affects the 
answers. Below is a discussion of the process for figuring out 

the grey relationship grade. 

 

Data is preprocessed to convert the initial sequence to a 

similar sequence. Data with numbers were normalized 

between 0 and 1. Several approaches to data preprocessing are 

offered, depending on the features of the data sequence. e. The 

smaller the surface roughness value, the better the 

performance features. This can be expressed as a normalized 

sequence of equations as follows: 

 

𝑋𝑖𝑗 =
 𝑚𝑎𝑥(𝑦𝑖𝑗)−𝑦𝑖𝑗

𝑚𝑎𝑥 (𝑦𝑖𝑗)− 𝑚𝑖𝑛 (𝑦𝑖𝑗)
 (3) 

 

The performance feature, which benefits from larger 

values, is expressed as the normalized sequence of the original 

values. 

𝑋𝑖𝑗 =
𝑦𝑖𝑗  −𝑚𝑖𝑛(𝑦𝑖𝑗)

𝑚𝑎𝑥 (𝑦𝑖𝑗)− 𝑚𝑖𝑛 (𝑦𝑖𝑗)
 (4) 

 

Where, 𝑦𝑖𝑗 represents the original data. 

 

The effectiveness of trial I for response j is determined 

based on the value xij, obtained through data preprocessing g. 

If xi is equal to or closer to 1 than other experiments, then trial 

i is considered the most effective for response j. The primary 

objective of the reference sequence X0 is to identify the 

experiment with the closest comparability sequence to the 

reference sequence e. This sequence is defined as (x01, x02,..., 

x0j,..., x0n) ¼ (1, 1,..., 1,.., 1), where x0j represents the reference 

value for the jth response.  

 
Table 6 reflects the deviation sequences, Grey relational 

grade, and grey relational coefficient s. Next, the closeness 

between xij and x0j is calculated using the grey relational 

coefficient t. The closer xij and x0j are, the higher the grey 

relationship coefficient. 

 

𝛾(𝑥0𝑗 , 𝑥𝑖𝑗) =
(∆𝑚𝑖𝑛 +  𝜉∆𝑚𝑎𝑥)

(∆𝑖𝑗 +  𝜉 ∆𝑚𝑎𝑥)
 𝑓𝑜𝑟 𝑖 = 1,2, …, 

𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛 (5) 

 

Where, y (𝑥0𝑗 , 𝑥𝑖𝑗) is the grey relational coefficient 

between 𝑥𝑖𝑗  & 𝑥0𝑗 

∆𝑖𝑗  = |𝑥0𝑗  −  𝑥𝑖𝑗|  (6)  

∆𝑚𝑖𝑛  = 𝑚𝑖𝑛{∆𝑖𝑗 ,   𝑖 = 1,2, … . , 𝑚; 𝑗 = 1,2, … , 𝑛} ∆𝑚𝑎𝑥  =

𝑚𝑖𝑛{∆𝑖𝑗 ,   𝑖 = 1,2, … . , 𝑚; 𝑗 = 1,2, … , 𝑛}, ξ is the constant 

coefficient, the range defined in 0 ≤ ξ ≤ 1.  

 

In this study, the characteristics coefficient ξ = 0.5 value 

is assumed d. For distinguishability, the index is the 

distinguishing coefficient (ξ). The value of ξ is smaller, which 

reflects that the distinguishability is high. 

 

The grey relational grade is a measurement equation 

utilized for quantification within grey relational spa e. This 

equation can compute the grey relational grade, representing 

the weighted sum of the grey relational coefficients. 

 

𝛤(𝑋0 , 𝑋𝑖) = ∑  𝑛
𝑗=1 𝑤𝑗𝛾 (𝑥0𝑗 , 𝑥𝑖𝑗)   𝑓𝑜𝑟 𝑖 = 1,2, … 𝑚 (7) 

 

Where,  ∑  𝑛
𝑗=1 𝑤𝑗𝛾 = 1 and 𝛤(𝑋0, 𝑋𝑖) denoted as GRG 

between the reference sequence X0 and the comparison 

sequence i. Each response j carries a weight wj, typically 
assigned based on the judgment of decision-makers.  

 

The grey relational grade reflects the level of similarity 

between the reference sequence and the comparison sequence. 

Given that the comparison sequence most closely aligns with 

the reference sequence, the experiment with the highest grey 

relational grade represents the optimal choice. The order of 1 

is the most prominent grey relational grade.  

 

Experiment number 22, indicated in grey, represents the 

closest optimal combination of controllable factors: 
Composite combination Alumina 5%, Boron Carbide 1%, 

remaining Aluminum 6061 94% by weight and Machining 

parameters pulse-On Time 110 µm, wire feed rate 5 m/min, 

input current 12 A. Table 6 mentions the Deviation sequence, 

Coefficient of Grey Relation (GRC), Grade, and Ranks for the 

levels. 

 

4.4. Optimization Techniques - Taguchi Method  
Table 6 was used to calculate the means of the grey 

relational grade for every pair of configurable parameters, 

which were then compiled into Table 7.  

 
The higher GRG, displayed in bold format in the 

following table, shows the better performance parameters. 

These are the ideal values for the regulated parameters PON-

Time 110 μs (Level 3), WFR 5 m/min (Level 3), and Input 

Current 12 A (Level). Figure 2 reflects the WEDM machining 

parameters related to G and shows the WEDM parameters 

with a grey relational grade. 

 

The grey relational grade’s overall mean value = 0.6064.
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Table 6. The values of the deviation sequence, Coefficient of Grey Relation (GRC), Grade, and ranks for the levels are calculated using the grey 

relational method 

 
Table 7. GRA grade response table 

Parameters 1 2 3 Rank [max/min] 

Alumina 0.6081 0.6176 0.5985 5 (0.0192) 

B4C 0.6695 0.5788 0.5759 1 (0.0936) 

Pulse On Time 0.5721 0.5958 0.6309 4 (0.0588) 

Wire Feed Rate 0.5654 0.6218 0.6369 3 (0.0715) 

Input Current 0.5781 0.5958 0.6503 2 (0.0722) 

 

4.5. Analysis of Variance for the GRG 

This study employs an ANOVA approach to ascertain the 

significance of controllable parameters on outcome 
characteristics. In order to achieve this, the contributions from 

each controllable parameter, as well as an error component, 

are divided into the overall variance of the grey relational 

grades. The squared deviations from the overall mean grade 

are added up to determine the total variance. The impact of 

changing a controllable parameter on the end characteristic 

was evaluated by calculating the percentage contribution of 

each procedural parameter to the overall sum of squared 

deviations.  

 
According to the results, boron carbide, wire feed rate, 

input current, PulsePulse on Time, and alumina contributed 

0.61%, 18%, 26%, 9%, and 28%, respectively. Among these, 

PulsePulse on Time, input current, and B4C reinforced 

particles are highly influential, while alumina and wire feed 

rate have comparatively lower influence. Table 8 presents the 

ANOVA results for each grey relational grade value. 

Sr. 

No. 

Deviation 

Sequence (MRR) 

Deviation 

Sequence (SR) 
GRC (MRR) GRC (SR) Grade Ranks 

1 0.8693 0.0701 0.3651 0.8770 0.6211 13 

2 0.7173 0.1386 0.4107 0.7829 0.5968 15 

3 0.5115 0.1514 0.4943 0.7676 0.6310 10 

4 0.5904 0.3217 0.4586 0.6085 0.5335 21 

5 0.3909 0.3368 0.5612 0.5975 0.5794 17 

6 0.2000 0.4225 0.7143 0.5420 0.6282 11 

7 0.3641 0.5006 0.5786 0.4997 0.5392 20 

8 0.1840 0.4361 0.7310 0.5341 0.6326 9 

9 0.0008 0.6802 0.9984 0.4237 0.7110 4 

10 0.5404 0.1526 0.4806 0.7662 0.6234 12 

11 0.3657 0.1135 0.5776 0.8150 0.6963 5 

12 0.1733 0.1309 0.7426 0.7925 0.7676 2 

13 0.4196 1.0000 0.5437 0.3333 0.4385 27 

14 0.2166 0.7236 0.6977 0.4086 0.5532 19 

15 0.0128 0.6042 0.9751 0.4528 0.7139 3 

16 1.0000 0.0003 0.3333 0.9994 0.6664 8 

17 0.8331 0.1151 0.3751 0.8129 0.5940 16 

18 0.6306 0.3797 0.4423 0.5684 0.5053 23 

19 0.3475 0.6923 0.5900 0.4194 0.5047 24 

20 0.1807 0.2906 0.7346 0.6324 0.6835 6 

21 0.0000 0.1231 1.0000 0.8024 0.9012 1 

22 0.9849 0.0000 0.3367 1.0000 0.6684 7 

23 0.7709 0.1573 0.3934 0.7607 0.5771 18 

24 0.6181 0.3517 0.4472 0.5870 0.5171 22 

25 0.7124 0.1228 0.4124 0.8028 0.6076 14 

26 0.5493 0.6852 0.4765 0.4219 0.4492 26 

27 0.3351 0.9038 0.5987 0.3562 0.4774 25 
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Fig. 4 GRD Graph 

 
Table 8. Analysis of variance results 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Alumina 2 0.001651 0.61% 0.001651 0.000826 0.08 0.922 

B4C 2 0.051020 18.78% 0.051020 0.025510 2.54 0.110 

Pulse On Time 2 0.077034 26.09% 0.077034 0.083517 3.05 0.089 

WFR 2 0.025590 9.42% 0.025590 0.012795 1.27 0.307 

Ip 2 0.095498 28.11% 0.095498 0.092749 3.77 0.078 

Error 6 0.030842 16.99% 0.060842 0.003053   

Total 16 0.221635 100.00%     

5. Conclusion 
WEDM was applied to machining the prepared MMCs. 

Through Taguchi and GRA, it was found to be the optimum 

way to process parameters that affect the output responses, 

such as MRR and Ra. By utilizing optimization approaches on 

the wire feed rate, sample compositions, pulse current, 

PulsePulse on time, and other input factors, we found an 
improved way of range.  

 

This research optimizes the machining factors for MMCs, 

which are increasingly utilized in various industries due to 

their enhanced mechanical properties. By optimizing 

machining parameters, the study reduces material waste and 

energy consumption, aligning with sustainability goals in 

manufacturing processes. One may infer the following 

conclusions from the research work:  

 It was discovered that when input current and 

PulsePulse on Time reduced, so did the Al-Al2O3+B4C 

composites’ average MRR and SR values. Additionally, 

it was shown that up until a certain point, the MRR and 

SR increased with an increase in pulse current, after 

which they declined. 

 An integrated GRA-Taguchi analysis was used to 

determine the ideal WEDM machining parameters, 

which were: sample composition of B4C = 1% and 

Al2O3 = 5%; pulse on time of 105 μs; input current of 

10A; and wire feed rate of 6 m/min.  

 
The percentage effects of the sample content (0.61% to 

18.78%), PON (26.09%), input current (28.11%), and wire 

feed rate (9.52%) were all clearly displayed in the ANOVA 

findings.
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