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Abstract - Silica scaling in geothermal reinjection reduces efficiency, increases costs, and causes downtime. An elevated 

concentration of silica is experienced in the separator tank after depressurizing the brine. This causes amorphous silica to exceed 

its solubility limit, causing supersaturation, clogging and disrupting steam production. The study investigated the use of digital 

twins, augmented reality, and Industrial Internet of Things technologies for remote real-time monitoring and control of silica 

treatment. A laboratory-synthesized geothermal fluid with an initial concentration of 90 mg/L was prepared. Silica concentration 

was determined using the molybdate method with an MRC UV/VIS16-spectrophotometer. A response surface methodology based 

on Box Behnken was used to develop a model for optimal conditions of silica precipitation. Analytic Process Control System 
(APCS) system using PLC was used to monitor and control synthetic geofluid pH, volume and temperature while silica 

precipitation was observed. 0.9M of NaOH was introduced to geofluid to maintain a setpoint, pH11. The AR-DT model was used 

for real-time remote monitoring and control to avert silica scale buildup at pH11. Maximum silica extraction of 96.38% was 

observed at pH7.5, temperature of 80°C, volume of 5.5 L and lowest silica extraction of 66.90% was observed at pH5.5, 

temperature of 50°C and volume of 5.5L. The DT and AR model effectively simulated geofluid behaviour, communicating with 

APCS using IIoT via MQTT protocol, enabling real-time data exchange. Deviations in pH from setpoint triggered corrective 

action based on using historical and real-time data, sending a signal to the PLC to adjust the NaOH solution dosage. The AR 

model provided an immersive experience, enhancing monitoring and control efficiency. 

Keywords - Augmented reality, Box behnken, Digital twin, Industrial Internet of Things, Silica scaling.  

1. Introduction  
Geothermal energy is a renewable and environmentally 

friendly energy source that efficiently harnesses heat stored in 

geothermal reservoirs, often in the form of hot water or steam 

[1]. This energy is used to drive turbines, thereby generating 

electrical power. Geothermal energy has several notable 

benefits, including its inherent sustainability, consistent 

reliability, and minimum carbon emissions [2, 3].  

 

One of the key challenges that arise during the utilisation 

of geothermal energy is silica scaling and corrosion. The 

Earth's crust and mantle are primarily composed of oxygen 
and silicon, which combine to create the intricately correlated 

silicate species SiO4
4- [4]. The operational factors, such as 

temperature, pressure, pH, flow rate and volume, have a major 

effect on the occurrence of silica scaling in geothermal plants 

by affecting supersaturation levels and kinetics of 

polymerisation [5]. During steam extraction processes, the 

depressurization of geothermal fluid lowers the fluid 

temperature range to 100 °C - 130 °C. At this temperature, the 

fluid’s capacity to retain dissolved silica is restricted, resulting 

in supersaturation [6, 7]. Oversaturated in the geothermal fluid 

causes the silica to solidify as amorphous silica and create a 

silica scale through the process of polymerisation of 

monomeric silica [8]. This happens when the Silica Saturation 

Index (SSI) ultimately reaches or surpasses SSI ≥ 1. These 
deposits not only reduce operational efficiency but also pose a 

risk to the equipment.  

 

During reinjection, scale buildup within the reinjection 

pipes causes blockage, leading to a decrease in the amount of 

brine being reinjected. This may necessitate well reaming or 

drilling a new well, which is capital intensive. Implementing 

scaling prevention measures in the subsurface pipelines, 

reinjection, and overlying formation is, therefore, necessary to 

effectively mitigate the occurrence of amorphous silica scale 

[9].  
 

Several methods, such as high-temperature reinjection, 

cationic polymer precipitants and pH modification 
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procedures, have been widely adopted worldwide to reduce 

silica deposition [8, 10]. The high-temperature reinjection 

method involves the reinsertion of geothermal brine, which 

has been cooled throughout the power-generating process, 

into the underground reservoir at elevated temperatures. A 

drawback of the high-temperature reinjection technique is the 
inefficient utilisation of energy, as the brine is unable to 

completely extract the thermal energy before being reinjected 

into the reservoir. The pH correction procedure involves 

acidifying the geothermal brine by adding hydrochloric acid 

or sulfuric acid until its pH drops below 6 [11]. Furthermore, 

the process of reducing the pH level to less than 6 gives rise to 

uncertainties regarding the possible corrosion of pipelines and 

the creation of anhydrite in the geothermal reservoir [8, 12]. 

 

The seed-induced precipitation process is thought to be 

the most promising. These seeds possess a strong attraction to 

blend with silicic acid in the geothermal brine. The potential 
of amorphous silica seeds to stimulate the nucleation and 

polymerisation of silicic acid has been studied and used in 

some geothermal power plants [13]. By introducing these 

seeds, the precipitation process is accelerated, hence 

decreasing the probability of silica deposition on the surfaces 

of the pipeline. 

Researchers have also adopted the practice of injecting 

silica seeds, silica gel, as well as Mg2+, Ca2+ and Al3+ ions into 

the brine to remove excess silica and avoid the formation of 

silica deposits [6, 8, 13]. The rate of silica precipitation is 

enhanced by the presence of ions such as Mg2+ and Ca2+ when 
sodium hydroxide or calcium hydroxide is added. These ions 

react with silica to generate Magnesium-Silicate-Hydroxide 

(M-S-H) or Calcium-Silicate-Hydroxide (C-S-H) phases. The 

C-S-H and M-S-H phases become oversaturated at alkaline pH 

(i.e. pH>8.5), leading to their precipitation because H3SiO4
- 

species promote the adsorption of ions with a valence of two 

on the surface [6, 14].  

The addition of NaOH to pH 10 resulted in an 80% 

reduction in silica, with a ratio of 200 ppm silica/200 ppm 

Mg2+ [4]. Nevertheless, the reaction durations required for the 

removal of silica are not conducive to continuous operation in 

a geothermal plant. Hence, it would be advantageous to 
optimise the reaction time. Putera et al. [15] employed a full 

factorial design to achieve the highest reduction in silica at a 

pH of 9, a temperature of 70 °C, and a reaction period of 5 

minutes. The study undertaken was limited by the unknown 

concentration of calcium hydroxide, which prevented the 

determination of the optimal parameters for achieving optimal 

silica reduction.  Hence, it is crucial to use a known 

concentration of calcium hydroxide to ensure optimal 

conditions for the Si-reduction procedure. 

Despite these current approaches, silica scaling remains a 

major challenge in the operation of geothermal power plants. 
The main reason is that silica scaling is not always 

homogenously distributed, so it may be hard to clean or 

remove all the scaling [16]. Conventional methods for 

monitoring and controlling silica scaling are currently 

employed, such as manual inspection and maintenance, which 

are labour intensive and susceptible to human fallibility. The 

existing solutions lack the capability for remote monitoring 
and control. They cannot also offer real-time information and 

visualisation regarding equipment status and the scaling 

process, hence impeding the prompt detection of system 

alterations and the subsequent implementation of necessary 

measures.  

At present, a few technologies have been implemented to 

control or monitor silica scaling remotely in geothermal 

plants. Taddei et al. [17] developed a retention system 

technology to control and reduce silica scale formation before 

reinjection. The retention system design aimed at controlling 

and reducing the rates at which silica scale deposits form by 

taking into account factors such as pH, temperature, and brine 
composition. The system enhances the process of 

polymerisation inside the tank, hence preventing the 

formation of scale deposits in the pipes of the reinjection well. 

Silica concentration reduction dropped from 451 ppm to 265 

ppm. However, the limitation of this method is that excessive 

salt levels might impede the effective implementation of a 

silica polymerisation ageing technique due to the potential 

formation of silica deposits. 

The utilisation of fibre optics, electrolysis, and 

electrocoagulation has garnered more interest in the ongoing 

efforts to address the silica scaling issue in a more 
technologically advanced manner. The electrocoagulation 

technique employs iron electrodes to generate a floc that 

quickly settles when left undisturbed, thus enabling the 

elimination of silica from the fluid. Mroczek et al. [18] 

employed an electrocoagulation method which effectively 

eliminated silica, resulting in a quick decrease in silica 

concentration. Experimental parameters were electrode 

material, pH, temperature, current and circulation flow rate. 

The laboratory investigations showed that iron electrodes 

were effective in lowering silica concentrations in ageing 

geothermal water as silica concentration rapidly dropped from 

600 mg/L to 100 mg/L.   

Yoshihiko et al. [19] successful removal of silica was 

achieved through the reaction with hydroxide ions produced 

via water electrolysis. By increasing the electrical current in 

the reaction solution, the formation of calcium carbonate is 

facilitated, hence assisting in the segregation of silica and 

calcium from the solution.  

A small quantity of silica remained after subjecting it to a 

current of 5 A, while a greater amount of silica remained after 

subjecting it to a current of 3 A, both at a flow rate of 50 

mL/min. However, the production of precipitates might be 

hindered by large currents caused by the migration of protons 
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from the anode to the cathode phases. Also, there is a need for 

further investigation to determine the optimal parametric 

conditions for achieving maximal silica removal.  

Fibre optics for real-time monitoring was studied by 

Okazaki et al. [20]. An exposed core length fibre optic sensor 

was immersed in geothermal water containing 980 mg/L 
dissolved silica at 93 °C. The sensor operates by monitoring 

the decrease of transmittance due to the presence of scales on 

its surface. The transmittance responses were tested 

throughout a wavelength range of 500 to 1700 nm, using an 

exposed core length of 24 cm. The sensor successfully 

quantified the impact of pH variations on the production of 

silica scale within a time frame of 6 hours, therefore 

showcasing its potential to detect real-time changes promptly.  

Though this method has high sensitivity, allowing for real-

time remote monitoring, it is limited to the detection of silica 

deposits. 

The increase in technological applications for industrial 
process monitoring and control offers the potential to improve 

efficiency, reduce costs, and increase safety in industrial 

operations. Tao et al. [21] define a digital twin as a 

combination of three elements: the physical product, the 

virtual product, and the connected data that links the physical 

and virtual aspects. It is distinguished by its capacity to 

replicate, imitate, or oversee the system or physical 

surroundings [22]. On the other hand, Augmented Reality 

(AR) refers to a collection of technologies that enhance the 

perspective of the real-world environment by adding 

computer-generated components or objects [23]. 

The integration of digital twins and augmented reality is 

being used in diverse industrial processes. Caiza and Sanz  

[24] presented a DT and AR for smart manufacturing. The 

methodology entails acquiring data on physical processes, 

constructing a virtual environment, and transmitting 

information about the physical setting. The system facilitates 

bi-directional communication between the physical and 

virtual environment, visualized using AR. Alexios and 

Panagiotis [25] employ a DT as a dynamic model to 

continuously observe and adjust a laser-based manufacturing 

process while also developing a controller for the process. The 

DT successfully adjusted to the actual process by closely 
monitoring and managing intricate process dynamics.  

Qiu et al. [26] highlighted the use of DT and AR 

technologies for industries operating under Industrial Internet 

of Things (IIoT) architecture for more accurate and timely 

data collection and analysis, thereby allowing more effective 

maintenance and repair processes. Hasan et al. [27] enhanced 

building processes by implementing a combination of DT, 

AR, and physical system integration. The DT server operates 

as a virtual replica, acquiring and retaining current data and 

information regarding the machinery. An application utilising 

AR was used to overlay virtual information onto the actual 

model, providing users with a visual and interactive 

experience.  

Geothermal operations have successfully implemented 

Digital Twin technology. A modelling framework called 

GOOML has been developed for creating digital twins of 

geothermal power plants based on hybrid data-driven 
thermodynamics component-based systems models [28]. This 

framework has been extensively utilised in various geothermal 

power plants, yielding highly accurate outcomes. The 

GOOML, developed by Buster et al. [29], effectively 

simulates the real-world performance attributes of geothermal 

systems. The model has two frameworks: a historical system 

and a prediction system.  

The geothermal system’s measured parameters were 

pressure, temperature, and mass flow in order to determine the 

thermodynamic characteristics of the working fluid precisely. 

This was essential for assuring the effective operation and 

optimisation of geothermal power plants. Taverna et al. [30] 
GOOML framework has been used to create digital twins that 

offer steam field operators operational environments for 

analysing and comprehending historical and predicted power 

generation, investigating new steam field possibilities, and 

pursuing optimal asset management in real-world 

applications.  

Thus, there is potential for the utilisation of a DT server 

in geothermal plants for real-time monitoring of the silica 

extraction process. Additionally, the AR technology provides 

users with a visual and interactive platform of the plant 

processes. The implementation of AR, DT, and IIoT 
technologies into industrial systems has shown considerable 

potential in enhancing plant efficiency and reducing 

maintenance expenses. Therefore, the successful use of these 

technologies in maintenance across several sectors 

emphasises their potential as a groundbreaking technology. 

The capacity to overlay real-time data onto the actual 

environment, allowing for remote monitoring and enhanced 

training and safety requirements, has proven very 

advantageous in the many situations that have been covered.  

Given these accomplishments, it is feasible to anticipate 

that using AR and DT for monitoring geothermal chemical 

processes in this study might provide significant benefits. 
Thus, adopting AR and DT technologies in geothermal 

chemical plants can potentially enhance the clarity and 

comprehension of plant operations. It can also improve 

operational effectiveness by monitoring and controlling silica 

deposition through the regulation of pH, temperature, and 

volume, which directly impact the process. It is necessary to 

examine the effectiveness of AR and DT in monitoring the 

accumulation of silica in geothermal power plants. 

However, the current monitoring and control systems for 

silica scaling are limited, and it is difficult to detect and 
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mitigate the problem in real-time and remotely. Moreover, a 

significant number of these systems exhibit insufficient 

integration with control systems, impeding the automatic 

adjustment of operational parameters or the adoption of 

mitigation strategies in response to scaling problems. 

Furthermore, several systems are tailored for certain 
applications or equipment, which implies that they could lack 

the essential flexibility and scalability needed to handle 

different operating circumstances or scaling scenarios. Several 

current systems rely on periodic analysis and cannot monitor 

in real-time. The combination of these limits poses significant 

barriers to effectively controlling silica scaling. 

Therefore, it is necessary to investigate other methods that 

may reduce the silica concentration in the geofluid in order to 

mitigate silica scaling. Moreover, it is necessary to analyse 

several techniques that can monitor and control the treatment 

of silica scaling in remote and real-time. A fully automated 

simulation system capable of replication is needed to carry out 
experimental research on silica treatment in geothermal power 

plants. This system aims to improve or upgrade the current 

testing methods of the physical system without the need for 

conducting real tests on the physical plant, therefore 

enhancing its maintenance. 

 

2. Materials and Methods  
2.1. Experimental Study  

A preliminary experiment was carried out to obtain 

optimal conditions for silica extraction which include NaOH 

concentration, brine pH, brine temperature, reaction and 

settling time and agitation speed. The experimental setup for 

the preliminary experiment is depicted in Figures 1(a), (b), and 

(c).  

 

A geothermal fluid sample was created utilising synthetic 

ingredients, including sodium metasilicate and sodium 

chloride, with a precise concentration of 200 mg/L as 
described in [4]. Magnesium and calcium were introduced, 

mirroring the prevalent ions often present in natural 

geothermal brine [12]. The geothermal brine solutions were 

heated to different temperatures using the Intelligent Heating 

Oil Bath shown in Figure 1(a).  

 

Different amounts of NaOH were then added to raise the 

pH of the brine to 11, while silica precipitation was observed, 

as depicted in Figure 1(b).  After reaching setpoint pH, the 

geothermal fluid was allowed to settle, and the formation of 

silica precipitation was observed, as depicted in Figure 1(c).  

Table 1 depicts the temperatures, NaOH concentrations 

and agitation speeds used in the preliminary study. The 

reaction time for each sample was recorded. The objective was 

to determine the concentration of NaOH, which gave 

maximum silica extraction in a shorter reaction time and was 

used for further experiments using the APCS machine. 

The Amatrol Analytic Process Control system (APCS) 

T5554 was used to represent a typical geothermal plant. In our 

previous work, used the same machine for process modelling 

using virtual reality. The APCS comprises a Programmable 

Logic Control (PLC), metering pump, eductor pump, 

continuous stirred tank reactor, pH transmitter, two reagent 
tanks, and a pipe bypass network. The reactor tank on the 

APCS machine corresponds to the collection tank in the 

geothermal plant, shown in Figure 2(a).   

The collection tank accumulates geothermal fluid from 

the separator tank and condensed water from the cooling water 

pool before transferring the fluid for reinjection. The reactor 

tank served as the treatment station prior to the fluid's 

reinjection. The APCS depicted in Figure 2(b) was used to 

control the pH, temperature and volume of the fluid using the 

optimised parameters obtained in the preliminary experiment.  

A coupled model for the geothermal industry was considered 

by not used due to the limitations of testing in the laboratory.     

 
(a) 

 

 
(b) 
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(c) 

Fig. 1 Preliminary experiment setup (a) Intelligent Heating Oil bath 

heating the brine to a specified working temperature, (b) Dosing of the 

brine using NaOH to a setpoint pH 11, and (c) Silica precipitation 

observed after dosing with NaOH. 

 

 
(a) 

 
Fig. 2(a) Schematic layout and working principle of geothermal power 

plant (Source: 

https://global.kawasaki.com/en/energy/equipment/steam_turbines/geoth

ermal_power.html), and (b) Analytic Process Control System 

 
The silica extraction process was optimized using a three-

factor, three-level Box-Behnken Design (BBD) with three 

repeated runs at the centre point based on the preliminary 
findings as specified in Table 2. Fifteen runs were executed 

using Minitab software (version 2021) and subsequently 

conducted according to the sequence specified in Table 3.  

Table 1. Parameters used in the preliminary study 

Temperature 

(°C) 

NaOH 

Concentration (M) 

Agitation speed 

(rpm) 

115 

0.3 

170 

0.6 

0.9 

1.2 

1.5 

100 

0.3 

200 

0.6 

0.9 

1.2 

1.5 

80 

0.3 

230 

0.6 

0.9 

1.2 

1.5 

60 

0.3 

260 

0.6 

0.9 

1.2 

1.5 

40 

0.3 

300 

0.6 

0.9 

1.2 

1.5 

 

The preparation of synthetic geofluid is represented in 

Figure 3. 

 

 
Fig. 3 Preparation of geothermal fluid and dosing chemical solutions 
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Table 2. Range and levels of parameters in Box-Behnken experimental 

design 

Level 

Factor Symbol Low Middle High 

Brine pH A 5.5 6.5 7.5 

Temperature B 50 65 80 

Volume C 4.5 5.5 6.5 

 
Table 3. Box Behnken design of experiments 

Sample 

Runs 

Brine 

pH 
Temperature (°C) 

Volume 

(L) 

1 5.5 65 4.5 

2 6.5 65 5.5 

3 7.5 80 5.5 

4 7.5 50 5.5 

5 5.5 80 5.5 

6 6.5 65 5.5 

7 6.5 80 4.5 

8 5.5 50 5.5 

9 6.5 50 4.5 

10 7.5 65 6.5 

11 5.5 65 6.5 

12 6.5 65 5.5 

13 6.5 80 6.5 

14 6.5 50 6.5 

15 7.5 65 4.5 

 
The DT and S7 1214 PLC were used for proactive 

monitoring and control of silica formation data. The APCS 

used a PID controller to manage the rate at which the basic 

solution (NaOH) was introduced. The peristaltic pump was 

used to provide a base solution into the reactor tank in order 

to attain and sustain a setpoint pH 11. The experimental setup 

is shown in Figure 4.  

 

The agitation speed for fluid mixing was set at 200 rpm 

to prevent turbulence resulting from excessive mixing speeds. 
Excessive mixing rates lead to turbulent mixing, which is 

undesirable since it causes inaccuracies in pH readings. The 

treated solution was transferred to a settling tank and 

subsequently subjected to filtration using Whatman grade 41. 

The sludge was extracted for further processing, while 

samples of the supernatant were taken for silica concentration 

analysis. The response time and percentage silica extraction 

were quantified as response 1 and response 2 respectively. The 

acquired data was analysed using regression model analysis to 

establish the relationship between the responses and the 

independent variables. 

 
To determine the absorbance of the silica, the 

molybdosilicate spectrophotometric method (ISO 2598-

2:1992) was used [31, 32].  Various quantities of silica 

standard, ranging from 5 to 25 ppm (or mg/L), were prepared 

using a stock solution of silica. For each silica standard fluid 

sample, 50 ml of each was added to a 100 ml flask. 

Hydrochloric acid was diluted with water at a ratio of 1:1, and 

1 ml of hydrochloric acid solution was added along with 2 ml 

of ammonium molybdate solution to the 50 ml silica standard 

sample solution. The samples were left undisturbed for 5 

minutes, after which 2 ml of oxalic acid was introduced and 
thoroughly blended with each sample solution. Using a UV-

Vis-16 spectrophotometer, the UV-VIS absorbance of the 

solution was measured at a wavelength of 420 nm to estimate 

the content of silicate. Figure 5 is a plot of the calibration curve 

for the absorbance for silica standards. The calibration curve 

was then used to determine the silica concentration that 

remained in the geothermal fluid after treatment. 

 

 
Fig. 4(a) PLC program to control the APCS, and (b) APCS experimental setup for geofluid treatment. 
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Fig. 5 Calibration of silica standards using UV/VIS-spectrophotometer 

 

2.2. Digital Twin and Augmented Reality Model      

Development 

The 3D CAD model of APCS was designed using 

Siemens NX and Blender software. The 3D CAD model was 

imported into Unity software (version 2022) for physics 

assignment and visual development of the components, as 

depicted in Figure 6. This intends to replicate the behavioural 

characteristics of the constituents in the physical environment. 

The 3D design took into account the dimensions, surfaces and 
materials of the APCS in order to produce the digital model. 

The ISO 16792 standard was used to enhance the 3D model 

by incorporating Product Manufacturing Information (PMI) 

[33]. The Unity3D and Vuforia Engine were used to develop 

an AR immersive virtual mobile application.  

 

The process parameters, temperature, volume, and pH 

trends were written to align with the APCS machine 

operations. The physics assignments were completed via C# 

scripts and physical assets in Unity 3D. The inclusion of 

physics is crucial in this context since it facilitates the 

development of a digital replica of the APCS as the digital 

twin. In the C# scripts, the MQTT.net package was used to 

establish bi-directional communication between the DT-AR 

model and its physical counterpart. Figure 6 depicts the DT-

AR model in Unity. 

 
While implementing virtual commissioning and digital 

twin using Unity software, the first step was replicating the 

PLC controller. This was achieved by establishing a control 

logic operation for the APCS.  The control logic of the 

machine was implemented using ladder logic and functions 

within the TIA software.  

In the second phase, a bi-directional communication 

protocol was implemented to facilitate the flow of data and 

information between the physical machine and the DT-AR 

model. The PLC and IOT2040 served as gateways to enable 

the implementation of the Industrial Internet of Things (IIoT), 

enabling seamless communication over ProfiNET. Modelling 
and scripting were essential in the Unity programme to 

replicate the functionality of sensors, actuators, fluid 

behaviour, and the overall behaviour of the system linked to 

the controller. The dynamic reaction of the sensors and 

actuators was used to represent the response of the system 

correctly.  

The third phase included the creation of the visualisation 

interface model. To enhance user engagement and enable 

monitoring of process parameters in the immersive 

environment, a User Interface (UI) panel and a graphing 

output displaying the pH trends were developed. Furthermore, 
it enabled the user to autonomously control the augmented 

reality system without relying on any external factors. The AR 

application was installed into a mobile phone through the 

Unity software. 

 

 
Fig. 6 APCS DT-AR model of development in Unity 3D 
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Fig. 7 Process flow and communication between the physical machine and the digital model 

 
The fourth step was to ensure data transfer between the 

AR application and the APCS. The HiveMQ (MQTT broker) 

was used to enable data transfer and communication between 

an AR application and APCS.  Message Queuing Telemetry 

Transport (MQTT) was used to provide bi-directional 

communication using TCP protocol. The C# scripts were 

developed in Unity using the MQTT.net package to establish 

communication with a PLC using an MQTT broker.   

 

The APCS’s data was sent to the virtual environment, and 

the virtual environment’s instructions and commands were 

sent to the physical station. Each button that interacted with 
one of the variables from the PLC device contained all the 

necessary data for communication. The PLC tags were 

directly mapped into Unity using C# scripts and the Node-red 

feature in the IOT2040 module. This step closed the 

communication gap between the digital twin and its physical 

counterpart, as illustrated in Figure 7. The APCS machine was 

now controlled in real time.  

 

The analytic machine was able to achieve real-time 

control via the seamless integration of physical and virtual 

systems. Consequently, altering the command signal 

immediately affected the performance and behaviour of the 
inputs or outputs. Data from the PLC was collected utilising 

the data log function of the PLC S7 1214 and then published 

on the internet. The process parameters were continually 

logged at a frequency of 1 Hz. 

 

3. Results and Discussion 
3.1. Analysis of Silica Extraction 

The preliminary experiment determined that the optimal 

conditions for silica removal were when NaOH was added at 

a concentration of 0.9 M. The main emphasis, therefore, was 

on the efficacy of silica removal by adding NaOH at this 

optimal condition. By implementing a UV/Vis-16 

spectrophotometer, the geothermal fluid exhibited an initial 

absorbance reading of 1.581, indicating a silica content of 

90.803 ppm. Upon the addition of NaOH, the pH rapidly 
increased from the early pH values (5.5, 6.5, and 7.5) to the 

desired pH of 11, causing silica to precipitate. The equation 

from the calibration curve in Figure 5 was utilised to 

determine the new silica concentrations, and subsequently, the 

percentage of silica extracted was computed. The results are 

presented in Table 4. 

 

Run 3 yielded the maximum percentage of silica extracted 

at a reaction time of 48 seconds, 80 ⁰C temperature and pH 

7.5. Conversely, run 8 resulted in the lowest percentage of 

silica extracted, with 78 s reaction time, 50 ⁰C temperature and 
pH 5.5. Raising the pH to 11 led to a higher quantity of silica 

being formed as a precipitate, resulting in a lower 

concentration of silica in the fluid. This suggests a positive 

outcome. Runs 2, 4, 10, and 15 resulted in a silica extraction 

percentage of over 90 % and a shortened reaction time. The 

faster reaction occurs due to the alkaline nature of geothermal 

fluid at pH 7.5, which has a lower percentage of silica. When 

similarly alkaline NaOH is added, the reaction speeds up.  

 

This finding is consistent with the results obtained by 

Putera et al. [15], who observed an increase in the rate of silica 

precipitation with an increase in pH. Their results showed that 
pH has more significance while temperature has less 

significance to the percentage of silica removed.  

 

This can be attributed to the inert and mildly acidic 

properties of silica, which, when subjected to high 

temperatures and treated with a NaOH solution, yield 

favourable outcomes [34]. 

Using the data in Table 4, regression models were 

developed to establish the relationship between the responses. 

(reaction time and percentage of silica extracted) and the 

independent variables (pH, temperature and volume). This 
relationship is represented by two second-order polynomial 

equations, reaction time response, R1 (Equation 1) and silica 

extracted response, R2 (Equation 2).  
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Table 4. Box-Behnken experimental design and experiment responses 

Factor Levels Responses 

Sample Runs Brine pH Temperature (°C) Volume (L) Reaction Time (s) % of Silica Extracted 

1 5.5 65 4.5 75 82.37 

2 6.5 65 5.5 64 91.45 

3 7.5 80 5.5 48 96.38 

4 7.5 50 5.5 56 91.60 

5 5.5 80 5.5 71 80.97 

6 6.5 65 5.5 63 86.07 

7 6.5 80 4.5 55 89.88 

8 5.5 50 5.5 78 66.90 

9 6.5 50 4.5 67 86.00 

10 7.5 65 6.5 55 92.05 

11 5.5 65 6.5 73 79.57 

12 6.5 65 5.5 60 86.77 

13 6.5 80 6.5 59 89.38 

14 6.5 50 6.5 70 78.36 

15 7.5 65 4.5 52 93.70 

R1= 244.5 - 29A - 0.276B - 13.3C + 0.96A
2 - 0.00019B2 + 0.46C

2 - 0.0167AB + 1.25AC + 0.0167BC  (1) 

 R2= - 89 + 36.7A + 2.12B - 15.4C - 1.56A
2 - 0.01145B2 + 0.38C

2
 - 0.155AB + 0.29AC + 0.119BC   (2) 

Where A is brine pH, B is brine temperature, and C is 

brine volume. 

 

To analyse the performance of the predictions in 

Equations 1 and 2, ANOVA is summarized in Table 5. 
 

Table 5. Analysis of variance results for the models (Reaction time and 

Percentage of Silica Extraction) 

Source of 

Variation 
Response 1 Response 2 

 
P-

Value 

F-

Value 

P-

Value 

F-

Value 

Model 0.001 26.95 0.019 7.62 

pH 0.000 199.53 0.001 47.31 

Temp 0.002 38.96 0.015 13.19 

Volume 0.246 1.73 0.233 1.84 

pH*pH 0.431 0.73 0.404 0.83 

Temp *Temp 0.972 0.00 0.192 2.27 

Volume 

*Volume 
0.699 0.17 0.831 0.05 

pH*Temp 0.826 0.05 0.217 2.00 

pH*Volume 0.298 1.35 0.868 0.03 

Temp*Volume 0.826 0.05 0.327 1.18 

When examining ANOVA findings, a higher F-value 

coupled with a smaller p-value (i.e., p<0.05) indicates that the 

model is statistically significant. The p-values are less than 

0.05 for both models; the reaction time and % of silica 

extraction imply that the variables play a significant role in the 

responses. P-values greater than 0.05 indicate that the 

variables are not significant to the models. The F values of 
26.95 and 7.62 indicated a substantial model fit, which yielded 

a low p-value (p<0.05), indicating the model's strong 

significance for both responses (R1 and R2).  

 

In addition, the high coefficients of determination (R-sq.) 

of 97.98 % and 93.2 % for reaction time and percentage of 

silica extraction, respectively, in Table 6, demonstrate a 

significant relationship between the measured and projected 

responses. These values fall within the permissible range 

(R>80 %) because it indicate a strong linear relationship of the 

variables and that the model explains a large portion of the 
variance in the data, which suggests that the model fits the data 

well.  

 

The R-value near 100 % signifies that the model 

possesses a high degree of accuracy in predicting the response 

variable for future observations. In comparison, the R-value 

near 0 % indicates that the model is not proficient in predicting 

future responses. 
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Table 6. Models fitting results 

Model Term Full Quadratic Models 

 R1 Response R2 Response 

R-sq. 97.98 93.21 

R-sq. (adj) 94.34 93.21 

R-sq. (pred) 78.07 93.21 

 
Table 7. Modified model fittings for optimised empirical models 

Model Term Modified Models 

 R1 Response R2 Response 

R-sq. 97.04 82.19 

R-sq. (adj) 96.23 80.22 

R-sq. (pred) 94.55 69.73 

 
However, the coefficient of determination is R-sq. (pred) 

in the R2 model falls below the acceptable range. The 

forecasted R-sq. (pred) a score of 53 % suggests that the model 
possesses a moderate level of predictive capability. This 

implies that the model possesses a 53 % prediction for future 

observations based on the independent variables in the model. 

This low accuracy can be attributed to variables that lack 

significance, such as the volume of brine, which has p>0.05. 

Variables with p>0.05 may have or not have significance on 

the model [35]. The investigation found that the pH (A) and 

temperature (B) were significant independent variables 

affecting the reaction time and percentage of silica extracted, 

with p-values<0.05. Nevertheless, the second order of the 

parameters and their products did not have any notable 
influence. Based on the information obtained from Tables 6 

and 7, the models R1 and R2 were modified to eliminate the 

insignificant terms. Table 7 presents the new R-values. The 

models’ equations for the responses are given in equations 3 

and 4.  

R1= 148.03 - 10.750A - 0.3167B + 1.000C  (3) 

 

R2=15.88+7.99A+0.2812B (4) 

 

A positive coefficient in Equation 4 indicates that the 
percentage of silica extraction (R2 response) is directly 

correlated with the brine pH and temperature. In contrast, the 

R1 response in Equation 3 exhibits a negative relationship 

with brine pH and temperature but a positive relationship with 

brine volume. The relationship between brine pH and the 

percentage of silica extraction (R2 response) is a positive 

correlation. This indicates that as the pH level rises, the 

percentage of silica extraction also increases. Similarly, there 

is a negative linear relationship between brine pH and the 

reaction time (R1 response). As the pH level increases, there 

is a corresponding drop in the reaction time. The phenomenon 
above is visually illustrated in Figures 8 (a) and (b). The 

contour lines in Figure 8(b) depict varying reaction times 

measured in seconds. The hue of the contour lines corresponds 

to the duration of the reaction time response, with yellow 

representing shorter durations and green representing longer 

durations, as specified in the color-coded key located on the 

right side of the graph.  

 

Figure 9(a) depicts the relationship between the variables 

(brine pH and brine temperature) and their effects on the 

percentage of silica extraction. The data suggests that 

increasing temperatures and certain brine pH levels result in 
larger extraction rates of silica, indicating a correlation 

between these factors and the percentage of silica removed. 

Furthermore, as depicted in Figure 9(b), as the temperature 

rises at high pH values, the percentage of silica extracted 

likewise increases. These outcomes are a result of the silica's 

inert and mildly acidic properties, which are enhanced when 

treated at a high temperature with NaOH solution.  

    
Fig.  8(a) Surface plot, and (b) Contour plot showing how reaction time responded to changes in temperature and pH. 
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Fig. 9 (a) Surface plot, and (b) Contour plot of % of silica extracted in relation to changes in temperature and pH. 

 

The correlation between the predicted and actual values 

for the percentage of silica extraction and reaction time 

responses is shown in Figures 10(a) and (b). PFITS R1 and 

PFITS R2 refer to the predicted fits, which are predicted 

values from the regression models. The predicted values from 

the model were found to be close to the actual experimental 

values. The percentage error and average percentage error for 

reaction time were 4.164 % and 0.278 %, respectively. The 

percentage error and average error for silica extracted were 

0.105 % and 0.001 %, respectively. This means that the 

models accurately captured the behaviour of the model using 

the Response Surface Model with the training data. 

 

 
 

 
Fig. 10(a) Comparison of predicted reaction time using the empirical model and experimental reaction time, and (b) Comparison of predicted 

percentage of silica extracted using the empirical model and experimental percentage of silica extracted. 
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3.2. Residual Plots Analysis 

Residual plots are employed in regression and ANOVA 

tests to assess the quality of the model fit and consequently 

evaluate the challenges posed by a skewed distribution, 

outliers, and non-random errors. The Pareto charts in Figures 

11 (a) and 12 (a) depict the standardised impacts of three 
parameters (pH, temperature, volume) on the response 

variables, namely reaction time and percentage of silica 

extracted. The pH level has the greatest influence on both the 

reaction time and the amount of silica extracted. Thus, 

findings have indicated that pH exerts the most pronounced 

influence on the formation of silica precipitates in the 

geothermal brine, followed by temperature.  The reference 

lines located at 1.55 in Figure 11 (a) and at 1.538 in Figure 12 

(a) represent the exact value of the t-distribution at a 0.05 level 

of significance. Factors that have standardized effects greater 

than 1.55 and 1.538 are deemed to be statistically significant. 

Figures 11 (b) and 12 (b) demonstrate that the residuals exhibit 
a normal distribution and typically form a linear pattern, 

indicating the absence of outliers. When plotted against the 

fitted values, the residuals indicate a random distribution 

around zero, suggesting that the residuals possess constant 

variance and are independent of each other.   

 

      
Fig. 11 Model fit analysis for reaction time response using trained data (a) Pareto chart, and (b) Residual plots.

 

      
Fig. 12 Model fit analysis for percentage of silica extracted using trained data (a) Pareto chart, and (b) Residual plots. 

 
Both reaction time and silica extracted show statistically 

significant correlations with pH and temperature. These 

findings indicate that silica is prone to precipitate under 

alkaline circumstances, where it reacts with magnesium, 

forming magnesium silicate. In conclusion, the residual 

analysis demonstrates that the model adequately fits the data. 

   

3.3. Digital Twin-Augmented Reality Implementation 

The AR model was effectively integrated into the 

physical environment using plane detection, as depicted in 

Figure 13. The DT-AR model and the APCS were able to work 

simultaneously in real-time, as shown in Figure 15.   

 

Prior to processing the geofluid in the reactive tank, there 

were signs of silica scaling building up along the pipeline, 

causing blockages as the geofluid flowed through, as seen in 

Figure 16(a). Following the initiation of NaOH dosing, silica 

precipitation commenced in the reaction tank. The event was 

the result of a chemical reaction between the dissolved silica 

and magnesium in the presence of NaOH. As a result, silicate 

deposits formed at the tank's bottom, as observed in Figure 14, 

mimicking the reaction that occurred in the APCS's reactive 
tank.  

 

This strategy effectively handled the issue of pipe 

blockage, as observed in Figure 16(b). Furthermore, the DT-

AR model was able to function independently, mimicking the 

physical system and capable of evaluating the performance of 

many parameters prior to their implementation on the actual 

system as shown in Figure 17. 
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Fig. 13 AR model user interface and virtual model in the physical 

environment 

 
Fig. 14 Silica precipitate observed settling at the bottom of the tank 

during geofluid treatment

 
Fig. 15 AR and physical System operating simultaneously 

 

 
Fig. 16(a) Sections showing silica scaling development in untreated geofluid, and (b) Clear pipe during geofluid treatment. 
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Fig. 17 Standalone DT-AR model 

 

Supervisory control was established through the use of 

AR, where instructions and commands were transmitted to the 

physical world for implementation. Real-time communication 

experiments were conducted to examine events and data 

handling in both the physical and virtual environments. The 

virtual environment and mapping interaction enabled the 
simultaneous execution and activation of activities on the 

physical equipment, as depicted in Figure 18.  

The pH reading from the sensor, pH 8.654626 and other 

elements were published to a topic (APCS) in the broker and 

the AR subscribed to the same topic to receive data. Likewise, 

the setpoint and operational status were published by AR on 

the same topic and subscribed to by the PLC. Figure 19 shows 

data published/subscribed to the broker and the pH trends 
during dosing with NaOH.

 

 
Fig. 18 Physical machine and DT-AR communication via MQTT 
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Fig. 19 Data published/subscribed by PLC and AR, respectively, to the broker with the associated topic 

 
The accomplishment of seamless integration between the 

physical and virtual systems has allowed real-time control of 

the analytic machine. Because of this, modifying the 

command signal immediately affected the performance and 

behaviour of the inputs or outputs. 

 
The DT and AR model accurately replicated the 

behaviour of geofluids and their reaction to the addition of 

NaOH solution for pH correction, utilising both historical and 

real-time data. There was communication between IIoT and 

the MQTT protocol to establish a seamless connection and 

enable real-time exchange of data with the APCS. The DT-AR 

system detected deviations in pH from the SP value and 

implemented corrective measures by sending a signal to the 

PLC to modify the dose of NaOH solution. The DT-AR 

application offered an interactive and immersive experience. 

 
The system offered essential features, information, 

functionality, and communication capabilities. The system 

displayed real-time information on the state of the treatment 

process and the corresponding data from the sensors. In the 

context of DT, communication was essential. The system 

provided a bi-directional communication service that allows 

real-time interaction between physical and virtual elements. 

Regarding system functionality, it received and executed the 

commands sent by the operator. It possessed the capability to 

monitor the advancement of the silica treatment technique. 

 

4. Conclusion  
The objective of this study was to regulate the formation 

of silica deposits in geothermal reinjection wells by utilizing 

a DT-AR system for real-time monitoring and control. The 

preliminary experiment specifically analysed the formation of 

insoluble precipitates in the presence of silicates. The study 

employed the Response Surface Methodology (RSM) utilising 

the Box Behnken design to enhance the extraction of silica 

from geothermal fluid. The optimal parameters for obtaining 

the maximum silica extraction yield (96.38%) within 48 

seconds were a temperature of 80°C, a volume of 5.5 L, and a 

brine pH of 7.5.  

The lowest silica extraction of 66.90 % was observed 

under the following conditions: pH 5.5, temperature of 50 °C 

and volume of 5.5. The study determined that the pH of the 

solution has a substantial impact on the formation of 

amorphous silica from a geothermal brine when NaOH is 

introduced.  

The significance of temperature in silica extraction in 

alkaline circumstances is substantial, although volume did not 

show a major impact. The DT-AR system utilised the MQTT 

protocol for real-time monitoring and control. Implemented 

MQTT publish/subscribe architecture for remote sensing and 

control, integrated IIoT, enabling bidirectional 
communication between the physical system and AR system. 
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