Transformation of a piston engine into a compressed air engine with rotary valve

International Journal of Mechanical Engineering
© 2016 by SSRG - IJME Journal
Volume 3 Issue 11
Year of Publication : 2016
Authors : M. Akif Kunt
pdf
How to Cite?

M. Akif Kunt, "Transformation of a piston engine into a compressed air engine with rotary valve," SSRG International Journal of Mechanical Engineering, vol. 3,  no. 11, pp. 1-5, 2016. Crossref, https://doi.org/10.14445/23488360/IJME-V3I11P101

Abstract:

Compressed air engines, compressed air using piston-cylinder engine mechanism design is an alternative that can be obtained on the job. In this study, a four cycle- single cylinder, internal combustion engine has been transformed into a pneumatic engine with rotary valve operating according to two cycle engine principle due to per unit time more power. Performance tests made of fixed working pressure, different engine loads in exhaust valve timing ExOA 20°. At the ExOA 20o exhaust valve timing 25 bar working pressure, engine speed of 800 rpm were obtained 17.28 Nm engine torque, 1.48 kW engine power and maximum motor efficiency 24.42%.

Keywords:

compressed air engine, low emission engines, air-breathing engines, two-stroke engines

References:

[1] Plummer MC.,Ordonez CA., Reidy RF., -A Rewiew of Liquid Nitrogen Propelled Vehicle Programs in the USA, Bulletin of the Kharkov National Automobile and Highway University, Ukraina, 2000, Vol. 12, 13. P. 47-52.
[2] Turenko AN., Pyatak AI., Kudryavtsev IN., Timchenko II., Jadan PV., -Ecologically Clean Cryogenic Transport: Modern State of Problem, Ukraina, 2000, Automobile Transport Vol. 12, 13. P. 42-47.
[3] Turenko AN., Pyatak AI., Kudryavtsev IN., Timchenko II., Jadan PV., -Pneumatic Power Plants for Ecologically Clean Transport Vehicles, Ukaina, Automobile Transport 2001, Vol. 7. 8. P. 193-197.
[4] Bogomolov VA., Kudryavtsev IN., Pyatak AI., Bondarenko SI. Plummer MC., -Development of The New Croyogenic Technologies for Prospective Kinds of Automobile Transport, Ukraina, Automobile Transport, 2003, Vol. 12. P. 5-7.
[5] Kudryavtsev IN., Kulik AP., Plummer MC., Pyatak I., Tochtar, GI., -Croyogenic Vehicle-Nonpolluting Vehicle for Cities, Int. Conf., Trasport Ecology-stable Development, ECO VARNA, Varna, Bulgaria, May 15-17, 2003.
[6] Martin HR., Mcloy D., -The Control of Fluid Power, London, 1-187 (1973).
[7] Pandian SR., -Control Performance of an Air Motor, International Conference on Robotics and Automation, Detroit, 518-524, (1999).
[8] Guy N., Cyril N., -Compressed Air—the Most Sustainable Energy Carrier for Community Vehicles, Speech in front of assembly at Kultur gathered for Fuel CellsWorld 2004.
[9] Saint Hilaire G., Saint Hilaire R., Saint Hilaire Y., -Quasiturbine Zero Pollution Car Using Gasoline, Festival at Le Lundi, Montreal Gazette, September 2005.
[10] Singh BR. Singh O., -Development of a Vaned Type Novel Air Turbine, International Journal of Mechanical Engineering.
[11] Higelin P., Vasile I., Charlet A., Chamaillard Y., -Parametric Optimization of Hybrid Pneumatic–Combustion Engine Concept, Int. J. Eng. Res., 5 (2):205–217 (2003).
[12] Badr O., O’Callaghan PW., Hussein M., Probert SD., -Multi-Vane Expanders as Prime Movers for Low-grade Energy Organic Rankine-Cycle Engines, Applied Energy, 16(2): 129–146 (1984).
[13] Badr O., O’Callaghan PW., Probert SD., -Multi-Vane Expander Performance: Breathing Characteristics, Applied Energy, 19(4): 241–271 (1985).
[14] Badr O., Probert SD., O’Callaghan P.W., -Multi-Vane Expanders: Vane Dynamics and Friction Losses, Applied Energy, 20(4): 253–285 (1985).
[15] Badr O., O’Callaghan PW., Probert SD., -Multi-Vane Expanders: Geometry and Vane Kinematics, Applied Energy, 19(3): 159–182 (1985).
[16] Badr O., Probert SD., O’Callaghan PW., -Multi-Vane Expanders: Internal-Leakage Losses, Applied Energy, 20(1): 1–46 (1985).
[17] Badr O., Probert SD., O’Callaghan PW., -Performances of Multi-Vane Expanders, Applied Energy, 20(3): 207–234 (1985).
[18] Badr O., Probert SD., O’Callaghan PW., -Influences of Vane Design and Lubricant on a Multi-Vane Expander’s Performance, Applied Energy, 22(4): 271–298 (1986).
[19] Badr O., Probert SD., O’Callaghan PW., -Optimal Design and Operating Conditions for a Multi-Vane Expander, Applied Energy, 24(1): 1–27 (1986).
[20] Badr O., Probert D., O’Callaghan PW., -Selection of Operating Conditions and Optimisation of Design Parameters for Multi-Vane Expanders, Applied Energy, 23(1): 1–46 (1986).
[21] Van Antwerpen HJ., Greyvenstein GP., -Use of Turbines for Simultaneous Pressure Regulation and Recovery in Secondary Cooling Water Systems in Deep Mines, Energy Conversion and Management, 46(4): 563–575 (2005).
[22] Wei D., Lu X., Lu Z., Gu J., -Performance Analysis and Optimization of Organic Rankine Cycle (ORC) for Waste Heat Recovery, Energy Conversion and Management, 48(4): 1113–1119 (2007).
[23] Tournier JM., El-Genk MS., -Axial Flow, Multi-Stage Turbine and Compressor Models, Energy Conversion and Management, 51(1): 16–29 (2010).
[24] Yang B., Peng X., He Z., Guo B., Xing Z., -Experimental Investigation on the Internal Working Process of a CO2 Rotary Vane expander, Applied Thermal Engineering, 29(11-12): 2289–2296 (2009).
[25] Nickl J., Will G., Quack H., Kraus WE., -Integration of a Three-Stage Expander into a CO2 Refrigeration System, International Journal of Refrigeration, 28(8): 1219–1224 (2005).
[26] Subiantoro A., Ooi KT., -Analytical Study of the Endface Friction of the revolving Vane Mechanism, International Journal of Refrigeration, 34(5): 1276–1285 (2011).
[27] Shen YT., Hwang YR., -Design and Implementation of an Air-Powered Motorcycles, Applied Energy, 86(7-8): 1105– 1110 (2009).
[28] Huang K.D., Quang, KV., Tseng, K.T., -Study of Recycling Exhaust Gas Energy of Hybrid Pneumatic Power System with CFD, Energy Converstion Management., 1271-1278 (2009).
[29] Motor Development International (MDI) Home Page. Available online: http://www.mdi.lu/english/index.php (accessed on 8 March 2013)
[30] Koca A, Bayındır R, Gunes H, Kunt MA, Sakar S., -Design and Application of Electromagnetic Solenoid for Valve Mechanism on Compressed Air Engines, J Fac Eng Arch Gazi Univ, 26:73-79 (2011).
[31] Güneş, H., -Bir pnömatik motor kontrol sisteminin teorik ve deneysel analizi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitisü, Ankara 21-25 (2012).