Fabrication of MoS2 nanomaterials by ultrasonic vibration in the water

International Journal of Mechanical Engineering
© 2020 by SSRG - IJME Journal
Volume 7 Issue 11
Year of Publication : 2020
Authors : Tran Minh Duc, Tran The Long
pdf
How to Cite?

Tran Minh Duc, Tran The Long, "Fabrication of MoS2 nanomaterials by ultrasonic vibration in the water," SSRG International Journal of Mechanical Engineering, vol. 7,  no. 11, pp. 54-56, 2020. Crossref, https://doi.org/10.14445/23488360/IJME-V7I11P107

Abstract:

Molybdenum Disulfide (MoS2) nanomaterial has been found in many applications in the industry. There have been many studies on the synthesis of MoS2 nanomaterial using different ways; however, expensive chemicals, long reaction times, and specialized equipment are usually required. The work presents the synthesis process of MoS2 nanomaterial by the ultrasonic vibration method in water, a simple method at room temperature. Morphology, structure, and properties of MoS2 nanoparticles were determined by scanning electron microscopy (SEM) and transmission electron microscope (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The obtained product has a hexagonal structure (2H-MoS2) with a size of about 100-1500nm and a thickness of 2-15nm.

Keywords:

MoS2 nanomaterial, nanoparticles, laminated structure, narrow bandgap.

References:

[1] Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, No. 10, 9451–9469. https://doi.org/10.1021/acsnano.5b05040.
[2] Thripuranthaka, M.; Kashid, R. V; Rout, C. S.; Late, D. J. Temperature-Dependent Raman Spectroscopy of Chemically Derived Few-Layer MoS2 and WS2 Nanosheets. App. Phys. Lett, 2014, 104, 081911. https://doi.org/10.1063/1.4866782
[3] Barrera, D.; Wang, Q.; Lee, Y.-J.; Cheng, L.; Kim, M. J.; Kim, J.; Hsu, J. W. P. Solution Synthesis of Few-Layer 2H MX2 (M = Mo, W; X = S, Se). J. Mater. Chem. C, 5 (11), (2017) 2859–2864. https://doi.org/10.1039/C6TC05097B.
[4] Zhang, Y.; Yu, Y.; Mi, L.; Wang, H.; Zhu, Z.; Wu, Q.; Zhang, Y.; Jiang, Y. In Situ Fabrication of Vertical Multilayered MoS2/Si Homotype Heterojunction for High-Speed Visible-Near-Infrared Photodetectors. Small, 8, (2016) 1062–1071. https://doi.org/10.1002/smll.201502923.
[5] Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication Performance of MoS2 and SiO2 Nanoparticles as Lubricant Additives in Magnesium Alloy-Steel Contacts. Tribol. Int. 2016, 93, 63–70. https://doi.org/10.1016/j.triboint.2015.08.009.
[6] Liang, Y.; Yoo, H. D.; Li, Y.; Shuai, J.; Calderon, H. A.; Robles Hernandez, F. C.; Grabow, L. C.; Yao, Y. Interlayer-Expanded Molybdenum Disulfide Nanocomposites for Electrochemical Magnesium Storage. Nano Lett. (2015) 15 (3), 2194–2202. https://doi.org/10.1021/acs.nanolett.5b00388.
[7] Duc, T.M.; Long, T.T.; Chien, T.Q. Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. Lubricants (2019) 7, 40, doi:10.3390/lubricants7050040.
[8] Dong, P.Q.; Duc, T.M.; Long, T.T.; Performance Evaluation of MQCL Hard Milling of SKD 11 Tool Steel Using MoS2 Nanofluid. Metals. (2019) 9, 658, doi:10.3390/met9060658.
[9] Su, S.-H.; Hsu, W.-T.; Hsu, C.-L.; Chen, C.-H.; Chiu, M.-H.; Lin, Y.-C.; Chang, W.-H.; Suenaga, K.; He, J.-H.; Li, L.-J.; Chen, P.; Dong, X. Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Front. Energy Res. 2(7) 2014 1–8. https://doi.org/10.3389/fenrg.2014.00027.
[10] Vazirisereshk, M. R.; Martini, A.; Strubbe, D. A.; Baykara, M. Z. Solid Lubrication with MoS2: A Review. Lubricants 7 (7) (2019). https://doi.org/10.3390/LUBRICANTS7070057.
[11] Hsu, C. L.; Chang, Y. H.; Chen, T. Y.; Tseng, C. C.; Wei, K. H.; Li, L. J. Enhancing the Electrocatalytic Water Splitting Efficiency for Amorphous MoSx. Int. J. Hydrogen Energy, 39 (10), (2014) 4788–4793. https://doi.org/10.1016/j.ijhydene.2014.01.090.
[12] Zou, L.; Qu, R.; Gao, H.; Guan, X.; Qi, X.; Liu, C.; Zhang, Z.; Lei, X. MoS2/RGO Hybrids Prepared by a Hydrothermal Route as a Highly Efficient Catalytic for Sonocatalytic Degradation of Methylene Blue. Results Phys., 14(7) (2019) 102458. https://doi.org/10.1016/j.rinp.2019.102458.
[13] Yu, Y.; Li, C.; Liu, Y.; Su, L.; Zhang, Y.; Cao, L. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-Layer MoS2 Films. Sci. Rep, 3, (2013) 1866. https://doi.org/10.1038/srep01866.
[14] Lin, H.; Wang, J.; Luo, Q.; Peng, H.; Luo, C.; Qi, R.; Huang, R.; Travas-Sejdic, J.; Duan, C. G. Rapid and Highly Efficient Chemical Exfoliation of Layered MoS2 and WS2. J. Alloys Compd, 699, (2017) 222–229. https://doi.org/10.1016/j.jallcom.2016.12.388.
[15] Xia, J. X.; Ge, Y. P.; Zhao, D. X.; Di, J.; Ji, M. X.; Yin, S.; Li, H. M.; Chen, R. Microwave-Assisted Synthesis of Few-Layered MoS2/BiOBr Hollow Microspheres with Superior Visible-Light-Response Photocatalytic Activity for Ciprofloxacin Removal. Crystengcomm, 17 (19), (2015) 3645–3651. https://doi.org/10.1039/c5ce00347d.
[16] Hwang, W. S.; Remskar, M.; Yan, R.; Kosel, T.; Kyung Park, J.; Jin Cho, B.; Haensch, W.; Xing, H.; Seabaugh, A.; Jena, D. Comparative Study of Chemically Synthesized and Exfoliated Multilayer MoS2 Field-Effect Transistors. Appl. Phys. Lett., 102 (4), (2013) 2014–2017. https://doi.org/10.1063/1.4789975.
[17] Nguyen, T. P.; Sohn, W.; Oh, J. H.; Jang, H. W.; Kim, S. Y. Size-Dependent Properties of Two-Dimensional MoS2 and WS2. J. Phys. Chem. C, 120 (18), (2016) 10078–10085. https://doi.org/10.1021/acs.jpcc.6b01838. [18] Tran Minh Duc, Tran The Long*, Tran Quyet Chien, Ngo Minh Tuan. Study of cutting forces in hard milling of hardox 500 steel under MQCL condition using nano additives. SSRG International Journal of Mechanical Engineering (SSRG-IJME), 6(11), (2019) 1-7.