Ab-Initio Investigations on Structural, Electronic and Optical Behaviours of Graphene/h-BN Based Layered Systems

International Journal of Material Science and Engineering
© 2019 by SSRG - IJMSE Journal
Volume 5 Issue 3
Year of Publication : 2019
Authors : Muhammad Talha, Muhammad Rafique, Irfan Ahmed, Yong Shuai
pdf
How to Cite?

Muhammad Talha, Muhammad Rafique, Irfan Ahmed, Yong Shuai, "Ab-Initio Investigations on Structural, Electronic and Optical Behaviours of Graphene/h-BN Based Layered Systems," SSRG International Journal of Material Science and Engineering, vol. 5,  no. 3, pp. 1-6, 2019. Crossref, https://doi.org/10.14445/23948884/IJMSE-V5I3P101

Abstract:

This paper deals with the structural, electronic and optical characteristics of graphene and h-BN materials based few layered systems adopting first-principles DFT method. Graphene and h-BN 2D materials were stacked in layers using homo and hetero-structures configurations and aforementioned properties of few layered systems were observed in detail. In terms electronic behaviours, of pure bilayer graphene and h-BN systems display similar trends as that of their single layer counter-part but with quantitative increase in its physical properties. When graphene and h-BN layers are stacked together, this produces a conducting material behaviour having 0.5 eV band gap. After inclusion of single h-BN layer in between two graphene layers, the resultant is a layered graphene-like material having secondary Dirac point formation at the high symmetric point. When graphene is stacked between two h-BN layers, the resulting structure displays semimetal behaviour, thus converting wide band insulating h-BN layers to semi metallic state. Through optical properties (i.e., absorption and reflectivity) it was found that, single graphene and single h-BN stacking produces an absorptive material for visible range of spectrum. Similarly, graphene-h-BN -graphene stacked shows improved absorption in visible energy range. The static reflectivity of graphene-h-BN -graphene and h-BN-graphene-h-BN gains 0.7 intensity peak values as compared to pure bilayer graphene and bilayer h-BN systems. Outcomes of this study suggest that, combining graphene and h-BN 2D materials in stacked formation can produce functional opto-electronic materials for real engineering applications and these results can further be experimentally extrapolated.

Keywords:

Bilayer graphene; bilayer h-BN; Band gap; Absorption; Reflectivity; DFT

References:

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, science, 306 (2004) 666-669.
[2] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, The Journal of Physical Chemistry B, 108 (2004) 19912-19916.
[3] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials, 6 (2007) 183-191.
[4] F. Guinea, N. Peres, K. Novoselov, A. Geim, A.C. Neto, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009) 109-162.
[5] Z. Jiang, Y. Zhang, Y.-W. Tan, H. Stormer, P. Kim, Quantum Hall effect in graphene, Solid state communications, 143 (2007) 14-19.
[6] S.D. Sarma, S. Adam, E. Hwang, E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics, 83 (2011) 407.
[7] Z. Qiao, S.A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J. Wang, Q. Niu, Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Physical Review B, 82 (2010) 161414.
[8] S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, J. Robertson, Kohn anomalies and electron-phonon interactions in graphite, Physical review letters, 93 (2004) 185503.
[9] M. Lazzeri, F. Mauri, Nonadiabatic Kohn anomaly in a doped graphene monolayer, Physical review letters, 97 (2006) 266407.
[10] T. Ando, Y. Zheng, H. Suzuura, Dynamical conductivity and zero-mode anomaly in honeycomb lattices, Journal of the Physical Society of Japan, 71 (2002) 1318-1324.
[11] V. Gusynin, S. Sharapov, Transport of Dirac quasiparticles in graphene: Hall and optical conductivities, Physical Review B, 73 (2006) 245411.
[12] N. Peres, F. Guinea, A.C. Neto, Electronic properties of disordered two-dimensional carbon, Physical Review B, 73 (2006) 125411.
[13] A. Wright, F. Liu, C. Zhang, The effect of next nearest neighbor coupling on the optical spectra in bilayer graphene, Nanotechnology, 20 (2009) 405203.
[14] M. Yankowitz, F. Wang, C.N. Lau, B.J. LeRoy, Local spectroscopy of the electrically tunable band gap in trilayer graphene, Physical Review B, 87 (2013) 165102.
[15] K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Measurement of the optical conductivity of graphene, Physical review letters, 101 (2008) 196405.
[16] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, Experimental review of graphene, ISRN Condensed Matter Physics, 2012 (2012).
[17] M. Katsnelson, K. Novoselov, A. Geim, Chiral tunnelling and the Klein paradox in graphene, Nature physics, 2 (2006) 620.
[18] M. Katsnelson, A. Geim, Electron scattering on microscopic corrugations in graphene, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366 (2008) 195-204.
[19] E.V. Castro, K. Novoselov, S. Morozov, N. Peres, J.L. Dos Santos, J. Nilsson, F. Guinea, A. Geim, A.C. Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Physical review letters, 99 (2007) 216802.
[20] H. Min, B. Sahu, S.K. Banerjee, A. MacDonald, Ab initio theory of gate induced gaps in graphene bilayers, Physical Review B, 75 (2007) 155115.
[21] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature, 459 (2009) 820-823.
[22] H. Miyazaki, K. Tsukagoshi, A. Kanda, M. Otani, S. Okada, Influence of disorder on conductance in bilayer graphene under perpendicular electric field, Nano letters, 10 (2010) 3888-3892.
[23] J. Park, S.B. Jo, Y.J. Yu, Y. Kim, J.W. Yang, W.H. Lee, H.H. Kim, B.H. Hong, P. Kim, K. Cho, Single‐Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping, Advanced materials, 24 (2012) 407-411.
[24] D.L. Duong, S.M. Lee, S.H. Chae, Q.H. Ta, S.Y. Lee, G.H. Han, J.J. Bae, Y.H. Lee, Band-gap engineering in chemically conjugated bilayer graphene: Ab initio calculations, Physical Review B, 85 (2012) 205413.
[25] N. Kim, K.S. Kim, N. Jung, L. Brus, P. Kim, Synthesis and electrical characterization of magnetic bilayer graphene intercalate, Nano letters, 11 (2011) 860-865.
[26] M. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite, Advances in Physics, 30 (1981) 139-326.
[27] K. Ohhashi, I. Tsujikawa, Magnetic Properties of FeCl3-Graphite Compounds. I. Mössbauer Studies, Journal of the Physical Society of Japan, 36 (1974) 422-430.
[28] J. Han, D. Kang, J. Dai, Stability and local magnetic moment of bilayer graphene by intercalation: first principles study, RSC Advances, 8 (2018) 19732-19738.
[29] K. Vagdevi, V. Radhika Devi, K. Venkateswara Rao, First principles study of tunable band gap in bi layer Graphene (BLG), Materials Today: Proceedings, 4 (2017) 7586-7591.
[30] X. Zhang, D. Li, J. Meng, R. Yan, Y. Niu, H. Zhao, C. Liang, Z. He, Electronic and magnetic properties of MnF3 (4) superhalogen cluster-sandwiched bilayer graphene: First-principles calculations, Computational Materials Science, 124 (2016) 316-322.
[31] W.J. Yu, L. Liao, S.H. Chae, Y.H. Lee, X. Duan, Towards Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping, Nano letters, 11 (2011) 4759.
[32] S. Grimme, Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction, Journal of computational chemistry, 27 (2006) 1787-1799.
[33] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, 77 (1996) 3865.
[34] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, 59 (1999) 1758.
[35] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 6 (1996) 15-50.
[36] R. Muhammad, Y. Shuai, H.-P. Tan, A first-principles study on alkaline earth metal atom substituted monolayer boron nitride (BN), Journal of Materials Chemistry C, 5 (2017) 8112-8127.
[37] M. Rafique, Y. Shuai, H.-P. Tan, M. Hassan, Manipulating intrinsic behaviours of graphene by substituting alkaline earth metal atoms in its structure, RSC Advances, 7 (2017) 16360-16370.
[38] G. Kresse, J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, Journal of Physics: Condensed Matter, 6 (1994) 8245.
[39] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, Physical Review B, 73 (2006) 045112.
[40] A. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite, Physical Review B, 69 (2004) 245419.
[41] R. Muhammad, Y. Shuai, H.-P. Tan, First-principles study on hydrogen adsorption on nitrogen doped graphene, Physica E: Low-dimensional Systems and Nanostructures, 88 (2017) 115-124.
[42] L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Synthesis, Structure, and Properties of Boron‐and Nitrogen‐Doped Graphene, Advanced Materials, 21 (2009) 4726-4730.
[43] A. Laref, A. Ahmed, S. Bin-Omran, S. Luo, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes, Carbon, 81 (2015) 179-192.
[44] S. Mukherjee, T. Kaloni, Electronic properties of boron-and nitrogen-doped graphene: a first principles study, Journal of Nanoparticle Research, 14 (2012) 1059.
[45] R. Muhammad, Y. Shuai, T. He-Ping, First-principles study of electronic and optical properties of boron and nitrogen doped graphene, in: AIP Conference Proceedings, AIP Publishing, 2017, pp. 030002.
[46] M.G. Menezes, R.B. Capaz, J.L. Faria, Gap opening by asymmetric doping in graphene bilayers, Physical Review B, 82 (2010) 245414.
[47] J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, RSC Advances, 7 (2017) 16801-16822.
[48] C.-R. Hsing, C. Cheng, J.-P. Chou, C.-M. Chang, C.-M. Wei, Van der Waals interaction in a boron nitride bilayer, New Journal of Physics, 16 (2014) 113015.
[49] L. Brown, R. Hovden, P. Huang, M. Wojcik, D.A. Muller, J. Park, Twinning and twisting of tri-and bilayer graphene, Nano letters, 12 (2012) 1609-1615.
[50] Y. Fan, M. Zhao, Z. Wang, X. Zhang, H. Zhang, Tunable electronic structures of graphene/boron nitride heterobilayers, Applied Physics Letters, 98 (2011) 083103.
[51] P. San-Jose, R. Gorbachev, A. Geim, K. Novoselov, F. Guinea, Stacking boundaries and transport in bilayer graphene, Nano letters, 14 (2014) 2052-2057.
[52] V. Gusynin, S. Sharapov, J. Carbotte, Unusual microwave response of Dirac quasiparticles in graphene, Physical review letters, 96 (2006) 256802.
[53] F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, X. Xu, Nonlinear optical effects in nitrogen-doped graphene, RSC Advances, 6 (2016) 3526-3531.
[54] K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet, Solid State Communications, 152 (2012) 1341-1349.
[55] L. Yang, First-principles study of the optical absorption spectra of electrically gated bilayer graphene, Physical Review B, 81 (2010) 155445.