Finite Element Based Vibration Analysis of an Axially Functionally Graded Nonprismatic Beam
International Journal of Mechanical Engineering |
© 2018 by SSRG - IJME Journal |
Volume 5 Issue 1 |
Year of Publication : 2018 |
Authors : Deepak Ranjan Biswal, Alok Ranjan Biswal, Rashmi Ranjan Senapati |
How to Cite?
Deepak Ranjan Biswal, Alok Ranjan Biswal, Rashmi Ranjan Senapati, "Finite Element Based Vibration Analysis of an Axially Functionally Graded Nonprismatic Beam," SSRG International Journal of Mechanical Engineering, vol. 5, no. 1, pp. 8-13, 2018. Crossref, https://doi.org/10.14445/23488360/IJME-V5I1P102
Abstract:
The present paper deals with vibration analysis of an axially functionally graded non-prismatic beam using the finite element method. A two noded beam element with two degrees of freedom at each node has been considered for the analysis. The varying cross-sectional dimensions with mechanical properties of functionally graded materials have been included in evaluating matrices of structural parts. A polynomial distribution of mass density and modulus of elasticity is assumed in the present study. The convergence study has been carried out with the existing available results.
Keywords:
Finite element analysis, Axially FG beam, Nonprismatic beam.
References:
[1] A. Chakraborty, S. Gopalakrishnan, J. Reddy, A new beam finite element for analyzing functionally graded materials, International Journal of Mechanical Sciences, 45 (2003) 519-539.
[2] L.-L. Ke, J. Yang, S. Kitipornchai, Y. Xiang, Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials, Mechanics of Advanced Materials and Structures, 16 (2009) 488-502.
[3] M. Benatta, A. Tounsi, I. Mechab, M.B. Bouiadjra, Mathematical solution for bending short hybrid composite beams with variable fibers spacing, Applied Mathematics and Computation, 212 (2009) 337-348.
[4] S. Sina, H. Navazi, H. Haddadpour, An analytical method for free vibration analysis of functionally graded beams, Materials & Design, 30 (2009) 741-747.
[5] S. Candan, I. Elishakoff, Constructing the axial stiffness of longitudinally vibrating rod from fundamental mode shape, International Journal of Solids and Structures, 38 (2001) 3443-3452.
[6] Z. Guédé, I. Elishakoff, A fifth-order polynomial that serves as both buckling and vibration mode of an inhomogeneous structure, Chaos, Solitons & Fractals, 12 (2001) 1267-1298.
[7] V. J. K. Silpa, B. V. S. Raghu Vamsi, K. Gowtham Kumar, "Structural Analysis of thin isotropic and orthotropic plates using finite element analysis" SSRG International Journal of Mechanical Engineering 4.6 (2017): 13-24.
[8] S. Mohanty, Free vibration analysis of a pretwisted functionally graded material cantilever Timoshenko beam, (2012).
[9] H. Yaghoobi, A. Fereidoon, Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load, World Applied Sciences Journal, 10 (2010) 337-341.
[10] M. Aydogdu, V. Taskin, Free vibration analysis of functionally graded beams with simply supported edges, Materials &Design, 28 (2007) 1651-1656.
[11] M. Rafiee, H. Kalhori, S. Mareishi, Nonlinear resonance analysis of clamped functionally graded beams, in 16th International Conference on Composite Structures, 2011.
[12] P. Laura, B.V. De Greco, J. Utjes, R. Carnicer, Numerical experiments on free and forced vibrations of beams of non-uniform cross-section, Journal of sound and vibration, 120 (1988) 587-596.
[13] S. Abrate, Vibration of non-uniform rods and beams, Journal of sound and vibration, 185 (1995) 703-716.
[14] Amol Chougule, S. B. Tuljapure "Finite Element Analysis of Web Type Flywheel Made of Composite Material," International Journal of Engineering Trends and Technology (IJETT), V46(3),169-173 April 2017.
[15] K.V. Singh, G. Li, S.-S. Pang, Free vibration, and physical parameter identification of non-uniform composite beams, Composite structures, 74 (2006) 37-50.
[16] S. Nachum, E. Altus, Natural frequencies and mode shapes of deterministic and stochastic nonhomogeneous rods and beams, Journal of Sound and Vibration, 302 (2007) 903-924.
[17] A. Shahba, S. Rajasekaran, Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials, Applied Mathematical Modelling, 36 (2012) 3094-3111.
[18] M. Aydogdu, Semi-inverse method for vibration and buckling of axially functionally graded beams, Journal of Reinforced Plastics and Composites, 27 (2008) 683-691.
[19] H. Mabie, C. Rogers, Transverse vibrations of tapered cantilever beams with end loads, The Journal of the Acoustical Society of America, 36 (1964) 463-469.