Magnetic Properties of Borided Fe-Ni Alloys
International Journal of Mechanical Engineering |
© 2019 by SSRG - IJME Journal |
Volume 6 Issue 7 |
Year of Publication : 2019 |
Authors : N. Ucar, C. Ekinci, A. Calik , M. S. Karakas |
How to Cite?
N. Ucar, C. Ekinci, A. Calik , M. S. Karakas, "Magnetic Properties of Borided Fe-Ni Alloys," SSRG International Journal of Mechanical Engineering, vol. 6, no. 7, pp. 27-31, 2019. Crossref, https://doi.org/10.14445/23488360/IJME-V6I7P105
Abstract:
Fe-Ni binary alloys containing 70, 80, and 90 wt% Ni were borided in a solid medium at 1273 K for 2 to 6 h and at temperatures of 1173, 1273, and 1373 K for 5 h. The surfaces of the borided alloys were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Magnetic properties were investigated using vibrating sample magnetometry (VSM). X-ray studies of the surfaces revealed the presence of Ni4B3 and Ni6Si2B phases in the boride layer. A decrease in saturation magnetization was observed with increasing boriding temperature and time due to boride/borosilicide formation at the surfaces. A rapid decrease in Ms was observed with increasing Ni content in the alloy, primarily due to dilution.
Keywords:
magnetic saturation, boriding, boride layer, boride phases
References:
[1] W. Heisenberg, Zur Theorie des Ferromagnetismus, Z Phys. 49 (1928) 619–636.
[2] E.C. Stoner, Collective electron specific heat and spin paramagnetism in metals, Proc Roy Soc. A 154 (1936) 656–678.
[3] H. Gavrila, V. Ionita, Crystalline, and amorphous soft magnetic materials and their applications, J. Optoelectron. Adv. M. 4 (2002) 173–192.
[4] U.C. Ozogut, A. Cakir, Temperature-dependent Young's modulus change in Si-doped Fe65Ni35 Invar alloy, IMMC 2016, 18th International Metallurgy and Materials Congress, Istanbul, Turkey.
[5] O. Ikeda, Y. Himuro, R. Kainuma, K. Ishida, Phase equilibria in the Fe-rich portion of the Fe–Ni–Si system, J. Alloy Compd. 268 (1998)130–136.
[6] A. Tasaki, S. Tomiyama, S.N. Lida Wada, R. Uyeda, Magnetic properties of ferromagnetic metal fine particles prepared by evaporation in argon gas, Jpn. J. Appl. Phys 4 (1965) 707–711.
[7] I.P. Yu, I. Fedorov, Electromagnetic properties of a colloidal suspension of nickel in paraffin, Zh. Tekhnich, 37 (1967) 726–728.
[8] A.E. Petrov, A.N. Kostygov, V.I. Petinov, Magnetic properties of Sn spherical particles of iron at a temperature 4.2-300 K, Fiz. Tverd. 15 (1973) 2927–2931.
[9] F.O. Schumann, Magnetic properties of Fe-based alloys, J. Appl. Phys. 87 (2000) 5460–5462.
[10] T. Chabi, N. Bensebaa, S. Alleg, S. Azzaza, J.J. Sunol, E.K. Hill, Effect of the Boron Content on the Amorphization Process Magnetic Properties of the Mechanically Alloyed Fe92−xNb8Bx Powders, J. Supercond. Nov. Magn. 32 (2019) 893–901.
[11] R. Hamzaoui, O. Elkedim, E. Gaffet, Friction mode and shock mode effect on magnetic properties of mechanically alloyed Fe-based nanocrystalline materials, J. Mater. Sci. 39 (2004) 5139–5142.
[12] B. Węgliński, J. Kaczmar, Effect of Fe3P Addition on Magnetic Properties and Structure of Sintered Iron, Powder Metall. 23 (1980) 210–216.
[13] R. Gopalan, Y.M. Chen, T. Ohkubo, K. Hono, High saturation magnetization and microstructure in melt-spun Fe–P ribbons, Scripta Mater. 61 (2009) 544–547.
[14] S.F. Moustafa, W.M. Daousch, Synthesis of nano-sized Fe-Ni powder by the chemical process for magnetic applications, J. Mater. Proc. Technol. 181 (2007) 59–63.
[15] C. Xu, J.K. Xi, W.Gao, Improving the mechanical properties of borided layers by superplastic boriding, J. Mater. Process. Technol. 65 (1997) 94–98.
[16] P.X. Yan, X.M. Zhang, J.W. Xu, Z.G. Wu, Q.M. Song, High-temperature behavior of the boride layer 45# carbon steel, Mater. Chem. Phys. 71(2001)107–110.
[17] A.H. Ucisik, C. Bindal, Fracture toughness of boride formed on low-alloy steels, Surf. Coat. Technol. 94-95 (1997) 561–565.
[18] Y. Wang, Q. Zhou, Q. Zhong, A Magnetic Properties and Corrosion Resistance of Fe-Si Alloy Coating Prepared on Mild Steel, Mater. Sci. 20 (2014) 1–5.
[19] A. Yang, H. Imrane, J, Lou, J. Kirkland, C. Vittoria, N. Sun, V.G. Harris, Effects of boron addition to the atomic structure and soft magnetic properties of FeCoB films, J. Appl. Phys. 103 (2008) 1–5.
[20] A. Calik, M.S. Karakas, N. Uçar, Ö.B. Aytar, The effect of boriding on the magnetization behavior of low carbon microalloyed steels, J. Mag. 17 (2012) 96–99.
[21] W.Y. Ching, Y-N Xu, B.N. Harmon, J. Ye, T.C. Leung, Physical Review B 42 (1990), Electronic structures of FeB, Fe2B, and Fe3B compounds studied using first-principles spin-polarized calculations, 4460-4470.
[22] J.B. Goodenough, A. Hamnett, G. Huber, F. Hullinger, M. Leiß, S.K. Ramasesha, H. Werheit, Physics of Non-Tetrahedrally Bonded Binary Compounds III, Springer, 1984, p. 52.
[23] T. Lundstrom, "Transition Metal Borides," in V.I. Matkovich (ed.), Boron and Refractory Borides, Springer-Verlag, 1977, p. 351.
[24] S. Rundqvist, An X-Ray Investigation of the Nickel-Boron System, Acta Chemica Scandinavica 13 (1959) 1193-1208.
[25] S. Rundqvist and F. Jellinek, The Structure of Ni6Si2B, Fe2P and some related phases, Acta Chem. Scand. 13 (1959) 425-432.
[26] E. Lugscheider, H. Reimann and O. Knotek, “Das Dreistoffsystem Nickel–Bor–Silicium”, Monatshefte für Chemie (Monat. Chemie) 106 (1975) 1155-1165.
[27] T. Tokunaga, K. Nishio, H. Ohtani, and M. Hasebe, "Phase Equilibria in the Ni–Si–B System," Materials Transactions 44 (2003) 1651-1654.
[28] D. Mu, B. Shen, C. Yang, X. Zhao, Microstructure Analysis of Borided Pure Nickel using Boriding Powders with SiC as Diluent, Vacuum 83 (2009) 1481–1484.
[29] N. Makuch, M. Kulka, M. Paczkowska, “Nanomechanical properties of gas-borided layer produced on Nimonic 80A-alloy”, Ceramics International 43 (2017) 8255-8261.
[30] I. Ozbek, H. Akbulut, S. Zeytin, C. Bindal, A. H. Ucisik, The characterization of borided 99.5% purity nickel, Surf. Coat. Technol. 126 (2000) 166–170.
[31] Y. Azakli, S. Cengiz, M. Tarakci, Y. Gencer, Characterisation of boride layer formed on Fe–Mo binary alloys, Surf. Eng. 32 (2016) 589–595.
[32] R.Z. Valiev, D. Vishnyakov, R.R. Mulyukov, G.S. Fainstein, On the decrease of Curie temperature in submicron-grained nickel, Phys. Stat. Sol. 117 (1990) 549–553.