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Abstract - This paper explores recent advancements in wind turbine technology, focusing on Diffuser Augmented Wind 

Turbines (DAWTs). It provides a thorough review of the various research studies related to wind turbines equipped with 

diffusers, highlighting both numerical simulations and experimental data. The review categorizes the literature into two main 

areas: studies on the performance and operation of wind turbines with diffuser augmentation and comparative analyses of 

different types of DAWTs. The key parameters of diffuser design, such as length, open-angle, and the effect of flanged versus 

un-flanged configurations, are examined to determine their impact on power output and efficiency. The findings reveal that 

DAWTs significantly enhance wind turbine performance by increasing wind velocity through the rotor plane, surpassing the 

traditional Betz limit. This advancement results in higher power outputs, reduced noise, and improved tolerance to yaw angle 

variations. Despite these advantages, the commercialization of DAWTs faces challenges, including high initial costs, 

maintenance issues, and the complexity of integrating aerodynamic, material, and control system innovations. The paper 

concludes that while DAWTs offer promising improvements in wind energy efficiency, overcoming these challenges through 

innovative design and manufacturing approaches is crucial for their broader adoption in sustainable energy generation. 

Keywords - Diffuser augmented wind turbines, Wind energy efficiency, Aerodynamic optimization, Power output enhancement, 

Small-scale wind. 

1. Introduction  
Recently, there has been a noticeable increase in the 

focus on creating and using renewable energy sources. This 

shift is driven by the urgent need to address the quick 

depletion of fossil fuels, which are finite and increasingly 

scarce. As the availability of this traditional source of energy 

declines, there is a pressing necessity to find sustainable 

alternatives to meet the growing global energy demand. The 

reduction of sources of fossil fuels and the environmental 

impact of their irrational use have spurred increased interest 

in seeking alternatives. This includes developing, renovating, 

adapting, and even hybridizing various renewable. [1-3] and 

non-renewable energy generation sources [4]. The great 

capacity of wind turbine investments has acted as a catalyst 

for a significant influx of resources into the research and 

development of advanced wind turbine technologies. These 

investments are aimed at enhancing the reliability, efficiency, 

and cost-effectiveness of electricity generation through wind 

energy. As a result, there has been a concerted effort to 

innovate and improve various aspects of wind turbine design, 

manufacturing, and operation. COVID-19 has disrupted 

renewable energy construction and traditional sources of 

energy, making one increase investment in renewables and 

seeking chances to increase output and reduce manufacturing 

time. [5]. 

The estimated value of the global wind power potential, 

or WPP, is 94.5 TW. The regions with the largest potential 

are Europe (37.5 TW), Russia (36 TW), and the United States 

(11 TW) [6]. Nonetheless, less-speed winds are the most 

prevalent, according to the European Wind Energy 

Association, with winds being too sluggish to use massive 

wind turbines to produce power around 14% of the time. A 

significant portion of the coastal United States is predicted to 

have a gradual drop in wind energy resources, which might 

make it more difficult to install offshore large-scale wind 

turbines and fully exploit the region's WPP [7]. Furthermore, 

the unpredictability and variability of wind energy provide 

difficulties for power transfer in transmission networks, 

particularly in light of the inadequate grid infrastructure in 

isolated regions and the intrinsic unpredictability of wind. 

The Betz limit limits wind turbine power generation to not 

more than 59.3% of the kinetic energy of the wind. 

Furthermore, there has been a noticeable increase in the focus 

on creating and using renewable energy sources. Hence, even 

a minor rise in incident wind speed leads to a substantial rise 

http://www.internationaljournalssrg.org/
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in the production of energy. Researchers offered creative 

approaches to increase wind turbine power production. 

Numerous techniques exist for enhancing wind turbine 

performance, including modifying the blade design, 

installing tip vanes on the rotor blades, building ducted wind 

turbines with diffusers, shrouds, and concentrators, and 

employing vortex-type augmentation devices. Diffuser 

Augmented Wind Turbines (DAWTs) are one of the most 

often utilized methods to increase power collected because 

they have benefits over other augmentation alternatives. In 

addition to pulling increased mass flow into the wind turbine 

and increasing wind velocity, the diffuser with a flange 

creates an area with low pressure at the outlet through vortex 

generation. An intake-perimeter converging ring-shaped 

shroud characterizes a simple diffuser with a shroud. Better 

airflow through the diffuser is directed by the shroud. The 

shroud generates reduced pressure, increasing wind velocity 

at the entry. The flange and shroud at the intake and exit 

peripheries, respectively, make up the flanged diffuser with 

the shroud. 

However, despite the progress achieved in DAWT, much 

research remains to be done. Most of the available literature 

focuses on isolated design parameters or only on certain 

configurations, while a holistic understanding of how diffuser 

geometry, material innovations, and aerodynamic 

enhancements relate to each other is not well addressed. 

Moreover, the challenges of scaling DAWT designs to make 

them commercially viable and compatible with the existing 

grid structure still need to be addressed. The goal of this paper 

is to fill these gaps by analyzing major factors that influence 

DAWT performance and exploring new solutions to 

overcome barriers against their widespread adoption. 

1.1. Key Terminology in DAWT 

• DAWT: An Augmented Wind Turbine with a diffuser 

design for enhancing wind speed and, therefore power 

output. 

• Diffuser: A casing surrounding the rotor in duct-like 

form to increase the velocity of wind passing through the 

turbine by creating a low-pressure zone. 

• Flange: An edge or ring at the exit of the diffuser 

protruding outwards, enhancing the production of a low-

pressure zone to enhance the speed of wind. 

• Shroud: The cover or covering over the diffuser used to 

straighten airflow while avoiding turbulence. 

• Rotor Plane: A vertical plane swept out by turbine 

blades, from which energy from wind changes into 

mechanical energy. 

• Betz Limit: Theoretically, the maximum efficiency of 

any wind turbine in converting kinetic energy from the 

wind to mechanical energy is 59.3%. 

• Yaw Angle: This is the angle between the wind direction 

and the rotor axis, impacting the turbine's performance. 

• Power Coefficient (Cp): This is the ratio of usable 

mechanical energy obtained from the wind to the kinetic 

energy of the wind. 

• Levelized Cost of Energy (LCOE): Total energy 

production costs spread over a turbine's life, including 

the costs of building, maintenance, and running, and then 

divided by total energy output. 

2. Literature Review 
2.1. Wind Turbine 

An intricate electromechanical device made up of 

several parts and subsystems is a wind turbine. The generator, 

gearbox, mechanical shaft, rotor, bearings, sensors and power 

electronic interface are important parts. Induction generators 

with wound rotors, squirrel-cage induction generators, and 

synchronous generators are among the generator types that 

can be utilized with wind turbines. When wind speed 

fluctuates, the constant operating speed of the squirrel-cage 

induction generator may result in malfunctions. To solve this, 

an adaptive control strategy has been developed to assure the 

dependable functioning of permanent magnet synchronous 

generators under varying conditions; nevertheless, these 

generators necessitate full-scale power converters, which 

raises implementation costs. 

 
Fig. 1 Wind turbine main components [8] 
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Wound rotor induction generators, also known as 

Double-Fed Induction Generators (DFIG), are popular owing 

to their low converter rating, inexpensive cost, capacity to 

manage reactive power and active, minimal losses, and 

excellent efficiency. A large range of variable speeds may be 

operated by DFIGs, in contrast to fixed-speed synchronous 

generators.  
 

The stator terminals of DFIG-based Wind Energy 

Conversion Systems (WECS) feed about 70% of the 

produced power immediately into the grid, with the 

remaining 30% coming from back-to-back converters 

comprised of a DC-link capacitor, rotor side converter, and a 

grid side converter. 
 

Figure 1 illustrates the configuration and power flow 

within a typical wind energy conversion system based on 

DFIG. This arrangement highlights the integration and 

control of different components to efficiently convert wind 

energy into electrical power, ready for grid distribution. 

2.2. Diffuser Augmented Wind Turbine (DAWT) 

By enclosing a wind turbine in a duct or shroud, the 

DAWT technology is presented as a way to amplify its power 

output. To create additional power, the wind velocity is 

increased as it travels through the rotor plane. This design 

makes use of the fact that wind power is exactly related to the 

cube of the wind's free stream velocity. A DAWT can exceed 

the Betz limit by utilizing a diffuser to catch and guide more 

wind into the rotor for a specific turbine diameter and wind 

speed. [9].  
 

In essence, a DAWT's ability to perform better is 

dependent on the mass flow of air through the duct; larger 

improvements may be obtained by lowering the diffuser exit 

back pressure. This innovative approach significantly boosts 

wind turbine efficiency and production by utilizing 

aerodynamic principles. [10]. 
 

One of the most extensively studied and used wind 

turbine types is the DAWT, often referred to as a ducted or 

shrouded wind turbine. Since the turbine has sectional 

circulation, it is housed inside an annular wing, which 

improves mass flow across the rotor. The turbine can now 

produce more power than the Betz limit in terms of both duct-

exit area and rotor thanks to this arrangement. [11].  

DAWTs provide various further benefits. They feature a 

slower cut-in speed and less tip loss. [12] and noise [13], and 

are less sensitive to changes in yaw angle [14, 15]. These 

characteristics make DAWTs suitable for airborne 

applications through which they can harness continuous and 

strong high altitude-wind flows. [16]. DAWTs might also 

efficiently generate wind power even in cities with a bit of 

direction change for their wind directions and rather 

moderate wind speeds, making it suitable for installation on 

this end. [17]. 

 
Fig. 2 Different Types of diffuser (a) Plane diffuser, (b) Plane diffuser 

with inlet shroud, (c) Flanged diffuser, (d) Flanged diffuser with Inlet 

Shroud [18] 

Figure 2 shows some of the different diffuser models 

used in DAWTs and depicts differences in design and their 

implications in aerodynamics. (a) A Plane Diffuser is a 

simple diffuser design with no feature, mainly to ensure that 

airflow enters the rotor with minimum augmentation. (b) A 

Plane Diffuser with an Inlet Shroud has a shroud at the inlet; 

hence, it improves and stabilizes the flow condition in such a 

way that there is a better velocity distribution. (c) Flanged 

diffuser makes use of the flange at the exit, where it creates 

an area of low pressure across the rotor, increasing 

immensely the wind velocity passing through it and thus 

improving the power generated. Lastly, (d) a Flanged 

Diffuser with an Inlet Shroud combines a flange and an inlet 

shroud to optimize pressure differences and airflow control 

for further enhancement of performance. These designs 

indicate that the structural variations play a critical role in 

enhancing the DAWT efficiency and power-producing 

capability, as revealed in this paper. 

2.3. Various Types of Diffuser Shapes 

2.3.1. Rotating Diffusers 

An innovative wind turbine system with revolving 

diffusers that revolve around the turbine's horizontal axis and 

create a rotor cowling has been patented by Anakata Wind 

Power Resources [19] In the UK. This design allows the 

diffuser to move with the rotor's rotation and includes 

features like slot gaps for airflow and guide vanes to reduce 

airflow twists. Rated at 370W at 12.5m/s wind speed, the 

0.85m diameter A007 model is constructed from lightweight, 

long-lasting materials. While this design aims to reduce 

vibrations, the effects on aerodynamic drag and rotor RPM 

are still uncertain. 

2.3.2. Multiple-Slotted Diffusers 

By employing high-lift aerofoil diffuser rings, this 

method seeks to restore external airflow into the turbine's 

wake and reenergize the boundary layer along the diffuser's 
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inner surface, leading to lower pressure distribution and 

increased air mass flow [20, 21]. Wood patented a DAWT in 

2014 that uses diffuser rings to create a larger outlet area and 

slots for air bleeding, creating a suction effect. Slots are 

formed with diffuser rings. Airflow is facilitated by pre-

rotation vanes, which are fixed to the rotor. By using more 

slots, you may minimize the amount of material and weight 

by decreasing the diffuser's length-to-diameter ratio. 

2.3.3. The Simple Diffuser 

Different diffuser types depend on several important 

parameters. These include the diffuser's cross-sectional 

profile, which can differ between aerofoil shapes or constant 

thickness designs. Other important factors are adjustments in 

the area ratio (the diffuser's cross-sectional area at the inlet 

divided by its output), the length-to-diameter ratio (The ratio 

of the diffuser's length to its diameter), and the overall 

diameter of the diffuser itself. For example, features a design 

where the inlet converges or narrows down before expanding 

outward into a diverging outlet. This implies that the 

diffuser's cross-sectional area grows as the airflow progresses 

through it. In this design, the rotor is positioned at the 

smallest diameter of the diffuser, which is typically at the 

inlet. This configuration helps manage the airflow efficiently 

and optimizes the diffuser's performance by directing the air 

through its varying cross-sectional profile. 

2.3.4. Brim and Flange Technology 

The "Wind-lens Technology"  [22, 23] was created by 

Japanese researchers Ohya and Karasudani [24] At Kyushu 

University. Initially, they planned to incorporate a 5kW 

upwind "compact acceleration structure" (compact brimmed 

diffuser) to address issues including high weights of the 

structure and wind loads in a 500W DAWT. The Ciii type 

proved to be the most efficient 'compact' shape in the tests 

conducted to determine the best shape; it produced 2.6 times 

the power of a comparable naked turbine. Brim-based yaw 

control is included in the Wind-Lens technology, allowing for 

automatic correction to wind direction changes.  

 

The compact design has proven successful in lowering 

structural loads and increasing rotor rotational efficiency. 

Power augmentations with this technique typically vary 

between 2 and 3 times the baseline. Utilizing single- and 

multiple-stage ejector systems designed to exceed the Betz 

limit is the basis of the mixer ejector technology. Walter et 

al. [25] Curved intake, rotating blades, stator vanes, and a 

mixer/ejector pump were all incorporated inside a shroud. 

This design seeks to improve the turbine's flow capacity by 

blending the low-energy outflow, whereas the high-energy 

wind stream enters via a secondary aperture. This method is 

expected to increase power output by three to four times that 

of an equal bare turbine. Such enhancements are predicted to 

greatly increase wind farm output, perhaps doubling it, while 

also making it ideal for urban areas due to its safety and 

reduced noise. 

2.3.5. Vorticity-Based Turbines 

DAWT technology uses vorticity, which measures the 

curving of velocity profiles and local fluid rotation, to 

decrease air pressure in the diffuser's wake, raising the 

pressure difference and pulling in additional air. Because of 

the fluctuating wind conditions, achieving a laminar flow 

profile is desirable yet challenging. Early studies by Okhio et 

al. [26] Investigated swirl rotation effects to reduce flow 

division in a diffuser with a large angle, finding that optimal 

swirl could reduce losses by 60%. However, excessive swirl 

led to additional losses due to re-circulating zones. Mariotti 

et al. [27] Examined many local recirculations to boost the 

diffuser's effectiveness, testing diffusers with different 

divergence angles. They found that smaller angles kept flow 

attached to the walls, while larger angles caused flow 

separation. Introducing optimal cavities enhanced pressure 

recovery and reduced momentum losses, resulting in a 25% 

increase in power coefficients. 

2.3.6. Mixer Ejector Wind Turbines 

Mixer ejector technology, which employs both single- 

and multiple-stage ejector systems, is intended to exceed the 

Betz limitation. Walter et al. [25] Constructed a shroud with 

rotating blades, a mixer/ejector pump, stator vanes, and a 

curved intake. This layout tries to raise the turbine's flow 

volume by combining the poor energy flow with the high-

energy wind flow arriving through a second-stage slot. This 

method is expected to increase power output by three to four 

times that of an equal bare turbine. Such enhancements are 

predicted to greatly increase wind farm output, perhaps 

doubling it, while also making it ideal for urban areas due to 

its safety and reduced noise. 

2.4. Comparative Studies on Diffusers Augmented Wind 

Turbines 

Rahmatian et al. [28] Optimized a DAWT with 

convergent-divergent ducts in terms of the single objective 

through the two-dimensional CFD model, RSM and GA. 

They analyzed 79 geometrical models and simulation results 

to optimize the geometry of the duct with a maximum 

velocity at the duct throat as the objective function. An 

increase of optimized DAWT in the wind speed was by a 

factor of 2.18 times, and the power coefficient was by a factor 

of 3.94 times. The presence of a duct may help minimize 

noise resulting from the rotor. Shambira et al. [29] Applied 

RSM and a two-dimensional CFD model for developing and 

optimizing a DAWT that incorporates a concentrator at its 

inlet without a rotor. They observed that the throat velocity is 

extremely sensitive to the concentrator and diffuser length 

variations and increased the inlet wind speed at the throat 

position of the duct by 1.953 folds.
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Table 1. Comparative studies on diffusers augmented wind turbine

Author 
Diffuser 

Parameters 
Diffuser Shapes 

Increase in Output 

Power 

Investigation 

Method 

Ohya et al. 

[24] 

D/h = 0.05 – 0.2 

D = 1020 mm 

Lt = 0.225D, 

1.47D and 

0.221D 

 

 
 

2–5 times Experiment 

Kishore et al 

[30] 

L1 = 0.125D 

θ2 = D 10◦ 

θ1 = 15◦ 

L2 = 0.125D 

 

 
 

1.4-1.6 times 

Simulation 

(Fluent) and 

Experiment 

Mansour et al. 

[31] 

θ = 4◦ 

D/h = 0 – 0.5D 

D/L = 1.5 

 

 

 
 

4 times Numerical 

El-Zahaby et 

al. 

[32] 

D1 = 6 cm 

L = 9 cm 

h = 1.5 cm 

D2 = 7 cm 

θ = -25◦ – 25◦ 

 

1.953 times 
Simulation 

 

Gilbert et al. 

[33] 

angle 

60◦ 
Conical diffuser 4.25 times Experiment 

Matsushima 

et al. 

[34] 

L = 2–4 m 

D = 1 m 

θ = 0◦ – 12◦ 

T = 0.1–0.5 m 

 

 

 
 

2.4 times 
Simulations 

and experiment 

A. Tourlidakis 

et al. 

[35] 

θ = 1.65◦ 

L = 4.8 m 
Diffuser without, within the flange 

Flanged diffusers can 

increase power 

coefficients by up to 

3 times 

Simulation 
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Ohya et al. 

[36] 

L = 1.25D & 

0.137D 

D = 600 mm & 

1020 mm 

h = 0.5D and 

0.1Dvz 

Lt = 1.5D & 

0.225D 

θ = 12◦ 

 
 

An increase in the flow 

rate over the throat 

Experiment 

and 

simulation 

 

Jafari et al. 

[37] 

D/L = 0.1 – 0.4 

D/H = 0.025 – 

0.35 

 

 

 
 

A greater power 

coefficient was 

noted. 

Simulations 

B. Ahmed et 

al. 

[38] 

θ = 2◦ 

L = 0.12 m 
Flanged diffuser 

Upstream wind speed 

may reach 154%, 

and power can 

increase by 3.65 

times with flanged 

diffusers. 

Simulation 

Abe et al. 

[39] 

D/L = 1.25 

φ = 12◦ 

D/h = 0.5 

 

 

 
 

4 times 
Numerical & 

Experiment 

Wang et al. 

[40] 

 

Length = 0.915 

m 

D central part is 

0.613 meters. 

D entrance = 

0.917 m. 

 

 
 

2.2 times 
Simulation and 

experiment 
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Ohya et al. 

[17] 

D/L = 1.25 

D/h = 0.5 

φ = 4◦ − 12◦ 

 
 

4-5 times Experiment 

Chen et al. 

[41] 

h = 3 cm 

L = 10 cm 

diffusion angle 

= 30◦ 

 

 
 

increased (varying) 

coefficient of power 
Experiment 

Abe et al. 

[42] 

D/L = 1.5 

φ = 4◦ 

D/h = 0-0.5 

 

 
 

increased (varying) 

coefficient of power 
Numerical 

K Mansour et 

al. 

[31] 

θ = 1.2◦ 

L = 0.2 m 

 

Inlet-shrouded Flanged Diffuser 

Intake shroud-

equipped flanged 

diffusers can 

increase upstream 

wind speed by up to 

1.6 times. 

Simulations 

2.5. Why is DAWT not used or Commercialized in the 

Market? 

Numerous noteworthy obstacles confront small-scale 

wind power generation. Because of changes in wind patterns 

and small-scale turbine inefficiencies, its performance has 

historically been erratic and frequently falls short of 

anticipated outputs. Furthermore, small wind systems often 

have a high Levelized Cost of Energy (LCOE) [43]. This 

indicator, which calculates the average cost of power 

generation during a turbine's lifetime, is nonetheless 

significant because of the high initial outlay of funds, 

ongoing maintenance costs, and lower energy outputs in 

comparison to bigger wind plants. The introduction of small 

wind turbines is further complicated by concerns about noise 

and safety. [44]. Mechanical breakdowns and accidents 

provide a safety risk, particularly in residential or urban 

contexts. The noise produced by the turbines can also be a 

considerable disincentive, affecting surrounding inhabitants 

and wildlife. Some of these problems may be resolved with 

the use of DAWTs. They have the potential to produce much 

more power by adding a diffuser. [45], which is a device that 

improves the flow of wind through the turbine. This increased 

effectiveness may result in a decreased LCOE, increasing the 

technology's viability from an economic standpoint. 

However, significant difficulties remain in the way of 

commercialization. [46]. 

The design and operation of a small wind turbine is an 

intricate interdisciplinary system that involves several critical 

components. [47], each contributing to the overall 

functionality and efficiency of the turbine. Aerodynamics 

plays a pivotal role in the performance of wind turbines. [48]. 

The shape and design of the turbine blades must be optimized 

to capture the maximum amount of wind energy and convert 

it into rotational energy efficiently. [49]. This involves 

understanding the complex fluid dynamics of airflow over the 

blades, minimizing turbulence, and maximizing lift while 

reducing drag. Electrical control systems are also considered 

major management tools in managing the conversion from 

mechanical energy into electricity. Such systems will range 
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from generators and inverters to controllers that ensure 

proper running efficiency and safety under any varying wind 

conditions. Also, important advanced algorithms in the 

control systems aim to optimize the turbine, as it will alter the 

blade pitch, yawing the turbine based on the direction of the 

wind at all times. Material science is an important factor in 

making the components of a small wind turbine. [50].  

Materials to be used in blades, towers, and other structural 

components must be light, tough, and fatigue- and 

environment-resistant; they must withstand corrosion and 

UV degradation. [51]. Innovations in composite materials 

and coatings can enhance the longevity and performance of 

these components. Supply chains for manufacturing are 

another critical aspect of small wind turbines. [52]. The 

production process involves sourcing high-quality materials 

and components, maintaining cost efficiency, and ensuring 

the reliability of the supply chain.  
 

Manufacturing techniques must be precise to meet the 

stringent quality standards required for turbine components, 

and the entire supply chain must be coordinated to handle the 

low production volumes typical of small wind turbines. 

Commercial operations encompass the business aspects of 

deploying and maintaining small wind turbines. This includes 

marketing, sales, installation, and after-sales service. 

Companies will need to deal with regulatory approvals, 

customer relationship management, and providing continued 

maintenance and support so that the turbines operate 

optimally throughout their operational life. Proper 

commercial operations are crucial to reaching financial 

viability and customer satisfaction. The supply chain for 

manufacturing small wind turbines is a challenging one since 

the materials are costlier, the production process is more 

complex, and the economies of scale are limited by low 

volumes. Expensive materials are the most significant 

challenge. 
 

The components of small wind turbines - blades, towers, 

or any others - require sophisticated composite material that 

is as light yet strong enough to fight the turbulence of the 

environment. These are expensive materials, very costly 

which increases the costs of production. Complicated 

production also adds more complexity. Advanced techniques 

of great precision are required to manufacture the precise 

aerodynamic shapes of turbine blades, incorporate electrical 

control systems, and ensure the structural integrity of the 

turbine.  
 

Such complex processes involve huge man-hours and 

technological investments that raise costs. Small wind 

turbines face a problem of volume at low cost. Their number 

of productions is far smaller compared to large utility-scale 

turbines. This is a lack of mass production, meaning that 

manufacturers cannot reap the cost reduction typically 

associated with higher volumes of production. Consequently, 

the per-unit cost is high, and price competitiveness in the 

market becomes challenging to achieve. 

There are several obstacles in the way of small wind 

turbine marketing channels, especially when it comes to 

controlling the time costs associated with deal closure and 

striking a balance between transactional and enterprise sales. 

Small-scale or individual transactions are the norm for 

transactional sales, which may be completed more quickly 

but frequently result in lesser income per sale. To properly 

manage larger amounts of smaller sales, these transactions 

need a simplified procedure. On the other hand, enterprise 

sales entail bigger, trickier agreements with companies or 

groups; although they might provide more profits, they also 

need a lot of time and resources. Large-scale discussions, 

specialized solutions, and protracted sales cycles are 

frequently needed for enterprise sales. Small wind turbines 

have specialized uses in remote monitoring, 

telecommunications, mining, and agriculture. A 200 W 

device was developed, constructed, installed, and tested at the 

client's remote telecommunications location. 

Table 2. Challenges and future scope 

Challenges Future Scope 

Turbulence and 

Site Selection 

Detailed site assessments, 

improved wind speed and 

direction prediction methods, 

and turbulence intensity 

studies. 

Scale and 

Performance 

Optimization of blade designs for 

small scales, use of efficient 

airfoils, and advancements in 

aerodynamic modelling. 

Noise and 

Vibration 

Advanced blade profiles, 

improved gearbox 

arrangements, and improved 

vibration-damping methods. 

Grid Integration 

and Power 

Quality 

Development of power 

conditioning systems, 

advanced control algorithms 

and energy storage solutions. 

Maintenance 

Implementation of remote 

monitoring systems, 

development of robust service 

networks, and consistent 

maintenance practices. 

Cost and 

Affordability 

Advances in manufacturing 

processes, government 

subsidies, and improved 

market competitiveness. 

Durability 

Use of durable materials, robust 

component designs, and 

adherence to proper 

maintenance practices. 

Environmental 

Impact and 

Visual 

Aesthetics 

Comprehensive environmental 

impact assessments, 

community interactions, and 

advancements in turbine design 

to reduce visual impact 
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3. Discussion 
This paper provides a comprehensive review of prior 

research in wind energy, focusing specifically on diffuser 

augmentation. The literature on this topic was categorized 

into two main groups: the first group covered studies on wind 

turbines with diffuser augmentation, while the second group 

focused on comparative analyses of various Diffuser 

Augmented Wind Turbine (DAWT) challenges and future 

solutions. The review encompasses numerical simulations, 

experimental data, and theoretical analyses of diffuser-

augmented wind turbines. Additionally, it offers a detailed 

examination of diffuser parameters, power output 

improvements, and investigation methods, as summarized in 

Table 1. Key parameters such as diffuser length and the 

diffuser's open angle were analyzed. The study concludes that 

recent research shows a consensus that DAWTs offer 

superior advantages over other augmentation solutions, 

particularly in generating power that exceeds the Betz limit. 

This enhancement is attributed to the increased small distance 

between the blade tips and the diffuser wall, which allows the 

turbine to be positioned near the diffuser's intake, resulting in 

upstream wind velocity. DAWTs are effective for micro and 

small wind turbines in both rural and urban settings because 

they do not require high elevation. Diffuser shapes with the 

proper exit-to-inlet area ratio, and open-angle are used to 

maximize their effectiveness. Furthermore, flange diffusers 

outperform un-flanged diffusers by generating vortices 

behind the flange, which Improves pressure differences 

downstream and boosts mass flow via the rotor. The flange 

also helps to detect flow direction, especially when the 

turbine has a yaw mechanism. 

The study underlines the contribution of the geometry of 

diffusers toward achieving the said gains. Numerical 

simulation and experimental results have been used to show 

that the optimum configuration is vital, for instance, the 

length-to-diameter ratio of 1.5 and open-angle about 12°, to 

optimize performance. Further, inventions like multiple-

slotted diffusers and brim-based designs have the promise to 

minimize material costs at high efficiency. Power 

coefficients increased up to 4.25 times in some instances. 

Despite these developments, several challenges remain. 

DAWTs have issues with scaling, high initial costs, and 

material durability. For example, while urban applications 

benefit from DAWTs' reduced noise and flexibility to lower 

wind speeds, the added complexity of the integration of 

advanced materials, such as composites and lightweight 

structures, increases the cost of production. This sensitivity 

to environmental conditions, such as turbulence and 

fluctuating wind conditions, highlights the need for enhanced 

predictive modelling and control algorithms. Critical 

discoveries here are the trade-off of performance with ease of 

implementation. Designs such as the mixer ejector turbine 

will give power increases up to 4 times the base. However, 

its complicated form of construction and maintenance are 

highly limiting factors in commercializing such designs. 

Integration with the existing energy grids would also be 

challenging due to their varying output, thus demanding 

changes in power conditioning systems and energy storage 

solutions. All the above-mentioned quantitative 

improvements observed in the performance of DAWT make 

it an interesting subject for further study. In that light, with 

proper solutions for technical and economic challenges 

observed here, DAWTs would certainly change small-scale, 

decentralized wind energy systems for renewable energy 

generation. 

4. Conclusion 
The advancement of wind turbine technology, 

particularly through innovations such as Diffuser Augmented 

Wind Turbines (DAWTs), presents significant opportunities 

for enhancing the efficacy and viability of small-scale wind 

power generation. This complexity and potential of the 

systems have been further underscored by the comprehensive 

analysis of various wind turbine components and subsystems, 

including the comparison between different types of 

generators and their operational characteristics. The design of 

DAWT, which has a unique approach of increasing the 

velocity of wind through the rotor plane using aerodynamic 

principles, is quite promising in surpassing the traditional 

Betz limit and achieving higher power outputs. 

The studies reviewed have shown that, on the positive 

side, DAWTs are more powerful as compared to 

conventional technology, produce less noise than 

conventional wind turbines, and have a lower sensitivity 

concerning changes in yaw angle, hence applicable in urban 

and airborne setups. Despite these advantages, the 

commercialization of DAWTs and that of small wind 

turbines generally entails some challenges. The issues are the 

high initial costs, operating expenses, noise, safety, and 

maintenance. There are additional, intricate, interdisciplinary 

aspects to the turbine design process, including 

aerodynamics, material science, electrical control systems, 

and supply chain management, that further complicate 

widespread adoption. However, the prospects for DAWTs' 

improving efficiency and reducing LCOE are compelling 

enough for more research and development. Overcoming 

these existing challenges will require innovative solutions in 

design, manufacturing, and marketing strategies. In that 

sense, the concerns listed could be met, and DAWTs could 

be made to turn out cost-effective for the decentralized 

generation of wind energy with input in the area of 

sustainable energy. 

Future work in DAWTs would focus on diffuser designs 

for optimal power output while keeping the material costs and 

production complexities at their lowest. Also, there is an area 

of integration of advanced materials like composites and 

lightweight structures, which would be used to further 

improve the efficiency and durability of DAWTs. Further 

research on hybrid systems where DAWTs are combined 
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with other renewable energy technologies will open up more 

versatile and resilient energy generation solutions. Improved 

predictive models for the performance of turbines under 

changing environmental conditions will help refine the 

operational efficiency of DAWTs. In addition, overcoming 

the scalability challenges posed by large-scale deployment in 

offshore and remote locations is critical to the commercial 

success of DAWTs. Last but not least, research on socio-

economic impacts and cost-benefit analyses of DAWTs in 

different regions is very important to guide the integration of 

DAWTs into the global energy market. 
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