Comparison of Comfort Properties of Jersey and Interlock Knits in Polyester, Cotton/Spandex, and Polyester/Rayon/Spandex
International Journal of Polymer and Textile Engineering |
© 2020 by SSRG - IJPTE Journal |
Volume 7 Issue 1 |
Year of Publication : 2020 |
Authors : Shuvo Kumar Kundu, Usha Chowdhary |
How to Cite?
Shuvo Kumar Kundu, Usha Chowdhary, "Comparison of Comfort Properties of Jersey and Interlock Knits in Polyester, Cotton/Spandex, and Polyester/Rayon/Spandex," SSRG International Journal of Polymer and Textile Engineering, vol. 7, no. 1, pp. 6-22, 2020. Crossref, https://doi.org/10.14445/23942592/IJPTE-V7I1P102
Abstract:
This study evaluated the effects of two independent variables thickness and weight on the five dependable variables air permeability, bursting strength, horizontal wicking, thermal insulation, and evaporative resistance. Total 5 hypotheses were developed to test the relationship among jersey and interlock knits with different fiber content. Mean (M), standard deviation (SD), t-test (t) and probability (p) were calculated to compare intra group fabric based of dependable variables. Analysis of Variance (ANOVA), Pearson Correlation and Regression Analysis were performed to determine the relation of independent variables to all dependable variables. Differences were found in jersey and interlock knits of different thickness and weight for air permeability, evaporative resistance, bursting strength, and horizontal wicking. Both positive and negative correlations were found between dependent and independent variables.
Keywords:
Thermal Comfort, Fabric Thickness, Fabric Weight, Air Permeability, Bursting Strength, Thermal Insulation, Evaporative Resistance, Horizontal Wicking.
References:
[1] Guanxiong, Q., Yuan, Z., Zhongwei, W., Jianli, L., Min, L., &Jie, Z. (1991). Comfort in knitted fabrics. International Man-Made Fibres Congress Proceed-ing, 112.
[2] Horn, M. J., &Gurel, L. M. (1981). The Second Skin: An Inter-disciplinary Study of Clothing.
[3] Troynikov, O., &Wardiningsih. (2011). Moisture management properties of wool/polyester and wool/bamboo knitted fabrics for the sportswear base layer. Textile Research Journal, 81(6), 621-631
[4] Prakash, C., & Ramakrishnan, G. (2013). Effect of blend pro-portion on thermal behaviour of bamboo knitted fabrics. The Journal of The Textile Institute, 114(9), 907-913.
[5] Spencer, D. J. (1983). Knitting Technology. Cam-bridge: Woodhead Publishing Limited
[6] Prakash, C., Govindan, R., & Koushik, C. V. (2013). A study of the thermal properties of bamboo knitted fabrics. Journal of Thermal Analysis and Calorime-try, 111, 101-105
[7] Oğlakcioğlu, N., &Marmarali, A. (2007). Thermal Comfort Properties of Some Knitted Structures. Fi-bers & Textiles in Eastern Europe, 15(5-6), 67-65
[8] Bakkevig, M. K., and Nielsen, R., The Impact of Activity Level on Sweat Accumulation and Thermal Comfort Using Different Underwear, Ergonomics, 38(5), 926–939 (1995).
[9] Chowdhary, U. (2018). Stretch and recovery of jersey and inter-lock knits. International Journal of Textile Science and engi-neering, 2018 -1, 1-9. DOI: 1029011/IJTSE – 112/100012.
[10] Fourt, L. E., & Hollies, N. R. (1970). Clothing; com-fort and function. New York: Marcel Decker Inc.
[11] Cabanac, M. (1971). Physiological Role of Pleasure. Science, 173(4002), 1103-1107.
[12] Slater, K. (1985). Human comfort. Springfield, Illi-nois, USA: Charles C. Thomas Publisher
[13] Smith, J. E. (1986). The comfort of clothing. Textiles, 23-27.
[14] Milenkovic, L., Skundric, P., Sokolovic, R., & Nikol-ic, T. (1999). Comfort properties of defence protec-tive clothing. The Scientific Journal Facta Universita-tis, 101-106
[15] Hensel, H. (1982, February 26). Thermoreception and tempera-ture regulation. Science, 215(4536).
[16] Nakamura, M., Yoda, T., Crawshaw, L. I., Kasuga, M., Uchida, Y., Tokizawa, K., . . . Kanosue, K. (2013, January). Relative importance of different surface regions for thermal comfort in humans. European Journal of Applied Physiology, 113(1), 63-76.
[17] Ravandi, S. A., &Valizadeh, M. (2011). Properties of fibers and fabrics that contribute to human comfort-2. In Improving com-fort in clothing (pp. 61-78). Elsevier Ltd.
[18] Dias, T., &Delkumburewatte, G. B. (2007). The in-fluence of moisture content on the thermal conduc-tivity of a knitted struc-ture. Measurement Science and Technology, 1304-1314.
[19] Choudhury, A. K., Majumdar, P. K., & Datta, C. (2011). Factors affecting comfort: human physiology and the role of clothing. Elsevier Ltd.
[20] Chowdhary, U. (2009). Textile analysis, quality con-trol and innovative uses. Deer Park, NY, USA.
[21] Kaplan, S., &Ayse, O. (2008). The Meaning and Importance of Clothing Comfort: A Case Study for Turkey. Journal of Sensory Studies, 23(5), 688-706.
[22] Chen, T.-H., Chen, W.-P., & Wang, M.-J. J. (2014, June). The Effect of Air Permeability and Water Vapor Permeability of Cleanroom Clothing on Physi-ological Responses and Wear Comfort. Journal of Occupational and Environmental Hygiene, 366–376.
[23] Fourt, L., &Harrist, M. (1947, May). Diffusion of Water Vapor Through Textiles. Textile Research Journal, 256-263.
[24] Dai, X.-Q., Imamura, R., & Liu, G.-L. (2008). Effect of mois-ture transport on microclimate under T-shirts. Eur J Appl Phy-siol, 337-340.
[25] Sun, Z., & Pan, N. (2014). Thermal conduction and moisture diffusion in fibrous materials. In N. Pan, & P. Gibson, Thermal and Moisture Transport in Fibr-ous Materials (p. 225). Wood-head Publishing Series in Textiles.
[26] Huang, J., & Qian, X. (2008). Comparison of Test Methods for Measuring Water Vapor. Textile Re-search Journal, 78(4), 342-352.
[27] Ertugrul, S., &Ucar, N. (2000). Predicting bursting strength of cotton plain knitted fabric using intelligent techniques. Textile Research Journal, 70, 845-851.
[28] Uyanik, S., Degirmenci, Z., Topalbekiroglu, M., &Geyik, F. (2016). Examining the Relation Between the Number and Loca-tion of Tuck Stitches and Burst-ing Strength in Circular Knitted Fabrics. Fibres& Textiles in Eastern Europe, 1(115), 114-119.
[29] Yesmin, S., Hasan, M., Miah, M. S., Momotaz, F., Idrish, M. A., & Hasan, M. R. (2014). Effect of stitch length and fabric constructions on dimensional and mechanical properties of knit-ted fabrics. World Ap-plied Sciences Journal, 32(9), 1991-1995.
[30] Collier, B. J., & Epps, H. H. (1999). Textile analysis and test-ing. Upper Saddle River, New Jersey, USA: Prentice Hall.
[31] Kadolph, S. J. (1998). Quality assurance for textiles and appa-rel. Fairchild, New York, USA.
[32] Chowdhary, U., Adnan, M. M., & Cheng, C.-I. (2018). Bursting Strength and Extension for Jersey, Interlock and Pique Knits. Trends in Textile Engineer-ing & Fashion Technology, 1(2), 1-9.
[33] Kan, C. W. (2015). Relationship between bursting strength and ultraviolet protection property of 100% cotton-knitted fabrics. The Journal of The Textile Institute, 106(9), 978-985.
[34] Fangueiro, R., Filgueiras, A., &Soutinho, F. (2010). Wicking Behavior and Drying Capability of Func-tional Knitted Fabrics. Textile Research Journal, 80(18), 1522-1530.
[35] Laughlin, R. D., & Davies, J. E. (1961). Some As-pects of Ca-pillary Absorption in Fibrous Textile Wicking. Textile Research Journal, 31(10), 904-910.
[36] Hollies, N. R., Kaessinger, M. M., Watson, B. S., &Bogaty, H. (1957). Water Transport Mechanisms in Textile Material. Tex-tile Research Journa, 27(1), 8-13.
[37] Zhang, Y., Wang, H., Zhang, C., & Chen, Y. (2007). Modeling of Capillary Flow in Shaped Polymer Fiber Bundles. Journal of Materials Science, 42(19), 8035-8039.
[38] Ramachandran, T., &Kesavaraja, N. (1997). A Study on In-fluencing Factors for Wetting and Wicking Behavior. Fabrics. J. Text. Inst., 80(15), 252.
[39] Morent, R., Geyter, N. D., Leys, C., Vansteenkiste, E., Bock, J. D., & Philips, a. W. (2006). Measuring the wicking behavior of textiles by the combination of a horizontal wicking experiment and image processing. Review of Scientific Instruments
[40] Bartels, V. T. (2005). Physiological comfort of sportswear. In R. Shishoo, Textile in sport (pp. 177-202). Cambridge: Woodland Publishing Limited.
[41] Bartels, V. T. (2005). Physiological comfort of sportswear. In R. Shishoo, Textile in sport (pp. 177-202). Cambridge: Woodland Publishing Limited.
[42] Chowdhary, U., (2017). Comparing three brands of cotton t-shirts. AATCC Journal of Research, Re-search, 4(3), 22-33.
[43] Ulson de Souza, A. A., Cherem, L. F., & Souza, S. M. (2009). Prediction of Dimensional Changes in Circu-lar Knitted Cotton. Textile Research Journal Fabrics, 236-252.
[44] Marsha, S.S. (2018). Comparison of Selected Struc-tural and Performance Attributes of Cotton and Cot-ton/Polyester Blend T-Shirts (unpublished master’s thesis). Central Michigan Uni-versity, Mount Pleasant, Michigan.
[45] Gun, A. D. (2011). Dimensional, Physical and Ther-mal Proper-ties of Plain Knitted Fabrics Made from 50/50 Blend of Modal Viscose Fiber in Microfiber Form with Cotton Fiber. Fibers and Polymers, 12(8), 1083-1090.
[46] Bivainyte, A., Mikucioniene, D., &Kerpauskas, P. (2012). In-vestigation on Thermal Properties of Double-Layered Weft Knitted Fabrics. Materials Science-Medziagotyra, 18(2), 167-171.
[47] Ogulata, R. T., &Mavruz, S. (2010). Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics. FIBRES & TEXTILES in Eastern Europe, 18(5 (82)), 71-75.
[48] Puszkarz, A. K., &Krucińska, I. (2018). Modeling of Air Per-meability of Knitted Fabric Using the Compu-tational Fluid Dynamics. AUTEX Research Journal, 1-13.
[49] Oinuma, R. (1990). Effect of stitch length on some properties of cotton 1×1 rib knitted fabrics. Journal of the Textile Machinery Society of Japan, 36, 91-95.
[50] Kumar, V., Sampath, V. R., & Prakash, C. (2016). Investigation of stretch on air permeability of knitted fabrics part II: effect of fabric structure. The Journal of The Textile Institute, 107(10), 1213-1222.
[51] Miraftab, M. (2012). Comparison of air permeability and mois-ture management properties of jersey, inter-lock and pique knit-ted fabrics. The Journal of The Textile Institute, 2, 1-5.
[52] Chen, Y. S., Li, J., & Zhang, W. Y. (2008). Analysis and predic-tion of the dynamic heat-moisture comfort property of fabric. Fibres and Textiles in Eastern Europe, 16, 51-55.
[53] Bhattacharya, S. S., &Ajmeri, J. R. (2013). Factors affecting air permeability of viscose & excel single jersey fabric. Interna-tional Journal of Engineering Research and Development, 5, 48-54.
[54] Prahsarn, C., Barker, R. L., & Gupta, B. S. (2005). Moisture Vapor Transport Behavior of Polyester Knit Fabrics. Textile Research Journal, 75(4), 346-351.
[55] Lee, H., & An, S. K. (2018). A Comparative Analysis of Ther-mal Comfort Properties for Nurse Scrub Jack-ets. AATCC Journal of Research, 5(2), 35-39. doi:10.14504/ajr.5.2.4
[56] Majumdar, A., Mukhopadhyay, S., & Yadav, R. (2010). Ther-mal properties of knitted fabrics made from cotton and regene-rated bamboo cellulosic fibres. International Journal of Thermal Sciences, 49(10), 2042-2048.
[57] Karthikeyan, G., Nalankilli, G., Shanmugasundaram, O. L., & Prakash, C. (2016). Thermal comfort proper-ties of bamboo ten-cel knitted fabrics. International Journal of Clothing Science and Technology, 28(4), 420-428.
[58] Ramakrishnan, G., Umapathy, P., & Prakash, C. (2015). Com-fort properties of bamboo/cotton blended knitted fabrics pro-duced from rotor spun yarns. The Journal of The Textile Insti-tute, 106(12), 1371-1376.
[59] Oglakcioglu, N., Celik, P., Ute, T. B., Marmarali, A., &Kadoglu, H. (2009). Thermal Comfort Properties of Angora Rabbit/Cotton Fiber Blended Knitted Fabrics. Textile Research Journal, 79(10), 888-894.
[60] Demiryurek, O., &Uysalturk, D. (2013). Thermal comfort prop-erties of Viloft/cotton and Vi-loft/polyester blended knitted fa-brics. Textile Re-search Journal, 83(16), 1740-1753.
[61] Özdil, N., Marmaralı, A., & Kretzschmar, S. D. (2007). Effect of yarn properties on thermal comfort of knitted fabrics. Interna-tional Journal of Thermal Sciences, 46, 1318-1322.
[62] Crow, R., & Dewar, M. M. (1993, January ). The Vertical and Horizontal Wicking of Water in Fabrics. Defence Research Es-tablishment Ottawa, 1-12.
[63] Hepburn, C.D. (1998). The Wicking of Water Through Multi-Layer Fabric Assemblies (published doctoral thesis). The Uni-versity of Leeds, Leeds.
[64] Mahbub, R. F., Wang, L., Arnold, L., Kaneslingam, S., &Padhye, R. (2014). Thermal comfort properties of Kevlar and
Kevlar/wool fabrics. Textile Research Journal, 84(19), 2094-2102.
[65] Ibrahim, N. A., Khalifa, T. F., El-Hossamy, M. B., & Tawfik, T. M. (2011). Factors Affecting the Func-tional- and Comfort-related Properties of Reactive Dyed Cotton Knits. Journal of In-dustrial Textiles, 41(1), 41-56. doi: 10.1177/1528083710390966
[66] Chowdhary, U. (2007). Textile Analysis: Laboratory Manual. Deer Park, New York, USA: LINUS.
[67] Emirhanova, N., &Kavusturan, Y. (2008). Effect of knit struc-ture on the dimensional and physical proper-ties of winter out-erwear knitted fabrics. Fibres& Textiles in Eastern Europe, 6(2), 69-74.
[68] ASTM D1777-96, ASTM International, West Con-shohocken, PA, 2015, www.astm.org.
[69] ASTM D3776 / D3776M-09a, ASTM Interna-tional, West Conshohocken, PA, 2017, www.astm.org.
[70] ASTM D737-04, ASTM International, West Con-shohocken, PA, 2018, www.astm.org.
[71] ASTM D6797-15, ASTM International, West Consho-hocken, PA, 2015, www.astm.org.
[72] AATCC 198-2013, American Association of Textile Chemists and Colorists, Durham, NC, 2013, www.aatcc.org.
[73] ASTM F1868-17, ASTM International, West Consho-hocken, PA, 2017, www.astm.org.