Research Paper on Advanced Material used in Solar Panel - Perovskite, A organic, Inorganic and Halide Compound

International Journal of Mechanical Engineering
© 2019 by SSRG - IJME Journal
Volume 6 Issue 6
Year of Publication : 2019
Authors : Ankur Kumar Bansal, Dr.Mukesh Kumar, Dinesh Kumar
pdf
How to Cite?

Ankur Kumar Bansal, Dr.Mukesh Kumar, Dinesh Kumar, "Research Paper on Advanced Material used in Solar Panel - Perovskite, A organic, Inorganic and Halide Compound," SSRG International Journal of Mechanical Engineering, vol. 6,  no. 6, pp. 48-55, 2019. Crossref, https://doi.org/10.14445/23488360/IJME-V6I6P109

Abstract:

Solar energy becomes an essential requirement in present days. It is very important energy resource in the aspect of environment safety, simplicity and availability. Solar energy is widely using this time all over the world and India is a country which is leading in use of this [1]. The main drawback of solar energy is high initial cost, low efficiency (PCE) and lack of disposal methods [2]. These drawbacks are regularly overcome by researches in this field. These drawbacks suggest is to bring the use of such materials which gives a high PCE at low cost. While selecting the suitable material for PC its hazardous effect on environment should also keep in mind.

Keywords:

Put your keywords here, keywords are separated by comma.

References:

[1] https://energy.economictimes.indiatimes.com/news/renewable/india-becomes-lowest-cost-producer-of-solar-power/69565769
[2] https://www.greenmatch.co.uk/blog/2014/08/5-advantages-and-5-disadvantages-of-solar-energy
[3] https://en.wikipedia.org/wiki/Edmond_Becquerel
[4] Yadav, A. and Kumar, P. (2015) Enhancement in Efficiency of PV Cell through P&O Algorithm. International Jour-nal for Technological Research in Engineering, 2, 2642-2644
[5] Castellano, R. (2010) Solar Panel Processing. Old City Publishing Inc., Philadelphia.
[6] Srinivas, B., Balaji, S., Nagendra Babu, M. and Reddy, Y.S. (2015) Review on Present and Advance Materials for So-lar Cells. International Journal of Engineering Research-Online, 3, 178-182
[7] McEvoy, A., Castaner, L. and Markvart, T. (2012) Solar Cells: Materials, Manufacture and Operation. 2nd Edition, Elsevier Ltd., Oxford, 3-25.
[8] Fahrenbruch, A.L. and Bube, R.H. (1983) Fundamentals of Solar Cells. Academic Press Inc., New York.
[9] (2015-2016) Energy from the Sun, Student Guide. National Energy Education Development Project (NEED).
[10] Grisham, L.R. (2008) Nuclear Fusion in: Future Energy, Improved, Sustainable and Clean Options for our Planet, Edited by Trevor M. Letcher, 2nd Edition, Elsevier Ltd., Amsterdam, 291-301.
[11] [11] Bertolli, M. (2008) Solar Cell Materials. Course: Solid State II. Department of Physics, University of Tennessee, Knoxville
[12] Bagher, A.M., Vahid, M.M.A. and Mohsen, M. (2015) Types of Solar Cells and Application. American Journal of Op-tics and Photonics, 3, 94-113.
[13] https://en.wikipedia.org/wiki/Perovskite_solar_cell
[14] Dmitrijev, S. (2006) Principles of Semiconductor Devices. Oxford University Press, Oxford.
[15] Saga, T. (2010) Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Ma-terials, 2, 96-102. http://dx.doi.org/10.1038/asiamat.2010.82
[16] Chopra, K.L., Paulson, P.D. and Dutt, V. (2004) Thin-Film Solar Cells: An Overview. Progress in Photovoltaics, 12, 69-92. http://dx.doi.org/10.1002/pip.541
[17] Imamzai, M., Aghaei, M., Hanum Md Thayoob, Y. and Forouzanfar, M. (2012) A Review on Comparison between Traditional Silicon Solar Cells and Thin-Film CdTe Solar Cells. Proceedings of National Graduate Conference (Nat-Grad 2012), Tenaga Nasional Universiti, Putrajaya Campus, 8-10 November 2012, 1-5.
[18] Luque, A. and Hegedus, S. (2003) Handbook of Photovoltaic Science and Engineering. 2nd Edition, John Wiley & Sons, Ltd., Hoboken. http://dx.doi.org/10.1002/0470014008
[19] Elsabawy, K.M., El-Hawary, W.F. and Refat, M.S. (2012) Advanced Synthesis of Titanium-Doped-Tellerium-Camium Mixtures for High Performance Solar Cell Applications as One of Renewable Source of Energy. International Journal of Chemical Sciences, 10, 1869-1879
[20] Wudl, F. and Srdanov, G. (1993) Conducting Polymer Formed of Poly (2-Methoxy-5-(2’-Ethylhexyloxy)-P-Phenylene Vinylene). US Patent 5,189,136.
[21] Srinivas, B., Balaji, S., Nagendra Babu, M. and Reddy, Y.S. (2015) Review on Present and Advance Materials for So-lar Cells. International Journal of Engineering Research-Online, 3, 178-182.
[22] Li, G., Zhu, R. and Yang, Y. (2012) Polymer Solar Cells. Nature Photonics, 6, 153-161. http://dx.doi.org/10.1038/nphoton.2012.11
[23] Brabec, C.J., Shaheen, S.E., Winder, C. and Sariciftci, N.S. (2002) Effect of LiF/Metal Electrodes on the Performance of Plastic Solar Cells. Applied Physics Letters, 80, 1288. http://dx.doi.org/10.1063/1.1446988
[24] Zhu, R., Kumar, A. and Yang, Y. (2011) Polarizing Organic Photovoltaics. Advanced Materials, 23, 4193-4198. http://dx.doi.org/10.1002/adma.201101514
[25] Li, B., Wang, L., Kang, B., Wang, P. and Qiu, Y. (2006) Review of Recent Progress in Solid-State Dye-Sensitized So-lar Cells. Solar Energy Materials and Solar Cells, 90, 549-573. http://dx.doi.org/10.1016/j.solmat.2005.04.039
[26] Dmitrijev, S. (2006) Principles of Semiconductor Devices. Oxford University Press, Oxford
[27] Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M. and Park, N.-G. (2015) Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society, 137, 8696-8699. http://dx.doi.org/10.1021/jacs.5b04930
[28] Tina Casey (2015) An Article on Perovskites Will Power New Low-Cost & Highly Efficient Solar Cells. Clean Tech-nical, 3 July 2015
[29] Shi, D., Zeng, Y. and Shen, W. (2015) Pervoskite/c-Si Tandem Solar Cell with Inverted Nanopyramids: Realizing High Efficiency by Controllable Light Trapping. Scientific Reports, 5, Article No. 16504.
[30] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell e ciency tables (version 1),” Progress in Photovoltaics, vol. 21, no. 1, pp. 1–11, 2013.
[31] S. Mathew, A. Yella, P. Gao et al., “Dye-sensitized solar cells with 13% e ciency achieved through the molecular engineering of porphyrin sensitizers,” Nature Chemistry, vol. , no. 3, pp. 2 2– 2 7, 201 .
[32] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorganic Chemistry, vol. 2, no. 1 , pp. 01 – 038, 2013.
[33] T. Baikie, Y. Fang, J. M. Kadro et al., “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” Journal of Materials Chemistry A, vol. 1, no. 18, pp. 28– 1, 2013
[34] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “Te emergence of perovskite solar cells,” Nature Photonics, vol. 8, no. 7, pp. 0 – 1 , 2014.
[35] S. P. Singh and P. Nagarjuna, “Organometal halide perovskites as useful materials in sensitized solar cells,” Dalton Transactions, vol. 3, no. 1 , pp. 2 7– 2 1, 201 .
[36] S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews, and S. Mhaisalkar, “Band-gap tuning of lead halide perovskites using a sequential deposition process,” Journal of Materials Chemistry A, vol. 2, no. 2 , pp. 221– 22 , 201 .
[37] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for e cient planar heterojunction solar cells,” Energy & Environmental Science, vol. 7, no. 3, pp. 82– 88, 2014 .
[38] W. Zhu, C. Bao, F. Li et al., “An e cient planar-heterojunction solar cell based on wide-bandgap CH3NH3PbI2.1Br0. per-ovskite lm for tandem cell application,” Chemical Communi-cations, vol. 2, no. 2, pp. 30 –307, 201 .
[39] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, e cient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Letters, vol. 13, no. , pp. 17 –17 , 2013.
[40] S. D. Stranks, G. E. Eperon, G. Grancini et al., “Electron-hole di usion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 3 2, no. 1 , pp. 3 1–3 , 2013.
[41] G. Xing, N. Mathews, and S. Sun, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science, vol. 3 2, pp. 3 –3 7, 2013.
[42] D. P. McMeekin, G. Sadoughi, W. Rehman et al., “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science, vol. 3 1, no. 2 , pp. 1 1–1 , 2013.
[43] N. Pellet, P. Gao, G. Gregori et al., “Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting,” Angewandte Chemie International Edition, vol. 3, no. 12, pp. 3151–3157, 2014.
[44] C. Yi, J. Luo, S. Meloni et al., “ Entropic stabilization of mixed A-cation ABX ,” Energy & Environmental Science, vol 9. , no. 2,pp.3151-3157,2014.
[45] [45] Y. Deng, Q. Dong, C. Bi, Y. Yuan, and J. Huang, “Air-Stable, E cient Mixed-Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer,” Advanced Energy Materials, vol. , no. 11, Article ID 1600372, 2016.
[46] G. Niu, W. Li, J. Li, X. Liang, and L. Wang, “Enhancement of thermal stability for perovskite solar cells through cesium doping,” RSC Advances, vol. 7, no. 28, pp. 17 73–17 7 , 2017.
[47] Y. H. Park, I. Jeong, S. Bae et al., “ Solar Cells: Inorganic Rubid-ium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH ,” Advanced Functional Materials, vol. 27, no. 1 , 2017.
[48] M. Zhang, J. S. Yun, Q. Ma et al., “High-E ciency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching,” ACS Energy Letters, vol. 2, no. 2, pp. 38– , 2017.
[49] M. Kulbak, S. Gupta, N. Kedem et al., “Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells,” Te Journal of Physical Chemistry Letters, vol. 7, no. 1, pp. 1 7– 172, 201 .
[50] Y. Ogomi, A. Morita, S. Tsukamoto et al., “CH3NH3SnxPb(1− )I3 perovskite solar cells covering up to 10 0 nm,” The Journal of Physical Chemistry Letters, vol. , no. , pp. 1004–1011, 2014.
[51] F. Zuo, S. T. Williams, P.-W. Liang, C.-C. Chueh, C.-Y. Liao, and A. K.-Y. Jen, “Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells,” Advanced Materials, vol. 2 , no. 37, pp.6454–6460, 2014.
[52] C. Liu, W. Li, H. Li, C. Zhang, J. Fan, and Y. Mai, “ C ,” Nanoscale, vol. , no. 37, pp. 13967–13975, 2017.
[53] H. Li, W. Shi, W. Huang et al., “ Carbon Quantum Dots/TiO ,” Nano Letters, vol. 17, no. , pp. 2328–2335, 2017.
[54] X. Gao, J. Li, S. Gollon et al., “A TiO2 nanotube network electron transport layer for high e ciency perovskite solar cells,” Physical Chemistry Chemical Physics, vol. 1 , no. 7, pp.4956– 4961, 2017.
[55] K. Cao, J. Cui, H. Zhang et al., “ E cient mesoscopic perovskite solar cells based on the CH ,” Journal of Materials Chemistry A, vol. 3, no. 17, pp.9116–9122, 2015.
[56] Y. Yang, J. You, Z. Hong et al., “Low-temperature solution-processed perovskite solar cells with high e ciency and exi-bility,” ACS Nano, vol. 8, no. 2, pp. 1674 –1680, 2014.
[57] J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Gratzel,¨ and S. I. Seok, “Nanostructured TiO2/CH3NH3PbI3 hetero-junction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” Journal of Materials Chemistry A, vol. 1, no. 38, pp. 11842–11847, 2013.
[58] Y. Zhang, W. Liu, F. Tan, and Y. Gu, “Te essential role of the poly(3-hexylthiophene) hole transport layer in perovskite solar cells,” Journal of Power Sources, vol. 27 , pp. 1224–1230, 2015.
[59] J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for Organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide,” Journal of the American Chemical Society, vol. 13 , no. 2, pp. 758–764, 2014.
[60] S. Seo, I. J. Park, M. Kim et al., “An ultra-thin, un-doped NiO hole transporting layer of highly e cient (1 . %) organic-inorganic hybrid perovskite solar cells,” Nanoscale, vol. 8, no. 22, pp. 11403–11412, 2016.
[61] J. L. Barnett, V. L. Cherrette, C. J. Hutcherson, and M. C. So, “E ects of Solution-Based Fabrication Conditions on Morphol-ogy of Lead Halide Perovskite Tin Film Solar Cells,” Advances in Materials Science and Engineering, vol. 201 , Article ID4126163, 2016.
[62] K. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and charac-terization of organic−inorganic perovskite thin lms prepared using a versatile two-step dipping technique,” Chemistry of Materials, vol. 10, no. 1, pp.403–411, 1998.
[63] J. Burschka, N. Pellet, S. Moon et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. , no.499 no. 745 8, pp. 316–319, 2013.
[64] Y. Xu, L. Zhu, J. Shi et al., “Te E ect of Humidity upon the Crystallization Process of Two-Step Spin-Coated Organic-Inorganic Perovskites,” ChemPhysChem, vol. 17, no. 1, pp. 112– 118, 2016.
[65] H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-e ciency solar cells,” Te Journal of Physical Chemistry Letters, vol.4, no. 21, pp. 3623–3630, 2013.
[66] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “Te emergence of perovskite solar cells,” Nature Photonics, vol. 8, no. 7, pp.5 60 –514, 2014.
[67] M. Liu, M. B. Johnston, and H. J. Snaith, “E cient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol.501, no. 7467, pp. 395 –398, 2013.
[68] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, and H. W. Lin, “E cient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition,” Advanced Materials, vol. 26, no. 38, pp.6647– 6652, 2014.
[69] D. Forgacs,´ L. Gil-Escrig, D. Perez´-Del-Rey et al., “E - cient Monolithic Perovskite/Perovskite Tandem Solar Cells,”Advanced Energy Materials, vol. 7, no. 8, 2017.
[70] Q. Chen, H. Zhou, Z. Hong et al., “Planar heterojunction per-ovskite solar cells via vapor-assisted solution process,” Journal of the American Chemical Society, vol. 136, no. 2, pp.622– 625, 2014.
[71] Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
[72] Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013).
[73] G. Peng, X. Xu, and G. Xu, “Hybrid Organic-Inorganic Per-ovskites Open a New Era for Low-Cost, High E ciency Solar Cells,” Journal of Nanomaterials, vol. 2015, Article ID 241853, 10 pages, 2015.
[74] Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; o'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful (2015). "Ionic transport in hybrid lead iodide perovskite solar cells". Nature Communications. 6:7497. Bibcode:2015NatCo...6E7497E. doi:10.1038/ncomms8497. PMC 4491179. PMID 26105623.