An Updated Review on Nanoparticles Targeting Prostate Cancer

International Journal of Medical Science
© 2022 by SSRG - IJMS Journal
Volume 9 Issue 6
Year of Publication : 2022
Authors : Komarala Narendra Babu, Vattimilli Shanmuka Sai Sumanth, Munnangi Sukanya, Ashok Thulluru
pdf
How to Cite?

Komarala Narendra Babu, Vattimilli Shanmuka Sai Sumanth, Munnangi Sukanya, Ashok Thulluru, "An Updated Review on Nanoparticles Targeting Prostate Cancer," SSRG International Journal of Medical Science, vol. 9,  no. 6, pp. 18-31, 2022. Crossref, https://doi.org/10.14445/23939117/IJMS-V9I6P103

Abstract:

Prostate cancer (PC) is the leading cause of death by cancer in men. Because of the drastic decline in the survival rate of PC patients with advanced/metastatic disease, early diagnosis of the disease and therapy without toxic side effects is crucial. Chemotherapy is widely used to control the progression of PC at the later stages; however, it is associated with offtarget toxicities and severe adverse effects due to the lack of specificity. Delivery of therapeutic or diagnostic agents by using targeted nanoparticles is a promising strategy to enhance the accuracy and sensitivity of PC diagnosis and increase the efficacy and specificity of therapeutic agents. In past decades, numerous efforts have been made to create nanoparticles with different architectural bases for specific delivery payloads to prostate tumors. Major PC-associated cell membrane protein markers identified as targets for such purposes include folate receptors, sigma receptors, transferrin receptors, gastrinreleasing peptide receptors, urokinase plasminogen activator receptors, and prostate-specific membrane antigens. Among these markers, prostate-specific membrane antigen has emerged as an extremely specific and sensitive targetable marker for designing targeted nanoparticle-based delivery systems for PC. This article reviews contemporary advances in the design, specificity, and efficacy of nanoparticles functionalized against PC. Whenever feasible, both diagnostic as well as therapeutic applications are discussed

Keywords:

Gastrin-releasing peptide receptors, Nanoparticles, Prostate cancer, Prostate-specific membrane antigens, Urokinase plasminogen activator receptor.

References:

[1] H. E. Taitt, "Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location," American Journal of Men's Health, vol. 12, no. 6, pp. 1807-1823, 2018.
[2] P. Rawla, "Epidemiology of Prostate Cancer," World Journal of Oncology, vol. 10, no. 2, pp. 63, 2019.
[3] S. Chen, V. Huang, X. Xu, J. Livingstone, F. Soares, J. Jeon, Y. Zeng, Jt. Hua, J. Petricca, H. Guo, M. Wang, et al., "Widespread and Functional RNA Circularization in Localized Prostate Cancer," Cell, vol. 176, no. 4, pp. 831- 843, 2019.
[4] W. Mei, X. Lin, A. Kapoor, Y. Gu, K. Zhao, D. Tang, "The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis," Cancers, vol. 11, no. 4, pp. 434, 2019.
[5] K. Fujita, T. Hayashi, M. Matsushita, M. Uemura, N. Nonomura, "Obesity, Inflammation, and Prostate Cancer," Journal of Clinical Medicine, vol. 8, no. 2, pp. 201, 2019.
[6] P. P. Banerjee, S. Banerjee, T. R. Brown, B. R. Zirkin, "Androgen Action in Prostate Function and Disease," American Journal of Clinical and Experimental Urology, vol. 6, no. 2, pp. 62, 2018.
[7] C. E. Ejike, L. U. Ezeanyika, "Metabolic Syndrome in Sub-Saharan Africa: "Smaller Twin" of a Region's Prostatic Diseases?," International Urology and Nephrology, vol. 40, no. 4, pp. 909-920, 2008. Crossref, http://dx.doi.org/10.1007/s11255-008-9343-x
[8] V. Chaurasia, S. Pal, B. B. Tiwari, "Prediction of Benign and Malignant Breast Cancer Using Data Mining Techniques," Journal of Algorithms & Computational Technology, vol. 12, no. 2, pp. 119-126, 2018. Crossref, http://dx.doi.org/10.1177/1748301818756225
[9] H. Moradi, S. Tang, S. E. Salcudean, "Toward Intra-Operative Prostate Photoacoustic Imaging: Configuration Evaluation and Implementation Using the Da Vinci Research Kit," IEEE Transactions on Medical Imaging, vol. 38, no. 1, pp. 57-68, 2018. Crossref, https://doi.org/10.1109/TMI.2018.2855166
[10] J. Calais, J. Czernin, W. P. Fendler, D. Elashoff, N. G. Nickols, "Randomized Prospective Phase III Trial of 68ga-Psma-11 PET/CT Molecular Imaging for Prostate Cancer Salvage Radiotherapy Planning [PSMA-SRT]," BMC Cancer, vol. 19, no. 1, pp. 1-1, 2019. Crossref, https://doi.org/10.1186/s12885-019-5297-x.
[11] A. U. Kishan, A. Dang, A. J. Katz, C. A. Mantz, S. P. Collins, N. Aghdam, F. I. Chu, I. D. Kaplan, L. Appelbaum, D. B. Fuller, R. M. Meier, "Long-Term Outcomes of Stereotactic Body Radiotherapy for Low-Risk and Intermediate-Risk Prostate Cancer," Jama Network Open, vol. 2, no. 2, pp. E188006-E188006, 2019. Crossref, https://doi.org/10.1001/jamanetworkopen.2018.8006
[12] B. J. Stish, B. J. Davis, L. A. Mynderse, R. H. Mclaren, C. L. Deufel, R. Choo, "Low Dose Rate Prostate Brachytherapy," Translational Andrology and Urology, vol. 7, no. 3, pp. 341, 2018. https://doi.org/10.21037/tau.2017.12.15.
[13] J. Zhang, S. Agrawal, A. Dangi, N. Frings, S. R. Kothapalli, "Computer-Assisted Photoacoustic Imaging Guided Device for Safer Percutaneous Needle Operations," In Photons Plus Ultrasound: Imaging and Sensing, vol. 10878, pp. 546-551, 2019. Crossref, http://dx.doi.org/10.1117/12.2509920
[14] N. Sabharwal, N. Sharifi, "Hsd3b1 Genotypes Conferring Adrenal-Restrictive and Adrenal-Permissive Phenotypes in Prostate Cancer and Beyond," Endocrinology, vol. 160, no. 9, pp. 2180-2188, 2019. Crossref, https://doi.org/10.1210/en.2019-00366.
[15] M. Karpuz, M. S. Gunay, A. Y. Ozer, "Liposomes and Phytosomes for Phytoconstituents," In Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents, pp. 525-553, 2020. Crossref, https://doi.org/10.1016/B978-0-12-819666-3.00018-3
[16] C. M. Porter, E. Shrestha, L. B. Peiffer, K. S. Sfanos, "The Microbiome in Prostate Inflammation and Prostate Cancer," Prostate Cancer and Prostatic Diseases, vol. 21, no. 3, pp. 345-354, 2018. Crossref, https://doi.org/10.1038/s41391-018-0041-1
[17] E. Ozgur, U. Gezer, "Enzalutamide Restores the Testosterone Effect on H19 Expression in Prostate Cancer Cells But Not in Exosomes," Annals of Medical Research, vol. 26, no. 6, pp. 1056-59, 2019. Crossref, https://dx.doi.org/10.5455/annalsmedres.2019.03.123
[18] R. W. Dobbs, N. R. Malhotra, D. T. Greenwald, A. Y. Wang, G. S. Prins, M. R. Abern, "Estrogens and Prostate Cancer," Prostate Cancer Prostatic Diseases, vol. 22, pp. 185–194, 2018.
[19] I. Selvi, H. Basar, "Subcapsular Orchiectomy Versus Total Orchiectomy and LHRH Analogue in the Treatment of Hormone-Sensitive Metastatic Prostate Cancer: A Different Perspective in Evaluation of the Psychosocial Effects," Supportive Care in Cancer, vol. 28, no. 9, pp. 4313-4326, 2020. Crossref, https://doi.org/10.1007/s00520-019-05266-2
[20] L. Puca, R. Bareja, D. Prandi, R. Shaw, M. Benelli, W. R. Karthaus, J. Hess, M. Sigouros, A. Donoghue, M. Kossai, D. Gao, "Patient Derived Organoids to Model Rare Prostate Cancer Phenotypes," Nature Communications, vol. 9, no. 1, pp. 1-10, 2018. Crossref, https://www.nature.com/articles/s41467-018-04495-z
[21] C. H. Lee, P. Kantoff, "Treatment of Metastatic Prostate Cancer in 2018," Jama Oncology, vol. 5, no. 2, pp. 263- 264, 2019. Crossref, https://doi.org/10.1001/jamaoncol.2018.5621 
[22] R. Oun, Y. E. Moussa, N. J. Wheate, "The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists," Dalton Transactions, vol. 47, no. 19, pp. 6645-53, 2018. Crossref, https://doi.org/10.1039/c8dt00838h.
[23] C. Bax, G. Taverna, L. Eusebio, S. Sironi, F. Grizzi, G. Guazzoni, L. Capelli, "Innovative Diagnostic Methods for Early Prostate Cancer Detection Through Urine Analysis: A Review," Cancers, vol. 10, no. 4, pp. 123, 2018. Crossref, https://doi.org/10.3390/cancers10040123
[24] V. Kasivisvanathan, A. S. Rannikko, M. Borghi, V. Panebianco, L. A. Mynderse, M. H. Vaarala, A. Briganti, L. Budäus, G. Hellawell, R. G. Hindley, M. J. Roobol, et al., "MRI-Targeted Or Standard Biopsy for Prostate-Cancer Diagnosis," New England Journal of Medicine, vol. 378, no. 19, pp. 1767-77, 2018. Crossref, https://doi.org/10.1056/nejmoa1801993
[25] S. De Sanjosé, L. Bruni, L. Alemany, "HPV in Genital Cancers (at the Exception of Cervical Cancer) and Anal Cancers," La Pressemédicale, vol. 43, no. 12, pp. E423-428, 2014. Crossref, https://doi.org/10.1016/j.lpm.2014.10.001
[26] J. Hrbacek, M. Urban, E. Hamsikova, R. Tachezy, J. Heracek, "Thirty Years of Research on Infection and Prostate Cancer: No Conclusive Evidence for a Link. A Systematic Review," in Urologic Oncology: Seminars and Original Investigations, vol. 31, no. 7, pp. 951-965, 2013. Crossref, https://doi.org/10.1016/j.urolonc.2012.01.013
[27] F. Atashafrooz, F. Rokhbakhsh-Zamin, "Frequency and Type Distribution of Human Papillomavirus in Patients With Prostate Cancer, Kerman, Southeast of Iran," Asian Pacific Journal of Cancer Prevention, vol. 17, no. 8, pp. 3953-58, 2016.
[28] V. Michopoulou, S. P. Derdas, E. Symvoulakis, N. Mourmouras, A. Nomikos, D. Delakas, G. Sourvinos, D. A. Spandidos, "Detection of Human Papillomavirus (HPV) Dna Prevalence and P53 Codon 72 (Arg72pro) Polymorphism in Prostate Cancer in a Greek Group of Patients," Tumor Biology, vol. 35, no. 12, pp. 12765-73, 2014. Crossref, https://doi.org/10.1007/s13277-014-2604-7
[29] N. Singh, S. Hussain, N. Kakkar, S. K. Singh, R. C. Sobti, M. Bharadwaj, " Implication of High-Risk Human Papillomavirus Hr-Hpv Infection in Prostate Cancer in Indian Population-A Pioneering Case-Control Analysis," Scientific Reports, vol. 5, no. 1, pp. 7822, 2015. Crossref, http://dx.doi.org/10.1038/srep07822
[30] N. J. Whitaker, W. K. Glenn, A. Sahrudin, M. M. Orde, W. Delprado, J. S. Lawson, "Human Papillomavirus and Epstein Barr Virus in Prostate Cancer: Koilocytes Indicate Potential Oncogenic Influences of Human Papillomavirus in Prostate Cancer," The Prostate, vol. 73, no. 3, pp. 236-41, 2013. Crossref, https://doi.org/10.1002/pros.22562
[31] S. Lumme, L. Tenkanen, H. Langseth, R. Gislefoss, M. Hakama, P. Stattin, G. Hallmans, H. Adlercreutz, P. Saikku, U. H. Stenman, P. Tuohimaa, Tapio Luostarinen , Joakim Dillner., "Longitudinal Biobanks-Based Study on the Joint Effects of Infections, Nutrition and Hormones on Risk of Prostate Cancer," Actaoncologica, vol. 55, no. 7, pp. 839-45, 2016. Crossref, https://doi.org/10.3109/0284186x.2016.1139178
[32] I. Meredith, D. Sarfati, T. Ikeda, T. Blakely, "Cancer in Pacific People in New Zealand," Cancer Causes & Control, vol. 23, no. 7, pp. 1173-84, 2012. Crossref, https://doi.org/10.1007/s10552-012-9986-x
[33] R. Tachezy, J. Hrbacek, J. Heracek, M. Salakova, J. Smahelova, V. Ludvikova, A. Svec, M. Urban, E. Hamsikova, "HPV Persistence and Its Oncogenic Role in Prostate Tumors," Journal of Medical Virology, vol. 84, no. 10, pp. 1636-45, 2012. Crossref, https://doi.org/10.1002/jmv.23367
[34] L. Yang, S. Xie, X. Feng, Y. Chen, T. Zheng, M. Dai, C. K. Zhou, Z. Hu, N. Li, D. Hang, "Worldwide Prevalence of Human Papillomavirus and Relative Risk of Prostate Cancer: A Meta-Analysis," Scientific Reports, vol. 5, no. 1, pp. 1-10, 2015. Crossref, http://dx.doi.org/10.1038/srep14667
[35] S. D. Chung, Y. K. Lin, C. C. Huang, H. C. Lin, "Increased Risk of Prostate Cancer Following Sexually Transmitted Infection in an Asian Population," Epidemiology & Infection, vol. 141, no. 12, pp. 2663-70, 2013. Crossref, https://doi.org/10.1017/s0950268813000459
[36] W. Y. Huang, R. Hayes, R. Pfeiffer, R. P. Viscidi, F. K. Lee, Y. F. Wang, D. Reding, D. Whitby, J. R. Papp, C. S. Rabkin, "Sexually Transmissible Infections and Prostate Cancer Risk," Cancer Epidemiology and Prevention Biomarkers, vol. 17, no. 9, pp. 2374-81, 2008. Crossref, https://doi.org/10.1158/1055-9965.epi-08-0173
[37] A. R. Spence, M. C. Rousseau, M. E. Parent, "Sexual Partners, Sexually Transmitted Infections, and Prostate Cancer Risk," Cancer Epidemiology, vol. 38, no. 6, pp. 700-77, 2014. Crossref, https://doi.org/10.1016/j.canep.2014.09.005
[38] E. Ghasemian, S. H. Monavari, G. R. Irajian, M. J. Nadoushan, R. V. Roudsari, Y. Yahyapour, "Evaluation of Human Papillomavirus Infections in Prostatic Disease: A Cross-Sectional Study in Iran," Asian Pacific Journal of Cancer Prevention, vol. 14, no. 5, pp. 3305-08, 2013. Crossref, https://doi.org/10.7314/apjcp.2013.14.5.3305
[39] Z. Salehi, M. Hadavi, "Analysis of the Codon 72 Polymorphism of Tp53 and Human Papillomavirus Infection in Iranian Patients with Prostate Cancer," Journal of Medical Virology, vol. 84, no. 9, pp. 1423-27, 2012. Crossref, https://doi.org/10.1002/jmv.23268
[40] Y. Tolstov, B. Hadaschik, S. Pahernik, M. Hohenfellner, S. Duensing, "Human Papillomaviruses in Urological Malignancies: A Critical Assessment," in Urologic Oncology: Seminars and Original Investigations, vol. 32, no. 1, pp. 46-E19, 2014. Crossref, https://doi.org/10.1016/j.urolonc.2013.06.012
[41] M. A. Yow, S. N. Tabrizi, G. Severi, D. M. Bolton, J. Pedersen, A. Longano, S. M. Garland, M. C. Southey, G. G. Giles, "Detection of Infectious Organisms in Archival Prostate Cancer Tissues," BMC Cancer, vol. 14, pp. 1-5, 2014. Crossref, https://doi.org/10.1186/1471-2407-14-579
[42] J. S. Pagano, "Is Epstein-Barr Virus Transmitted Sexually?," The Journal of Infectious Diseases, vol. 195, no. 4, pp. 469-70, 2007. Crossref, https://doi.org/10.1086/510861
[43] M. Sunil, E. Reid, M. J. Lechowicz, "Update on Hhv-8-Associated Malignancies," Current Infectious Disease Reports, vol. 12, no. 2, pp. 147-54, 2010. Crossref, https://doi.org/10.1007/s11908-010-0092-5
[44] J. D. Henning, C. H. Bunker, A. L. Patrick, F. J. Jenkins, "Human Herpesvirus 8 Establishes a Latent Infection in Prostates of Tobago Men Resulting in Increased Macrophage Infiltration," The Prostate, vol. 76, no. 8, pp. 735- 43, 2016. Crossref, https://doi.org/10.1002/pros.23163
[45] S. Caini, S. Gandini, M. Dudas, V. Bremer, E. Severi, A. Gherasim, "Sexually Transmitted Infections and Prostate Cancer Risk: A Systematic Review and Meta-Analysis," Cancer Epidemiology, vol. 38, no. 4, pp. 329-38, 2014. Crossref, https://doi.org/10.1016/j.canep.2014.06.002
[46] A. Taghavi, P. Mohammadi-Torbati, A. H. Kashi, H. Rezaee, M. Vaezjalali, "Polyomavirus Hominis 1 (Bk Virus) Infection in Prostatic Tissues: Cancer Versus Hyperplasia," Urology Journal, vol. 12, no. 4, pp. 2240-4, 2015.
[47] E. X. Keller, S. Delbue, M. Tognon, M. Provenzano, "Polyomavirus Bk and Prostate Cancer: A Complex Interaction of Potential Clinical Relevance," Reviews in Medical Virology, vol. 25, no. 6, pp. 366-78, 2015. Crossref, https://doi.org/10.1002/rmv.1851
[48] P. Hong, J. Li, "Lack of Evidence for a Role of Xenotropic Murine Leukemia Virus-Related Virus in the Pathogenesis of Prostate Cancer and/or Chronic Fatigue Syndrome," Virus Research, vol. 167, no. 1, pp. 1-7, 2012. Crossref, https://doi.org/10.1016/j.virusres.2012.04.004
[49] M. Arredondo, J. Hackett Jr, F. R. De Bethencourt, A. Trevino, D. Escudero, A. Collado, X. Qiu, P. Swanson, V. Soriano, C. De Mendoza, "Prevalence of Xenotropic Murine Leukemia Virus-Related Virus Infection in Different Risk Populations in Spain," Aids Research and Human Retroviruses, vol. 28, no. 9, pp. 1089-94, 2012. Crossref, https://doi.org/10.1089/aid.2011.0149
[50] F. A. Baig, T. Mirza, R. Khanani, S. Khan, "Detection of Xenotropic Murine Leukemia Virus-Related Virus in Prostate Biopsy Samples," J Coll Physicians Surg Pak, vol. 24, no. 9, pp. 636-9, 2014.
[51] S. T. Gomes, L. Imbiriba, R. R. Burbano, A. L. Silva, R. N. Feitosa, I. M. Cayres-Vallinoto, M. D. Ishak, R. Ishak, A. C. Vallinoto, "Lack of Evidence for Human Infection With Xenotropic Murine Leukemia Virus-Related Virus in the Brazilian Amazon Basin," Revista Da Sociedade Brasileira De Medicina Tropical, vol. 47, no. 3, pp. 302-6, 2014. Crossref, https://doi.org/10.1590/0037-8682-0075-2014
[52] H. C. Groom, A. Y. Warren, D. E. Neal, K. N. Bishop, "No Evidence for Infection of Uk Prostate Cancer Patients With Xmrv, Bk Virus, Trichomonas Vaginalis Or Human Papillomaviruses," Plos One, vol. 7, no. 3, pp. E34221, 2012. Crossref, https://doi.org/10.1371/journal.pone.0034221
[53] R. Mendoza, R. H. Silverman, E. A. Klein, A. D. Miller, "No Biological Evidence of XMRV in Blood or Prostatic Fluid From Prostate Cancer Patients," Plos One, vol. 7, no. 5, pp. E36073, 2012. Crossref, https://doi.org/10.1371/journal.pone.0036073
[54] C. M. Stürzel, D. Palesch, M. Khalid, S. Wissing, N. Fischer, J. Münch, "Utilization of Replication-Competent Xmrv Reporter-Viruses Reveals Severe Viral Restriction in Primary Human Cells," Plos One, vol. 8, no. 9, pp. E74427, 2013. Crossref, https://doi.org/10.1371/journal.pone.0074427
[55] K. Kakoki, H. Kamiyama, M. Izumida, Y. Yashima, H. Hayashi, N. Yamamoto, T. Matsuyama, T. Igawa, H. Sakai, Y. Kubo, "Androgen-Independent Proliferation of LNCAP Prostate Cancer Cells Infected by Xenotropic Murine Leukemia Virus-Related Virus," Biochemical and Biophysical Research Communications, vol. 447, no. 1, pp. 216-22, 2014. Crossref, https://doi.org/10.1016/j.bbrc.2014.03.154
[56] D. Lorente, J. Mateo, R. Perez-Lopez, J. S. De Bono, G. Attard, "Sequencing of Agents in Castration-Resistant Prostate Cancer," The Lancet Oncology, vol. 16, no. 6, pp. E279-92, 2015. Crossref, https://doi.org/10.1016/s1470-2045(15)70033-1
[57] S. A. Rosenthal, D. Hunt, A. O. Sartor, K. J. Pienta, L. Gomella, D. Grignon, R. Rajan, K. J. Kerlin, C. U. Jones, M. Dobelbower, W. U. Shipley, "A Phase 3 Trial of 2 Years of Androgen Suppression and Radiation Therapy With Or Without Adjuvant Chemotherapy for High-Risk Prostate Cancer: Final Results of Radiation Therapy Oncology Group Phase 3 Randomized Trial NRG Oncology RTOG 9902," International Journal of Radiation Oncology* Biology* Physics, vol. 93, no. 2, pp. 294-302, 2015. Crossref, https://doi.org/10.1016/j.ijrobp.2015.05.024
[58] L. M. Glode, C. M. Tangen, M. Hussain, G. P. Swanson, D. P. Wood, W. Sakr, N. A. Dawson, N. B. Haas, T. W. Flaig, T. B. Dorff, D. W. Lin, "Adjuvant Androgen Deprivation (ADT) Versus Mitoxantrone Plus Prednisone (MP) Plus ADT in High-Risk Prostate Cancer (PCA) Patients Following Radical Prostatectomy: A Phase III Intergroup Trial (SWOG S9921) Nct00004124," Journal of Clinical Oncology, vol. 35, no. 6, 2017. Crossref, https://doi.org/10.1200/JCO.2017.35.6_suppl.2 
[59] D. Lin, M. Garzotto, W. Aronson, J. Basler, T. Beer, M. Brophy, K. Kelly, K. Lee, Y. Lu, V. Markle, V. Mcguire, "Pi-Lba06 Va Csp# 553 Chemotherapy After Prostatectomy (CAP) for High-Risk Prostate Carcinoma: A Phase III Randomized Study," The Journal of Urology, vol. 195, no. 4s, pp. E1071, 2016.
[60] R. Dreicer, C. Magi-Galluzzi, M. Zhou, J. Rothaermel, A. Reuther, J. Ulchaker, C. Zippe, A. Fergany, E. A. Klein, "Phase II Trial of Neoadjuvant Docetaxel Before Radical Prostatectomy for Locally Advanced Prostate Cancer," Urology, vol. 63, no. 6, pp. 1138-42, 2004. Crossref, https://doi.org/10.1016/j.urology.2004.01.040
[61] M. Thalgott, T. Horn, M. M. Heck, T. Maurer, M. Eiber, M. Retz, M. Autenrieth, K. Herkommer, B. J. Krause, J. E. Gschwend, and U. Treiber, "Long-Term Results of a Phase II Study with Neoadjuvant Docetaxel Chemotherapy and Complete Androgen Blockade in Locally Advanced and High-Risk Prostate Cancer," Journal of Hematology and Oncology, vol. 7, no. 1, pp. 1-9, 2014. Crossref, https://doi.org/10.1186/1756-8722-7-20
[62] K. N. Chi, J. L. Chin, E. Winquist, L. Klotz, F. Saad, and M. E. Gleave, "Multicenter Phase II Study of Combined Neoadjuvant Docetaxel and Hormone Therapy Before Radical Prostatectomy for Patients with High Risk Localized Prostate Cancer," The Journal of Urology, vol. 180, no. 2, pp. 565–570, 2008. Crossref, https://doi.org/10.1016/j.juro.2008.04.012
[63] A. Guttilla, R. Bortolus, G. Giannarini, P. Ghadjar, F. Zattoni, M. Gnech, V. Palumbo, F. Valent, A. Garbeglio, and F. Zattoni, "Multimodal Treatment for High-Risk Prostate Cancer with High-Dose Intensity-Modulated Radiation Therapy Preceded or Not by Radical Prostatectomy, Concurrent Intensified-Dose Docetaxel and LongTerm Androgen Deprivation Therapy: Results of a Prospective Phase II Trial," Radiation Oncology, vol. 9, no. 1, pp. 1-10, 2014. Crossref, https://doi.org/10.1186/1748-717X-9-24
[64] L. D. Sullivan, M. J. Weir, J. F. Kinahan, and D. L. Taylor, "A Comparison of the Relative Merits of Radical Perineal and Radical Retropubic Prostatectomy," BJU International, vol. 85, no. 1, pp. 95-100, 2000. Crossref, https://doi.org/10.1046/j.1464-410x.2000.00405.x
[65] R. Banerjee, P. Tyagi, S. Li, and L. Huang, "Anisamide-Targeted Stealth Liposomes: A Potent Carrier For Targeting Doxorubicin To Human Prostate Cancer Cells," International Journal of Cancer, vol. 112, no. 4, pp. 693-700, 2004. Crossref, https://doi.org/10.1002/ijc.20452
[66] C. Bode, L. Trojan, C. Weiss, B. Kraenzlin, U. Michaelis, M. Teifel, P. Alken, and M. S. Michel, "Paclitaxel Encapsulated in Cationic Liposomes: A New Option for Neovascular Targeting for the Treatment of Prostate Cancer," Oncology Reports, vol. 22, no. 2, pp. 321-26, 2009.
[67] Q. Zhou, L. Zhang, and H. Wu, "Nanomaterials for Cancer Therapies," Nanotechnology Reviews, vol. 6, no. 5, pp. 473-496, 2017. Crossref, https://doi.org/10.1515/ntrev-2016-010
[68] T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, "Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities," Nano Letters, vol. 16, no. 1, pp. 270-275, 2016. Crossref, https://doi.org/10.1021/acs.nanolett.5b03724
[69] J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, and H. Song, "High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots," Acs Nano, vol. 11, no. 9, pp. 9294-302, 2017. Crossref, https://doi.org/10.1021/acsnano.7b04683z
[70] S. Cao, W. Ji, J. Zhao, W. Yang, C. Li, and J. Zheng, "Color-Tunable Photoluminescence of Cu-Doped Zn–in–Se Quantum Dots and their Electroluminescence Properties," Journal of Materials Chemistry C, vol. 4, no. 3, pp. 581-588, 2016. Crossref, https://doi.org/10.1039/C5TC04019A
[71] C. Pu, X. Dai, Y. Shu, M. Zhu, Y. Deng, Y. Jin, and X. Peng, "Electrochemically-Stable Ligands Bridge the Photoluminescence-Electroluminescence Gap of Quantum Dots," Nature Communications, vol. 11, no. 1, pp. 1- 10, 2020. Crossref, https://doi.org/10.1038/s41467-020-14756-5
[72] A. Karimzadeh, M. Hasanzadeh, N. Shadjou, and M. de la Guardia, "Electrochemical Biosensing Using N-Gqds: Recent Advances in Analytical Approach," TrAC Trends in Analytical Chemistry, vol. 105, pp. 484-91, 2018. Crossref, https://doi.org/10.1016/j.trac.2018.06.009
[73] R. Xie, Z. Wang, W. Zhou, Y. Liu, L. Fan, Y. Li, and X. Li, "Graphene Quantum Dots as Smart Probes for Biosensing," Analytical Methods, vol. 8, no. 20, pp. 4001-4016, 2016. Crossref, https://doi.org/10.1039/C6AY00289G
[74] H. Ehzari, M. Amiri, and M. Safari, "Enzyme-Free Sandwich-Type Electrochemical Immunosensor For Highly Sensitive Prostate-Specific Antigen Based on the Conjugation of Quantum Dots And Antibody on Surface of Modified Glassy Carbon Electrode With Core-Shell Magnetic Metal-Organic Frameworks," Talanta, vol. 210, pp. 120641, 2020. Crossref, https://doi.org/10.1016/j.talanta.2019.120641
[75] W. Ahmed, A. Elhissi, V. Dhanak, and K. Subramani, "Carbon Nanotubes: Applications in Cancer Therapy and Drug Delivery Research," In Emerging Nanotechnologies in Dentistry, pp. 371–389, 2018. Crossref, https://doi.org/10.1016/B978-0-12-812291-4.00018-2
[76] Z. Gu, M. Zhao, W. Zhang, T. Jiang, and M. Sun, "Preparation of Carbon Nanotube/MnO2 Nanocomposite as an Electrode Modifier for Prostate-Specific Antigen (PSA) Determination," International Journal of Electrochemical Science, vol. 12, pp. 10726-10736, 2017. Crossref, https://doi.org/10.20964/2017.11.05 
[77] A. F. Quintero-Jaime, A. Berenguer-Murcia, D. Cazorla-Amorós, and E. Morallón, "Carbon Nanotubes Modified with Au for Electrochemical Detection of Prostate-Specific Antigen: Effect of Au Nanoparticle Size Distribution," Frontiers in chemistry., vol. 7, pp. 147, 2019. Crossref, https://doi.org/10.3389/fchem.2019.00147
[78] J. C. Soares, A. C. Soares, V. C. Rodrigues, M. E. Melendez, A. C. Santos, E. F. Faria, R. M. Reis, A. L. Carvalho, and O. N. Oliveira Jr, "Detection of the Prostate Cancer Biomarker PCA3 with Electrochemical and Impedance-Based Biosensors," ACS Applied Materials & Interfaces, vol. 11, no. 50, pp. 46645-46650, 2019. Crossref, https://doi.org/10.1021/acsami.9b19180
[79] D. Goldstein, O. Gofrit, A. Nyska, and S. Benita, "Anti-HER2 Cationic Immunoemulsion as a Potential Targeted Drug Delivery System for the Treatment of Prostate Cancer," Cancer Research, vol. 67, no. 1, pp. 269-75, 2007. Crossref, https://doi.org/10.1158/0008-5472.CAN-06-2731
[80] M. J. Morris, V. E. Reuter, W. K. Kelly, S. F. Slovin, K. Kenneson, D. Verbel, I. Osman, and H. I. Scher, "HER-2 Profiling and Targeting in Prostate Carcinoma: A Phase II Trial of Trastuzumab Alone and with Paclitaxel," Cancer, vol. 94, no. 4, pp. 980-986, 2002.
[81] J. Wang, M. Sui, and W. Fan, "Nanoparticles for Tumour Targeted Therapies and their Pharmacokinetics," Current Drug Metabolism, vol. 11, no. 2, pp. 129-141, 2010. Crossref, https://doi.org/10.2174/138920010791110827
[82] Y. J. Tsai, and B. H. Chen, "Preparation of Catechin Extracts and Nanoemulsions from Green Tea Leaf Waste and their Inhibition Effect on Prostate Cancer Cell PC-3," International Journal of Nanomedicine, vol. 11, pp. 1907- 1926, 2016. Crossref, https://doi.org/10.2147/IJN.S103759
[83] P. K. Panda, S. Saraf, A. Tiwari, A. Verma, S. Raikwar, A. Jain, and S.K. Jain, "Novel Strategies for Targeting Prostate Cancer," Current Drug Delivery, vol. 16, no. 8, pp. 712–727, 2019. Crossref, https://doi.org/10.2174/1567201816666190821143805
[84] Y. B. Guan, S. Y. Zhou, Y. Q. Zhang, J. L. Wang, Y. D. Tian, Y. Y. Jia, and Y. J. Sun, "Therapeutic Effects of Curcumin Nanoemulsions on Prostate Cancer," Journal of Huazhong University of Science and Technology, vol. 37, no. 3, pp. 371-378, 2017. Crossref, https://doi.org/10.1007/s11596-017-1742-8
[85] M. M. Yallapu, S. Khan, D. M. Maher, M. C. Ebeling, V. Sundram, N. Chauhan, A. Ganju, S. Balakrishna, B. K. Gupta, N. Zafar, and M. Jaggi, "Anticancer Activity of Curcumin Loaded Nanoparticles in Prostate Cancer," Biomaterials, vol. 35, no. 30, pp. 8635-8648, 2014. Crossref, https://doi.org/10.1016/j.biomaterials.2014.06.040
[86] V. Sanna, A. M. Roggio, A. M. Posadino, A. Cossu, S. Marceddu, A. Mariani, V. Alzari, S. Uzzau, G. Pintus, and M. Sechi, "Novel Docetaxel-Loaded Nanoparticles Based on Poly (Lactide-Co-Caprolactone) and Poly (LactideCo-Glycolide-Co-Caprolactone) for Prostate Cancer Treatment: Formulation, Characterization, and Cytotoxicity Studies," Nanoscale Research Letters, vol. 6, no. 1, pp. 1-9, 2011. Crossref, https://doi.org/10.1186/1556-276X-6- 260
[87] O. C. Farokhzad, J. M. Karp, and R. Langer, "Nanoparticle–Aptamer Bioconjugates for Cancer Targeting," Expert Opinion on Drug Delivery, vol. 3, no. 3, pp. 311-324, 2006. Crossref, https://doi.org/10.1517/17425247.3.3.311
[88] N. Kamaly, G. Fredman, M. Subramanian, S. Gadde, A. Pesic, L. Cheung, Z. A. Fayad, R. Langer, I. Tabas, and O. C. Farokhzad, "Development and in Vivo Efficacy of Targeted Polymeric Inflammation-Resolving Nanoparticles," Proceedings of the National Academy of Sciences, vol. 110, no. 16, pp. 6506-6511, 2013. Crossref, https://doi.org/10.1073/pnas.1303377110
[89] S. Mondal, N. Adhikari, S. Banerjee, S. A. Amin, and T. Jha, "Matrix Metalloproteinase-9 (MMP-9) and its Inhibitors in Cancer: A Minireview," European Journal of Medicinal Chemistry, vol. 194, pp. 112260, 2020. Crossref, https://doi.org/10.1016/j.ejmech.2020.112260
[90] N. Elahi, M. Kamali, and M. H. Baghersad, "Recent Biomedical Applications of Gold Nanoparticles: A Review," Talanta, vol. 184, pp. 537-56, 2018. Crossref, https://doi.org/10.1016/j.talanta.2018.02.088
[91] Z. Miao, Z. Gao, R. Chen, X. Yu, Z. Su, and G. Wei, "Surface-Bioengineered Gold Nanoparticles For Biomedical Applications," Current Medicinal Chemistry, vol. 25, no. 16, pp. 1920-1944, 2018. Crossref, https://doi.org/10.2174/0929867325666180117111404
[92] M. Sharifi, S. H. Hosseinali, R. H. Alizadeh, A. Hasan, F. Attar, A. Salihi, M. S. Shekha, K. M. Amen, F. M. Aziz, A. A. Saboury, and K. Akhtari, "Plasmonic and Chiroplasmonicnanobiosensors Based on Gold Nanoparticles," Talanta, vol. 212, pp. 120782, 2020. Crossref, https://doi.org/10.1016/j.talanta.2020.120782
[93] Y. Chen, Z. Xu, D. Zhu, X. Tao, Y. Gao, H. Zhu, Z. Mao, and J. Ling, "Gold Nanoparticles Coated with Polysarcosine Brushes to Enhance their Colloidal Stability and Circulation Time in Vivo," Journal of Colloid and Interface Science, vol. 483, pp. 201-10, 2016. Crossref, https://doi.org/10.1016/j.jcis.2016.08.038
[94] D. Luo, X. Wang, S. Zeng, G. Ramamurthy, C. Burda, and J. P. Basilion, "Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Prostate Cancer Radiotherapy: Does Size Matter for Targeted Particles?," Chemical Science, vol. 10, no. 35, pp. 8119-8128, 2019. Crossref, https://doi.org/10.1039/C9SC02290B
[95] M. M. El-Mahdy, A. S. Hassan, M. El-Badry, and G. E. El-Gindy, "Performance of Curcumin in Nanosized Carriers Niosomes and Ethosomes as Potential Anti-Inflammatory Delivery System for Topical Application," Bulletin of Pharmaceutical Sciences. Assiut, vol. 43, no. 1, pp. 105-122, 2020. Crossref, https://doi.org/10.21608/BFSA.2020.93599 
[96] I. Akbarzadeh, M. T. Yaraki, M. Bourbour, H. Noorbazargan, A. Lajevardi, S. M. Shilsar, F. Heidari, and S. M. Mousavian, "Optimized Doxycycline-Loaded Niosomal Formulation for Treatment of Infection-Associated Prostate Cancer: An In-Vitro Investigation," Journal of Drug Delivery Science and Technology, vol. 57, pp. 101715, 2020. Crossref, https://doi.org/10.1016/j.jddst.2020.101715
[97] S. Liu, B. Yu, S. Wang, Y. Shen, and H. Cong, "Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles," Advances in Colloid and Interface Science, vol. 281, pp. 102165, 2020. Crossref, https://doi.org/10.1016/j.cis.2020.102165
[98] M. Amiri, M. Salavati-Niasari, and A. Akbari, "Magnetic Nanocarriers: Evolution of Spinel Ferrites for Medical Applications," Advances in Colloid and Interface Science, vol. 265, pp. 29-44, 2019. Crossref, https://doi.org/10.1016/j.cis.2019.01.003
[99] A. Kiplagat, D. R. Martin, M. O. Onani, and M. Meyer, "Aptamer-Conjugated Magnetic Nanoparticles for the Efficient Capture of Cancer Biomarker Proteins," Journal of Magnetism and Magnetic Materials, vol. 497, pp. 166063, 2020. Crossref, https://doi.org/10.1016/j.jmmm.2019.166063
[100] B. T. Thanh, N. Van Sau, H. Ju, M. J. Bashir, H. K. Jun, T. B. Phan, Q. M. Ngo, N. Q. Tran, T. H. Hai, P. H. Van, and T. T. Nguyen, "Immobilization of Protein a on Monodisperse Magnetic Nanoparticles for Biomedical Applications," Journal of Nanomaterials, 2019. Crossref, https://doi.org/10.1155/2019/2182471
[101] Marie Saghaeian Jazi, "A Mini-Review of Nanotechnology and Prostate Cancer: Approaches in Early Diagnosis," Journal of Clinical and Basic Research, vol. 4, no. 1, pp. 21-31, 2020. Crossref, https://doi.org/10.29252/jcbr.4.1.21
[102] S. L. Ho, D. Xu, M. S. Wong, and H. W. Li, "Direct and Multiplex Quantification of Protein Biomarkers in Serum Samples Using an Immuno-Magnetic Platform," Chemical Science, vol. 7, no. 4, pp. 2695-2700, 2016. Crossref, https://doi.org/10.1039/C5SC04115E
[103] V. Yamkamon, K. P. Htoo, S. Yainoy, T. Suksrichavalit, T. Tangchaikeeree, and W. Eiamphungporn, "Urinary PCA3 Detection in Prostate Cancer by Magnetic Nanoparticles Coupled with Colorimetric Enzyme-Linked Oligonucleotide Assay," EXCLI Journal, vol. 19, pp. 501-513, 2020. Crossref, https://doi.org/10.17179/excli2020- 1036
[104] E. Blanco, H. Shen, and M. Ferrari, "Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery," Nature Biotechnology, vol. 33, no. 9, pp. 941-951, 2015. Crossref, https://doi.org/10.1038/nbt.3330
[105] B. Xiang, D. W. Dong, N. Q. Shi, W. Gao, Z. Z. Yang, Y. Cui, D. Y. Cao, and X. R. Qi, "PSA-Responsive And PSMA-Mediated Multifunctional Liposomes for Targeted Therapy of Prostate Cancer," Biomaterials, vol. 34, no. 28, pp. 6976-6991, 2013. Crossref, https://doi.org/10.1016/j.biomaterials.2013.05.055
[106] Y. Huang, D. Lin, Q. Jiang, W. Zhang, S. Guo, P. Xiao, S. Zheng, X. Wang, H. Chen, H. Y. Zhang, and L. Deng, "Binary and Ternary Complexes Based on Polycaprolactone-Graft-Poly (N, N-Dimethyl Aminoethyl Methacrylate) for Targeted Sirna Delivery," Biomaterials, vol. 33, no. 18, pp. 4653-64, 2012. Crossref, https://doi.org/10.1016/j.biomaterials.2012.02.052
[107] W. Y. Huang, J. N. Lin, J. T. Hsieh, S. C. Chou, C. H. Lai, E. J. Yun, U. G. Lo, R. C. Pong, J. H. Lin, and Y. H. Lin, "Nanoparticle Targeting CD44-Positive Cancer Cells for Site-Specific Drug Delivery in Prostate Cancer Therapy," ACS Applied Materials & Interfaces, vol. 8, no. 45, pp. 30722-30734, 2016. Crossref, https://doi.org/10.1021/acsami.6b10029
[108] X. Xu, W. Ho, X. Zhang, N. Bertrand, and O. Farokhzad, "Cancer Nanomedicine: from Targeted Delivery to Combination Therapy," Trends in Molecular Medicine, vol. 21, no. 4, pp. 223-232, 2015. Crossref, https://doi.org/10.1016/j.molmed.2015.01.001
[109] A. hakur, A. Roy, S. Chatterjee, P. Chakraborty, K. Bhattacharya, and P. P. Mahata, "Recent Trends in Targeted Drug Delivery," SMGroup, 2015. Crossref, https://doi.org/10.13140/RG.2.1.2443.9762
[110] A. Chrastina, K. A. Massey, and J. E. Schnitzer, "Overcoming in Vivo Barriers to Targeted Nano Delivery," Wiley Interdisciplinary Reviews: Nanomedicine Nanobiotechnology, vol. 3, no. 4, pp. 421–437, 2011. Crossref, https://doi.org/10.1002/wnan.143
[111] M. E. Davis. Z. G. Chen, and D. M. Shin, "Nanoparticle Therapeutics: An Emerging Treatment Modality for Cancer," Nature Reviews Drug Discovery, vol. 7, no. 9, pp. 771-782, 2008. Crossref, https://doi.org/10.1038/nrd2614
[112] E. K. H. Chow, and D. Ho, "Cancer Nanomedicine: from Drug Delivery to Imaging," Science Translational Medicine, vol. 5, no. 216, 2013. Crossref, https://doi.org/10.1126/scitranslmed.3005872
[113] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, vol. 457, no. 7230, pp. 706-710, 2009. Crossref, https://doi.org/10.1038/nature07719
[114] H. S. Jung, M. Y. Lee, W. H. Kong, I. H. Do, and S. K. Hahn, "Nano Graphene Oxide–Hyaluronic Acid Conjugate for Target Specific Cancer Drug Delivery," RSC Advances, vol. 4, no. 27, pp. 14197-14200, 2014. Crossref, https://doi.org/10.1039/C4RA00605D
[115] L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, "Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs," Small, vol. 6, no. 4, pp. 537-544, 2010. Crossref, https://doi.org/10.1002/smll.200901680
[116] Y. Pan, H. Bao, N. G. Sahoo, T. Wu, and L. Li, "Water-soluble poly (N-Isopropylacrylamide)–Graphene Sheets Synthesized Via Click Chemistry for Drug Delivery," Advanced Functional Materials, vol. 21, no. 14, pp. 2754- 2763, 2011. Crossref, https://doi.org/10.1002/adfm.201100078
[117] U. S. Toti, B. R. Guru, A. E. Grill, and J. Panyam, "Interfacial Activity Assisted Surface Functionalization: A Novel Approach to Incorporate Maleimide Functional Groups and CRGD Peptide on Polymeric Nanoparticles for Targeted Drug Delivery," Molecular Pharmaceutics, vol. 7, no. 4, pp. 1108-1117, 2010. Crossref, https://doi.org/10.1021/mp900284c
[118] C. Liang, Y. Yang, Y. Ling, Y. Huang, T. Li, and X. Li, "Improved therapeutic effect of folate-decorated PLGA– PEG nanoparticles for endometrial carcinoma," Bioorganic & Medicinal Chemistry, vol. 19, no. 13, pp. 4057- 4066, 2011. Crossref, https://doi.org/10.1016/j.bmc.2011.05.016
[119] S. B. Hartono, W. Gu, F. Kleitz, J. Liu, L. He, A. P. Middelberg, C. Yu, G. Q. Lu, and S. Z. Qiao, "Poly-L-Lysine Functionalized Large Pore Cubic Mesostructured Silica Nanoparticles As Biocompatible Carriers For Gene Delivery," Acs Nano, vol. 6, no. 3, pp. 2104-2117, 2012. Crossref, https://doi.org/10.1021/nn2039643