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Abstract 

This work concerns numerical analysis two tests for 

bending length proposed by Peirce. These tests are the 

alternative for traditional gravitational cantilever 

Peirce’s test. The applied mathematical model treats the 
textile product as elastic, which is subject to large 

deflections – the bending moment is proportional to the 

curvature of the bent axis. The optimal conditions of these 

tests were also considered in order to obtain the results of 

measurements most sensitive to changes of the input 

parameters. The results also show how long the specimen 

to measure the bending rigidity should be within a certain 

range of values. 

Keywords: textile mechanics, fabrics, elastic, bending 

length, bending rigidity, numerical methods. 

I. INTRODUCTION 

The bending behavior of textile materials is a 

significant characteristic that largely determines the ability 

of fabrics to drape. Furthermore, it also influenced the 

formability, handle, flexibility, buckling behavior, wrinkle 

resistance, and crease resistance. The measurement of 

bending is often characterized by its bending or flexural 

rigidity and hysteresis. Several testing devices offer the 
function to test the bending rigidity of the fabrics. Not only 

that, they come with various principles of measurement 

such as pure bending principle, folded loop, and cantilever 

methods [1], [2]. 

Pure bending tests are the most complex as compared 

to the others. Kawabata Evaluation System (KES) uses this 

principle in its bending measurement where the sample is 

mounted vertically on the device and the bending moment 

is measured as the sample is bent, enabled to obtain 

moment versus curvature results during the bending cycle 

[3], [4]. Using the same principle, the bending curvature 

could also be measured using Instron, as reported by Kocik 
et al. [5]. This pure bending method was also proposed and 

explained by other researchers in their publications [6]–

[8]. The folded loop is another principle used to measure 

bending behavior. By folding a fabric back to itself, a 

loop-like structure is obtained, and the height of the folded 

loop is measured as bending length is found to be 

proportional to it [1], [9]. A commonly used principle, 

cantilever deformation, is a globally accepted principle 

that was originally initiated by Peirce [10]. During the 

experiment, one edge of the fabric strip is fixed on a 

platform, glided with a ruler, and deflected from the 

platform under its own weight as a cantilever. Then, the 

cantilever length is measured once it reaches a pre-

determined deflection angle [11], [12]. Many researchers 
applied this principle and developed their own test method 

for the determination of bending. Sun introduced a tester 

that uses a cross-shaped specimen with a fixed strip length 

at the central part. The specimens are hanging on their own 

weight, and their x and y coordinates are determined, thus 

drape angle could be measured [13]. The drape angle 

describes fabric drape, and the bending length and flexural 

rigidity can thus be calculated from it. The commercial 

testing instruments from Commonwealth Scientific and 

Industrial Research Organization (CSIRO), Fabric 

Assurance by Simple Testing (FAST), also uses the 

cantilever principle in its bending module with an optical 
device to detect the bending angle [14]. 

The cantilever method is applied in the standards which 

are commonly referred to today, such as EN ISO 9073-7 

(European standard) and BS 3356-1990 (British standard). 

These standards use a manual bending tester to measure 

the bending length of the fabric samples. The whole 

procedure starts from placing the sample on the pathway, 

then sliding the fabric until the 41.5° line, and lastly taking 

the reading of the overhang length from the scale. All these 

are done by the operator. As this is prone to inaccuracies, 

an automated bending tester was developed, which is still 
based on the cantilever principle. Still, in the prototype 

version, this equipment which was developed at Ghent 

University, Belgium, introduces some automated 

approaches for the measurement [15]. Unlike the manual 

(standard) testing where the fabric strip is bent by the 

operator until it reaches 41.5° from the plane platform, this 

movement was automated by using actuators. Also, the 

human eyesight, which is used in determining the fabric 

when it reaches the angle, is replaced by sensors. Hence, a 

constant movement can be achieved, and inaccuracies of 

the measurement can be reduced. 
The authors, who deal with the bending problem of 

textiles in most cases, take advantage of Peirce’s theory 

presented in classical work [10]. In this work, there are 

theoretical fundamentals on which base most of today’s 

statical measurement methods of bending rigidity of 

textiles. 

http://www.internationaljournalssrg.org/IJPTE/paper-details?Id=55
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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II. MATERIALS AND METHODS 

A. Tests 

Peirce has proposed a simple test for describing 

bending rigidity ([16], [17]). As an alternative for Peirce’s 

test, new tests also based on gravitational methods are 
proposed. These tests are presented in Fig. 1. The name of 

the test derives from the shape of the loop: „heart” and 

„pear.” It should be pointed out that the height of the loop 

is taken into consideration (loop height) as the parameter 

characterizing the bending rigidity of the sample. 

 

Figure 1: The gravitational tests: „heart” and „pear.” 

The goal of the study was examination which of these 

tests is more appropriate for an estimate the bending 

rigidity of textiles, especially due to changes in the 

stiffness. 

B. Numerical analysis 

In this paper is assumed that the flat strip of fabric will 

be represented as its longitudinal section. The 

mathematical model will be described by a flat deflection 

curve which will be treated as a heavy elastic, as shown in 
Fig. 2. Therefore, instead of studying strips of fabric, the 

numerical analysis will be concerned with deflections of 

heavy elastica with given bending rigidity C and 

appropriate linear weight q. Besides will be assumed that 

the elastica is inextensible. Each point of centreline of 

elastica defined by curvilinear coordinates measured along 

elastica passes to point x(s), y(s) in a fixed coordinate 

system. Internal forces occurring at any cross-section 

within elastica reduce to components: horizontal force 

Fx(s), vertical force Fy(s), and bending moment M(s). 

 

 

Figure 2: The model of fabric approximated by the 

elastica 

Equilibrium of infinitesimal section of elastica ds 
(Fig. 3) and physical law lead to the following system of 

nonlinear first-order Differential Equations (1) that 

describing the elastica bending behavior. The unknowns 

are the functions of variable s: Fx, Fy, M, α, x, y. 

 

Figure 3: The infinitesimal section of elastica 

Therefore, to solve the above-mentioned problem, five 

Differential Equations (1) of heavy elastica will be used 

with five boundary conditions (condition Fy
B=0 has been 

used. B is the free endpoint of elastica). 

Due to Fy
B=0 and qdsdFy   we can write 

 slqFy  . 
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The system of equations is completed by boundary 

conditions that are usually connected with two ends of 

elastica. Due to the geometrical and mechanical symmetry 

of the problem, only one-half of the loop of the length 
l=0.5L will be studied, where L is the length of the whole 

loop (see Fig. 4). 

 

 

Figure 4: One-half of the loops „heart” and „pear.” 

with marked loop height h 

The loop height h is an absolute value of the coordinate y 

of the final point B. The boundary conditions for starting 

point A and for final point B are presented below. 

 

Hart loop 

 

- Fixed point A (s = 0): 

xA = 0,   yA = 0,   αA = π/2. 



Szablewski, P / IJPTE, 8(1), 1-5, 2021 

3 

- Free point B - free movement along the y-axis (s = l): 

xB = 0,   Fy
B = 0,   αB = -π. 

 

Pear loop 

 
- Fixed point A (s = 0): 

xA = 0,   yA = 0,   αA = -π/2. 

- Free point B - free movement along the y-axis (s = l): 

xB = 0,   Fy
B = 0,   αB = -π. 

 

We can get the solution of Equations (1) in the complete 

form only in one case if q = 0. The solution is then 

expressed by elliptic integrals. Generally, solving this 

problem is more complicated, and numerical methods will 

be applied. In order to solve the system of Equations (1), 

the iterative shooting method for the boundary problem 

was used. 
To solve the problem, the Mathematica program was 

used with the appropriate function to solve the boundary 

problem using the shooting method. I this task, the 

Newton‑Raphson method to find unknown initial values 

of the corresponding functions were used. 

III. RESULTS OF CALCULATIONS 

In order to illustrate the presented method, both tests, 

„heart” and „pear,” have been examined. In this way, a 

shape of the formed loop and its height h for a wide range 

of bending lengths have been obtained. 

The example shapes of the loop for „heart” and „pear” 

tests are presented in Fig. 5. 

The parameters are as follows: 

 

„heart” test  „pear” test 

 

   l = 0,20 m  l = 0,20 m 

D1 = 0,200 m  D1 = 0,200 m 
D2 = 0,123 m  D2 = 0,121 m 

D3 = 0,045 m  D3 = 0,041 m 

 

For both tests: q = 0,005 N/m and the length of specimen 

L = 2l. 

 

 

Figure 5: The example shapes of the loop for „heart” 

and ”pear” tests 

For each specimen, the quotient h/l never exceeds 1. 

Therefore the graph of the quotient h/l as a function of 

bending length has been prepared. This graph for 

q = 0,005 N/m is shown in Fig. 6. 

 

Figure 6: The graph of the relative loop height h/l as a 

function bending length D 

The estimation of bending rigidity measured by the 

loop height is better for the „heart” test. In this case, the 

loop height is more sensitive to changes in bending 

rigidity. 

Further considerations concern the „heart” test. 

In Fig. 7, the graph of the relative loop height h as a 

function bending length D for different length l of 

specimens from 0,24 m to 0,02 m with step 0,02 m is 

presented (l = 0,5L, where L is the full length of the 
specimen). 

 

 

Figure 7: The graph of the relative loop height h/l for 

different lengths of specimens 

The relative changes in height and bending rigidity can 

define as follows: 

 

prev

prevnext
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hh
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
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prev
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D

DD
D


 , 

 

where the index „next” denotes the next value of the given 

variable and the index „prev” – previous one. In this way, 

the graph of the quotient of relative changes of the height 
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to relative changes of bending rigidity  DfDh   can 

be created. 

 

Assume that we make the measurements to the 
moment until the relative changes of the height will be not 

less than 1/4 (25%) of the relative changes of bending 

rigidity, i.e. 

25,0Dh  . From the graph in Fig. 8, it follows that 

Dh  25,0  for 25 Nm1046,2m17,0  CD  

(in case of q = 0,005 N/m and l = 0,24 m ). 

Of course, it is possible to make similar investigations for 

a wider range of linear weight q and different lengths of 

specimens. 

 

 

Figure 8: The relative changes of the loop height for 

different length of the specimen 

Fig. 8 are presented the relative changes of the loop 

height for different lengths of the specimen from the range 

of 0,24 m to 0,02 m with the step of 0,02 m. 

From the graph in Fig. 8, it can be read that for estimating 

bending rigidity from the range of D ≤ 0,17 m maximum 

length of the specimen is m48,024,02 L . 

 

The table below shows the limiting values of bending 

rigidity Dmax (or Cmax) for given lengths of the specimen 

and for q = 0,005 N/m. The limiting values Dmax fulfill the 

condition 
Dh  25,0 . The measurements for given 

lengths of specimens should be done for D ≤ Dmax. 
Of course, it is possible to make a similar table for a wider 

range of linear weight q. 

TABLE I 

Limiting values of bending rigidity Dmax (or Cmax) 

L Dmax Cmax 

[m] [m] [Nm2] ×10-7 

0,04 0,014 0,14 

0,08 0,028 1,10 

0,12 0,042 3,70 

0,16 0,057 9,26 

0,20 0,071 17,90 

0,24 0,084 29,60 

0,28 0,098 36,50 

0,32 0,113 72,10 

0,36 0,127 102,00 

0,40 0,141 140,00 

0,44 0,155 186,00 

0,48 0,170 246,00 

IV. CONCLUSIONS 

The numerical analysis of the mathematical model of 

„heart” and „pear” bending test turned out to be 

effective. The applied iterative shooting method for 

solving boundary problems has been sufficiently fast and 

enough stable. The disadvantage of this method is that 

there is a constraint for using it for very small values of 

bending rigidity. Below a certain limiting value of 

bending rigidity, the iterative procedure becomes 

divergent. This limiting value is different for different 

lengths of specimens. 

The investigated numerical analysis gave the answer 

concerning the effectiveness of both tests. It turned out 
that more useful for estimating of bending rigidity of 

textiles is the „heart” test (loop of type „heart”). It 

follows that the loop height is more sensitive to changes 

of bending rigidity for this test. A more accurate analysis 

of the sensitivity of the loop height has shown how long 

should be lengths of specimens for the estimating of 

bending rigidity for a given range of values. 

The specific values of lengths of specimens have been 

presented for the estimating of bending rigidity using the 

test of type „heart.” 
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