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Abstract - Electric motors are vital components in various industrial applications, from production manufacturing to 

transportation and power generation. They are indispensable parts of machinery and equipment required for the industry, and 

their effective running is a must for maintaining operational efficiency and productivity. However, a motor suffers from different 

kinds of faults that can be expensive in terms of downtime, loss of production, and repair costs. Early detection of these faults is 

important in reducing unscheduled shutdowns, maintenance costs, and workplace accidents. This paper presents the design of 

a low-cost, real-time fault detection system for motors installed on the Non-Drive End based on neural networks, with the aim 

of enhancing operational efficiency and reducing maintenance costs in industries. 
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1. Introduction  
The dependability and effectiveness of electric motors is 

a crucial factor in the present-day industry. They play an 

important role in several areas, such as manufacturing, 

transportation, and energy generation. Productivity and safety 

in factories directly depend on how well these machines work 

[1]. Nevertheless, many types of failures affect engines, and 

their neglect may result in heavy financial losses or 

interruptions in the workflow.  

Fault detection systems are thus indispensable. They 

enable the early identification of anomalies, preventing 

unplanned downtimes and costly repairs. However, existing 

monitoring systems are often expensive and complex, posing 

accessibility challenges for Small and Medium-sized 

Enterprises (SMEs) [2]. Moreover, many systems fail to 

provide real-time detection, limiting their preventive efficacy. 

A particularly overlooked aspect in motor fault detection is the 

Non-Drive End (NDE) of the motor. This section, not directly 

linked to the power-transmitting device, is critical yet 

frequently neglected in conventional monitoring systems. 

Early detection of faults in the NDE is crucial, as issues here 

can indicate severe underlying problems that could escalate if 

not addressed promptly [3]. 

This document intends to tackle such obstacles by 

presenting a low-cost, instantaneous error recognition 

mechanism for the motors’ NDE based on neural networks. 

This strategy appears to improve the precision of detecting 

faults together with operational efficacy; thus, it is a credible 

alternative for various industrial uses. 

Numerous industrial processes depend greatly on electric 

motors. A good output in terms of work or labour depends on 

its dependability and efficacy. Nonetheless, these machines 

are prone to different faults that can take different forms, such 

as mechanical wear, electrical problems, and thermal 

problems. Failure to detect such faults could have dire 

ramifications, such as prolonged breaks in operation, low 

production levels and more funds spent on maintenance 

routines [4,5]. 

Currently, the industry relies on sophisticated and 

expensive monitoring systems that, while effective, are not 

always feasible for SMEs due to their high implementation 

and maintenance costs. Additionally, the majority of these 

systems lack the capability for real-time fault detection, which 

is critical for preemptive maintenance and operational 

continuity. The Non-Drive End (NDE) of the motor is 

particularly challenging for fault detection. Unlike the Drive 

End, the NDE does not directly transmit power, and as such, 

conventional monitoring systems often overlook it. However, 

faults in the NDE can be indicative of severe motor issues and 

can lead to catastrophic failures if not detected early. Given 
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these challenges, there is a pressing need for an affordable, 

effective, and real-time fault detection system specifically 

designed for the NDE of motors. Such a system would 

significantly enhance operational efficiency, reduce 

maintenance costs, and improve workplace safety. 
 

2. Related Works  
2.1. Traditional Methods  

Traditional fault detection methods primarily rely on 

vibration analysis, Motor Current Signature Analysis 

(MCSA), and thermal monitoring [6]. Vibration analysis is 

one of the most common techniques involving the use of 

accelerometers to detect changes in the vibration patterns of 

motors, indicative of mechanical issues such as misalignment 

or bearing failures. MCSA, on the other hand, involves 

analyzing the current drawn by the motor to identify electrical 

faults such as stator winding faults and rotor bar issues [7]. 

Thermal monitoring uses temperature sensors to detect 

overheating, which could indicate various problems, including 

overloading and insulation failures [8]. While these traditional 

methods are effective, they often require expensive equipment 

and complex data interpretation, limiting their accessibility for 

SMEs. 
 

2.2. Advanced Signal Processing Techniques  

More sophisticated signal processing techniques have 

emerged to improve the precision and reliability of fault 

detection systems. To analyze non-stationary and nonlinear 

signals generally derived from faulty motors, various 

techniques like wavelet transform [9], Empirical Mode 

Decomposition (EMD), and Hilbert-Huang Transform(HHT) 

have been implemented. These techniques can detect the 

faintest signatures of faults better than classical methods. 

However, the computational complexity and the need for 

expert knowledge to interpret the results remain significant 

barriers to widespread adoption. 

 

2.3. Machine Learning Approaches   

The identification of faults in motors with machine 

learning is a key use case in modern fault detection systems. 

The Support Vector Machines (SVM), k-Nearest Neighbors 

(KNN), and decision trees are among the algorithms that have 

been applied to detect the fault states according to the features 

extracted from the operation of the motor data [10-12]. These 

methods of machine learning can learn automatically from the 

data, thus minimizing the need for human intervention and 

expert knowledge.  
 

Deep learning, especially neural networks, is a 

technology that was lot to blame for in fault detection because 

it can find hidden possibilities in the huge pools of data. 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) have been employed to deal with the 

data obtained from the vibration signals, motor currents, and 

sensors for fault detection [13,14]. These models are known to 

be reliable and efficient in judging the noise in the area being 

proposed for real-time applications. 

2.4. Neural Networks for Fault Detection   

Deep learning models are used in many fields and 

demonstrate excellence, especially neural networks, which 

can classify the performance of fault detection better than 

others. CNNs have shown a great deal of promise in tasks 

involving spatial data, which seem to be an ideal candidate for 

analyzing vibration signals (and thermal images) [15]. RNNs 

are good candidates for temporal-dependent data, where the 

information comes from sensors to predict future temperature 

readings in time series [16]. Hybrid models combining both 

CNNs and RNNs have been studied, and the advantages of 

each architecture are being exploited in unison. As proposed 

in [17], models can capture both the spatial (cell to cell) and 

temporal (stream of sensor data over time) trends at the same 

instance, which helps maximize model performance for fault 

detection. While being an advantage, neural network-based 

approaches demand high computational costs and extensive 

training datasets. One of the challenges is to build lightweight 

models that can be deployed on edge devices for real-time 

fault detection in the industry. 
 

3. Methodology  
The accuracy and effectiveness of the fault detection 

system heavily rely on the strategic placement of sensors on 

the Non-Drive End (NDE) of the motors. In this study, 

vibration sensors and acoustic sensors were utilized and 

strategically placed to capture signals indicative of faults. 

The vibration sensors were positioned either directly on 

the motor housing or in proximity to the external surfaces of 

the motor housing adjacent to the non-drive end bearings. The 

selected placement allowed for early identification of any 

abnormalities in motion and vibrations that may be attributed 

to mechanical issues such as misalignment, bearing 

degradation, or other rotational imbalances. High-sensitivity 

accelerometers were used to gather measurements of vibration 

over a broad spectrum of frequencies. The proximity to non-

drive end bearings ensured that even minor variations in the 

vibrational diagnostics would be captured. Early identification 

of non-acceptable vibrations is the early warning sign of 

mechanical issues, which, left unidentified, will lead to 

significant damage to the motor, motor subcomponents and/or 

failure of the motor. 

Acoustic sensors were located near the NDE components, 

such as the motor housing and fan cover. Sensor placement is 

intended to capture the acoustic emission that would provide 

knowledge of electrical or mechanical faults. A piezoelectric 

microphone with a broad frequency response was used to 

detect sounds and ultrasound emitted by the motor. The 

location of the sensors, especially near the fan cover, was 

intended to capture sounds that would identify electrical 

discharge or mechanical friction. They would be very 

important for detecting high-frequency sounds, which provide 

an early indication of an electrical fault or lubrication issue 

with the bearing. 
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Fig. 1 The motor used for testing 

Data collection and data processing are critical for 

training and validating the neural network model. The initial 

step of data collection involved obtaining sensor data at 10 

kHz to ensure that tinkering with a signal did not lose 

important transient fault signals. For continuity, we collected 

data over a significant time period (5 to 7 days) to include 

various conditions of motor operation. The microcontroller 

used for this was a Raspberry Pi 4B 8Gb. This extensive data 

collection was necessary to include all aspects of the state of 

operation (normal and faulty conditions) in order to strengthen 

the robustness of the training dataset. For data preprocessing, 

pseudo steps were performed, and other procedures were 

followed, which were designed to prepare values from the 

initial sensor data to readiness for analysis. Filtering was then 

performed for low-pass and high-pass filters to remove noise 

and retain fault signals. This is crucial as raw sensor data 

typically contains excessive noise, which makes it hard to 

identify which obscure fallen signals. By applying these 

filters, we ensure that the data fed into the neural network 

model are clean and focused on the critical features. 

Data segmentation involved categorizing data into 1-

second time intervals to generate manageable data sizes for 

consistency in analysis. Here, the segmentation satisfied the 

objective of providing easily analyzable samples of data, 

which the neural network could individually research to 

identify relationships and recognize patterns relevant to a 

fault. Another methodological preprocessing that was 

important in this study was the normalization of the data. 

Normalizing the data to a uniform scale was important for the 

performance of the neural network model and also facilitated 

a single feature that did not bias the learning process. 

In this research, feature extraction was employed with 

both frequency analysis and time-frequency analysis 

techniques. For frequency analysis, a Fast Fourier Transform 

(FFT) was used to convert the time-domain signal into the 

frequency domain in order to identify characteristic fault 

patterns. Time-frequency and wavelet transform were also 

used to achieve a time-frequency representation of the signals. 

In addition to frequency analysis, time-frequency analysis 

allows for more granularity detection of transient events whilst 

also capturing temporal resolution, which would often be an 

early indicator of a fault and potentially missed in frequency 

analysis alone. 

The training of the neural network model entailed 

formulating a hybrid model that combined CNN-RNN as 

implemented in [18,19], where convolution layers (CNN) 

extracted spatial features for the preprocessed signals, while 

LSTM layers (RNN) captured temporal dependencies. This 

approach was conductive since the strengths of CNN are due 

to their natural ability to handle spatial data and a separate but 

complementary approach - RNN for temporally correlated 

information. The models were trained on the preprocessed 

labeled fault data by splitting them into training and validation 

datasets to evaluate model efficacy to predict a label. The 

training was conducted using the Adam optimizer as well as 

regularization techniques (such as dropout) to achieve model 

generalizability and minimize overfitting. These techniques 

are crucial for ensuring that the model performs well on new, 

unseen data rather than just memorizing the training data. The 

model's architecture for the Hybrid Model is represented in 

Figure 2. 

Model validation and evaluation were conducted using a 

distinct test dataset independent of what was seen during 

training. The use of a separate test dataset ensures that the 

evaluation of the system performance is more unbiasedly 

characterized by accuracies, false positive rates, and response 

times to predict fault detection in unseen data. Performance 

metrics such as precision, recall, F1- score, and area under the 

ROC curve were calculated as quantitative ways to validate 

our fault detection system. This view afforded representation 

for total interpretation of disease detection and fault 

predictions, bringing awareness to the balance of detecting 

faults while minimizing false alarms. Performance combining 

high sensitivity (True Positives) and high specificity (True 

Negatives) is indicative of the potential of this model in 

relation to developing reliable predictive latent fault 

prediction on the assembly systems; see block diagram 

methodology representation in Figure 3. 

4. Results 
The effectiveness of the fault detection system was 

evaluated based on a variety of performance metrics such as 

accuracy, precision, recall, F1-score, and Area Under the ROC 

Curve (AUC) score. These performance metrics provide a 

holistic view of the model’s performance in detecting faults in 

motor Non-Drive End (NDE). Performance metrics for the 

hybrid CNN-RNN model on the test dataset can be seen in 

Table 1. The model maintains high accuracy and precision 

while balancing recall, which indicates the reliability of the 

model in detecting faults and minimizing false positives and 

false negatives. 



Brandon Borda Aliaga et al. / IJME, 11(8), 134-140, 2024 

 

137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig 2 Architecture for the Hybrid CNN-RNN model 

  

 

 

 

Fig. 3 Block diagram for the system 

Table 1. Performance metrics for the model 

Metric Value 

Accuracy 97.8 % 

Precision 96.5 % 

Recall 95.3 % 

F1-Score 95.9 % 

ROC - AUC 98 % 

 

The confusion matrix in Table 2 illustrates the number of 

true positives, true negatives, false positives, and false 

negatives identified by the model. This matrix provides a 

detailed view of the model's classification performance. 

Table 2. Confusion matrix for the model 

 Predicted Fault Predicted Normal 

Actual Fault 245 12 

Actual Normal 8 235 

The system's real-time performance was also evaluated. 

Table 3 provides the average detection time for faults, 

showcasing the system's efficiency. 

Table 3. Time Performance for the system 

Task Average Detection Time (ms) 

Data Acquisition 10 

Pre-processing 15 

Model Inference 25 

Total Detection Time 50 

 

The total detection time measures the duration required for 

data acquisition, preprocessing, and predictions to process and 

predict faults accurately. This end-to-end detection time tracks 

the time needed for the system to detect faults from collecting 

the data through the time when the prediction is made. The 

total time of data acquisition, preprocessing, and predictive 

modeling provides a view of the system's performance in a 

real-time situation, with the total average time being 50 

milliseconds. 

Sensor Evaluation 

and Selection 
Installation of sensors 

on NDE 
Data Acquisition Data Preprocessing 

System Evaluation 
Real-Time Detection 

System Implementation 
Model Validation 

Neural Network Model 

Design and Training 

Input 2 

Input 3 

Conv 1 

Conv 2 

Conv 3 

Conv 4 

Pooling 

RNN 1 

RNN 2 

RNN 1 

Fully 

Connected 

Input 1 

Output 1 

Output 2 



Brandon Borda Aliaga et al. / IJME, 11(8), 134-140, 2024 

 

138 

 
Fig. 4 ROC curve for the model 

 
Fig. 5 Time series analysis for vibration data 

 

  
Fig. 6 Time series analysis for sound data 
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The data acquisition process collects raw sensor data on 

the Non-Drive End (NDE) of the motor, monitoring vibration, 

temperature, and acoustic data. Data acquisition averaged 10 

milliseconds after multiple rounds. Preprocessing, which 

includes noise reduction, feature extraction, and 

normalization, took 15 milliseconds on average.  

 

The duration of preprocessing was measured by running 

the entire preprocessing pipeline over multiple iterations to 

ensure reliability. Inference concerning the model took 25 

milliseconds, which involved running the pretrained hybrid 

CNN-RNN on the preprocessed data. After conducting the 

tests over multiple rounds, the model provided nearly identical 

performance and time duration results. The ROC curve 

presented in Figure 4 is illustrative of the combination of 

performance across a variety of threshold settings. The false 

positive rate is 1-(specificity) and is plotted against the true 

positive rate (sensitivity). The Area Under the Curve (AUC) 

is equal to 0.98; this is an excellent showing of the model's 

ability to discriminate between faulty and non-faulty 

conditions. 

 

Figures 5 and 6 illustrate the time-series analysis of the 

sensor data and the output of the model's fault detection. The 

graphs for the vibration or sensor data at the top show the raw 

sensor data over a time series, while the lower graphs of each 

of the Figures show the fault detection output of the model. 

The model detects the occurrences of faults as demonstrated 

in the detection output, which exhibits spikes that correspond 

with the events displayed in the sensor data, thus attesting to 

the model's performance. 

 

5. Discussion 
The results demonstrate that the hybrid CNN-RNN model 

is highly effective in detecting faults in the NDE of motors. 

The high accuracy, precision, recall, and F1 score indicate that 

the model can reliably identify faults while minimizing the 

occurrence of false alarms. The ROC curve and its high AUC 

value further corroborate the model's strong discriminatory 

power. The confusion matrix reveals that the model has a low 

false positive rate (8 false positives) and low false negative (12 

false negatives). This tells us that the model can distinguish 

between factious and non-factious conditions. This accuracy 

is critical in industrial applications, where false alarms can 

lead to unnecessary maintenance actions, and false negatives 

can result in undetected faults, causing potential motor 

failures. The time-series analysis, therefore, records the time 

taken by the model to detect fault. When compared against the 

raw time series sensor data, outputs were aligned, indicating a 

highly valuable continuous health monitoring system for both 

faults. Again, it is becoming increasingly important for motor 

maintenance and fault prediction to help eliminate downtimes. 

In summary, the findings deem that the redundancy and 

recommended exercise of author defined fault detection 

system using a hybrid CNN-RNN model has established 

reliability, accuracy and time-serial efficacy based on an NDE 

motor diagnostic establishment of pre-fault behaviour in real 

time. Also, the constructed fault detection systems utilize the 

recording process the sensors collect and analyze, providing a 

vital service once implemented to notify potential faults, 

reduce maintenance activity for costs aspects and electrical 

motor fails for catastrophic reasons, and saving business and 

or industry purposes. 

The real-time thorough performance evaluation of the 

constructed system evidences a visible fast and efficient 

delivery system for improved fault detective action; 

completing the cycle of quick delivery of motor fault is 

essential now and can improve industrial contexts where 

downtime occurs. With an average detection time purposely 

set at 50 milliseconds, notification and intervention occur 

sooner, identifying potential faults while incorporating down 

runs in the systems are smooth (or when possible). 

6. Conclusion 
This research developed and assessed a real-time, low-

cost fault diagnostic system for Non-Drive End (NDE) motors 

through the application of neural networks. The results show 

that the application of Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) resulted in a 

high level of efficiency in recognizing faults in NDE motors. 

These models produced an Area Under the Curve (AUC) 

value of 0.98. This reflects the models’ outstanding ability to 

discriminate between fault and non-fault conditions 

effectively. In order to avert unexpected downtime and reduce 

maintenance costs, a real-time detection system is significant.  

Continuous monitoring and instant identification of the 

fault will allow preventive actions to take place, thereby 

reducing the risk of devastating damage to a motor and 

interference in operation. The problem at hand of maximum 

accessible fault detection of industrial motors can be 

addressed by desiring its detection utilizing any low-cost 

sensor and neural networks as a result. This system implies 

that small and medium-sized enterprises with fewer financial 

and human resources may also have access to fault diagnostics 

in ways that they could not afford. 

Future efforts might apply diagnostic capabilities to other 

significant sections of the motor, such as the Drive End or 

bearings, to locate a more expanded diagnostic source. Also, 

the systems being improved to increase robustness through 

advanced architecture and/or ensemble methods may reach a 

level of performance that achieves diagnostic monitoring 

under varied and even difficult environmental conditions.    

Integrating fault diagnostic systems into predictive 

functionality for maintenance might occur as the viability of 

monitoring progress. These strategies may create predictive, 

biased on the operator, data-driven maintenance with greater 

sophistication at any number of added costs, risks to downtime 

affecting operations, or cost of maintenance actions. 
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