Classification and Determination of Human Emotional States using EEG
International Journal of Medical Science |
© 2017 by SSRG - IJMS Journal |
Volume 4 Issue 12 |
Year of Publication : 2017 |
Authors : SougataBhattacharjee, A. I. Siddiki, Dr. Praveen Kumar Yadav and Saikat Maity |
How to Cite?
SougataBhattacharjee, A. I. Siddiki, Dr. Praveen Kumar Yadav and Saikat Maity, "Classification and Determination of Human Emotional States using EEG," SSRG International Journal of Medical Science, vol. 4, no. 12, pp. 4-9, 2017. Crossref, https://doi.org/10.14445/23939117/IJMS-V4I12P102
Abstract:
Emotion plays an important role in everybody’s life and in this paper I show how the brain waves tells us which emotion is being experienced by a person. This research studies the brain waves in happy, sad and disgust emotion and determines how the brain waves pertaining to the emotions are distinguishable from each other and how the brain waves of a single emotion is consistent (or inconsistent) from person to person. In doing this research EEG machine is used and video clips are used to instigate the different emotions.
Keywords:
Happy emotion, sad emotion, disgust emotion, alpha waves.
References:
[1] Dr. Aparna Ashtaputre- Emotions and Brain Waves.
[2] Valentina Bono, Dwaipayan Biswas, Saptarshi Das and Koushik Maharatna – Classifying Human Emotional States using Wireless EEG based ERP and Functional Connectivity Measures.
[3] FU-CHIEN KAO, SHINPING R, WANG, YU-JUNG CHANG – Brainwaves Analysis of Positive and Negative Emotions.
[4] Adrian Qi-Xiang Ang, Yi Qi Yeong, Wee Ser – Emotion Classification from EEG Signals Using Time-Frequency-DWT Features and ANN.
[5] Wange Namrata Dattatray, N. Ashok Kumar – Emotion Detection Using EEG Signal Analysis.
[6] Real-timeEEG-basedEmotionRecognitionand itsApplications - Yisi Liu, Olga Sourina, and Minh Khoa Nguyen.
[7] American electroencephalographic society guidelines for standard electrode posi- tionnomenclature.JournalofClinicalNeurophysiology8(2),200–202(1991).
[8] Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the fractal dimen- sion for the analysis of electroencephalographic time series. Biological Cybernetics 77(5),339–350(1997).
[9] Block, A., Von Bloh, W., Schellnhuber, H.J.: Efficient box-counting determination ofgeneralizedfractaldimensions.PhysicalReviewA42(4),1869–1874(1990).
[10] Bos., D.O.: EEG-based emotion recognition [online] (2006), http://hmi.ewi. utwente.nl/verslagen/capita-selecta/CS-Oude_Bos-Danny.pdf.
[11] Bradley, M.M.: Measuring emotion: The self-assessment manikin and the semantic differential.JournalofBehaviorTherapyandExperimentalPsychiatry25(1),49– 59(1994).
[12] Bradley, M.M., Lang, P.J.: The international affective digitized sounds (2nd edi- tion;IADS-2):Affectiveratingsofsoundsandinstructionmanual.Tech.rep.,Uni- versity of Florida, Gainesville(2007).
[13] Canli,T.,Desmond, J.E.,Zhao, Z., Glover,G., Gabrieli,J.D.E.: Hemisphericasym- metryforemotionalstimulidetectedwithfMRI.NeuroReport9(14),3233–3239 (1998).
[14] Chanel, G.: Emotion assessment for affective-computing based on brain and pe- ripheral signals. Ph.D. thesis, University of Geneva, Geneva(2009).
[15] Chanel, G., Kierkels, J.J.M., Soleymani, M., Pun, T.: Short-term emotion assess- ment in a recall paradigm. International Journal of Human Computer Studies 67(8),607–627(2009).
[16] Chanel, G., Kronegg, J., Grandjean, D., Pun, T.: Emotion assessment: Arousal evaluation using EEG’s and peripheral physiological signals(2006).
[17] Ekman, P.: Basic emotions. In: Dalgleish, T., Power, M. (eds.) Handbook of Cog- nition and Emotion. Wiley, New York(1999).
[18] Grocke, D.E., Wigram, T.: Receptive Methods in Music Therapy: Techniques and Clinical Applications for Music Therapy Clinicians, Educators and Students. Jes- sica Kingsley Publishers, 1st edn.(2007).
[19] Guetin, S., Portet, F., Picot, M.C., Defez, C., Pose, C., Blayac, J.P., Touchon, J.: Impactofmusictherapyonanxietyanddepressionforpatientswithalzheimer’s disease and on the burden felt by the main caregiver (feasibility study). Interets delamusicotherapiesurl’anxiete,ladepressiondespatientsatteintsdelamaladie d’Alzheimeretsurlachargeressentieparl’accompagnantprincipal35(1),57–65 (2009).
[20] Hamann, S., Canli, T.: Individual differences in emotion processing. Current Opin- ioninNeurobiology14(2),233–238(2004).
[21] Higuchi,T.: Approach to anir regular time series on the basis of the fractal theory. PhysicaD:NonlinearPhenomena31(2),277–283(1988).
[22] Horlings, R.: Emotion recognition using brain activity. Ph.D. thesis, Delft Univer- sity of Technology(2008).
[23] IDM-Project: Emotion-based personalized digital media experience in co-spaces (2008),http://www3.ntu.edu.sg/home/eosourina/CHCILab/projects.html.
[24] James,W.:Whatisanemotion.Mind9(34),188–205(1984).
[25] Jones, N.A., Fox, N.A.: Electroencephalogram asymmetry during emotionally evocative films and its relation to positive and negative affectivity. Brain and Cog- nition20(2),280–299(1992).
[26] Khalili, Z., Moradi, M.H.: Emotion recognition system using brain and peripheral signals: Using correlation dimension to improve the results of eeg. In: Proceedings oftheInternationalJointConferenceonNeuralNetworks.pp.1571–1575(2009).
[27] Kulish, V., Sourin, A., Sourina, O.: Analysis and visualization of human electroen- cephalograms seen as fractal time series. Journal of Mechanics in Medicine and Biology,WorldScientific26(2),175–188(2006).
[28] Kulish, V., Sourin, A., Sourina, O.: Human electroencephalograms seen as fractal time series: Mathematical analysis and visualization. Computers in Biology and Medicine36(3),291–302(2006).
[29] Lane,R.D.,Reiman,E.M.,Bradley,M.M.,Lang,P.J.,Ahern,G.L.,Davidson,R.J., Schwartz, G.E.: Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia35(11),1437–1444(1997).
[30] Lang,P.,Bradley,M.,Cuthbert,B.:Internationalaffectivepicturesystem(IAPS): Affective ratings of pictures and instruction manual. Tech. rep., University of Florida, Gainesville, FL.(2008).
[31] Li, M., Chai, Q., Kaixiang, T., Wahab, A., Abut, H.: EEG emotion recognition system.In:In-VehicleCorpusandSignalProcessingforDriverBehavior,pp.125–135. Springer US (2009).
[32] Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.H.: EEG-based emotion recognition in music listening: A comparison of schemes for multiclass support vector machine. In: ICASSP, IEEE International Conference on Acoustics, Speech andSignalProcessing-Proceedings.pp.489–492.Taipei(2009).
[33] Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based human emotion recog- nitionandvisualization.In:Proc.2010Int.Conf.onCyberworlds.pp.262–269. Singapore(2010).
[34] Lutzenberger, W., Elbert, T., Birbaumer, N., Ray, W.J., Schupp, H.: The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks.BrainTopography5(1),27–34(1992).
[35] Maragos, P., Sun, F.K.: Measuring the fractal dimension of signals: morphological covers and iterative optimization. IEEE Transactions on Signal Processing 41(1), 108–121(1993).
[36] Mauss, I.B., Robinson, M.D.: Measures of emotion: A review. Cognition and Emo- tion23(2),209–237(2009).
[37] Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: LiftingschemeforhumanemotionrecognitionusingEEG.In:InformationTech- nology, 2008. ITSim 2008. International Symposium on. vol. 2(2008).
[38] Pardo, J.V., Pardo, P.J., Raichle, M.E.: Neural correlates of self-induced dysphoria. AmericanJournalofPsychiatry150(5),713–719(1993).
[39] Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG us- ing higher order crossings. IEEE Transactions on Information Technology in Biomedicine14(2),186–197(2010).